URL
https://opencores.org/ocsvn/rtfbitmapcontroller/rtfbitmapcontroller/trunk
Subversion Repositories rtfbitmapcontroller
[/] [rtfbitmapcontroller/] [trunk/] [rtl/] [verilog/] [rtfBitmapController2.v] - Rev 15
Compare with Previous | Blame | View Log
`timescale 1ns / 1ps // ============================================================================ // Bitmap Controller2 // - Displays a bitmap from memory. // // // __ // \\__/ o\ (C) 2008-2015 Robert Finch, Stratford // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // // The default base screen address is: // $0400000 - the second 4MiB of RAM // // // Verilog 1995 // // ref: XC7a100t-1CSG324 // 600 LUTs / 3 BRAMs / 425 FF's // 196 MHz // ============================================================================ module rtfBitmapController2( rst_i, s_clk_i, s_cyc_i, s_stb_i, s_ack_o, s_we_i, s_adr_i, s_dat_i, s_dat_o, irq_o, m_clk_i, m_cyc_o, m_stb_o, m_ack_i, m_adr_o, m_dat_i, vclk, hSync, vSync, blank, rgbPriority, rgbo, xonoff ); parameter pIOAddress = 32'hFFDC5000; parameter BM_BASE_ADDR1 = 32'h0040_0000; parameter BM_BASE_ADDR2 = 32'h0080_0000; parameter REG_CTRL = 10'd0; parameter REG_CTRL2 = 10'd1; parameter REG_HDISPLAYED = 10'd2; parameter REG_VDISPLAYED = 10'd3; parameter REG_PAGE1ADDR = 10'd5; parameter REG_PAGE2ADDR = 10'd6; parameter REG_REFDELAY = 10'd7; parameter BPP6 = 3'd0; parameter BPP8 = 3'd1; parameter BPP12 = 3'd2; parameter BPP16 = 3'd3; parameter BPP24 = 3'd4; parameter BPP30 = 3'd6; // SYSCON input rst_i; // system reset // Peripheral slave port input s_clk_i; input s_cyc_i; input s_stb_i; output s_ack_o; input s_we_i; input [31:0] s_adr_i; input [31:0] s_dat_i; output [31:0] s_dat_o; reg [31:0] s_dat_o; output irq_o; // Video Master Port // Used to read memory via burst access input m_clk_i; // system bus interface clock output m_cyc_o; // video burst request output m_stb_o; input m_ack_i; // vid_acknowledge from memory output [31:0] m_adr_o; // address for memory access input [127:0] m_dat_i; // memory data input // Video input vclk; // Video clock 85.71 MHz input hSync; // start/end of scan line input vSync; // start/end of frame input blank; // blank the output output [1:0] rgbPriority; reg [1:0] rgbPriority; output [23:0] rgbo; // 24-bit RGB output reg [23:0] rgbo; input xonoff; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // IO registers // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg m_cyc_o; reg m_stb_o; reg [31:0] m_adr_o; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire cs = s_cyc_i && s_stb_i && (s_adr_i[31:12]==pIOAddress[31:12]); reg ack,ack1; always @(posedge s_clk_i) begin ack1 <= cs; ack <= ack1 & cs; end assign s_ack_o = cs ? (s_we_i ? 1'b1 : ack) : 1'b0; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [11:0] hDisplayed,vDisplayed; reg [31:0] bm_base_addr1,bm_base_addr2; reg [2:0] color_depth; wire [8:0] fifo_cnt; reg onoff; reg [1:0] hres,vres; reg greyscale; reg page; reg pals; // palette select reg [11:0] hrefdelay; reg [11:0] vrefdelay; reg [11:0] hctr; // horizontal reference counter wire [11:0] hctr1 = hctr - hrefdelay; reg [11:0] vctr; // vertical reference counter wire [11:0] vctr1 = vctr - vrefdelay; reg [31:0] baseAddr; // base address register wire [31:0] rgbo1; reg [11:0] pixelRow; reg [11:0] pixelCol; wire [31:0] pal_wo; wire [31:0] pal_o; always @(page or bm_base_addr1 or bm_base_addr2) baseAddr = page ? bm_base_addr2 : bm_base_addr1; // Color palette RAM for 8bpp modes syncRam512x32_1rw1r upal1 ( .wrst(1'b0), .wclk(s_clk_i), .wce(cs & s_adr_i[11]), .we(s_we_i), .wadr(s_adr_i[10:2]), .i(s_dat_i), .wo(pal_wo), .rrst(1'b0), .rclk(vclk), .rce(1'b1), .radr({pals,rgbo4[7:0]}), .o(pal_o) ); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - always @(posedge s_clk_i) if (rst_i) begin page <= 1'b0; pals <= 1'b0; hres <= 2'b01; vres <= 2'b01; hDisplayed <= 12'd672; // must be a multiple of 16 vDisplayed <= 12'd384; onoff <= 1'b1; color_depth <= BPP12; greyscale <= 1'b0; bm_base_addr1 <= BM_BASE_ADDR1; bm_base_addr2 <= BM_BASE_ADDR2; hrefdelay <= 12'd218; vrefdelay <= 12'd27; end else begin if (cs) begin if (s_we_i) begin casex(s_adr_i[11:2]) REG_CTRL: begin onoff <= s_dat_i[0]; color_depth <= s_dat_i[10:8]; greyscale <= s_dat_i[11]; hres <= s_dat_i[17:16]; vres <= s_dat_i[19:18]; end REG_CTRL2: begin page <= s_dat_i[16]; pals <= s_dat_i[17]; end REG_HDISPLAYED: hDisplayed <= s_dat_i[11:0]; REG_VDISPLAYED: vDisplayed <= s_dat_i[11:0]; REG_PAGE1ADDR: bm_base_addr1 <= s_dat_i; REG_PAGE2ADDR: bm_base_addr2 <= s_dat_i; REG_REFDELAY: begin hrefdelay <= s_dat_i[11:0]; vrefdelay <= s_dat_i[27:16]; end endcase end casex(s_adr_i[11:2]) REG_CTRL: begin s_dat_o[0] <= onoff; s_dat_o[10:8] <= color_depth; s_dat_o[11] <= greyscale; s_dat_o[17:16] <= hres; s_dat_o[19:18] <= vres; end REG_CTRL2: begin s_dat_o[16] <= page; s_dat_o[17] <= pals; end REG_HDISPLAYED: s_dat_o <= hDisplayed; REG_VDISPLAYED: s_dat_o <= vDisplayed; REG_PAGE1ADDR: s_dat_o <= bm_base_addr1; REG_PAGE2ADDR: s_dat_o <= bm_base_addr2; REG_REFDELAY: s_dat_o <= {vrefdelay,4'h0,hrefdelay}; 10'b1xxx_xxxx_xx: s_dat_o <= pal_wo; endcase end else s_dat_o <= 32'd0; end assign irq_o = 1'b0; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Horizontal and Vertical timing reference counters // - The memory fetch address is determined from these counters. // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire hSyncEdge, vSyncEdge; edge_det ed0(.rst(rst_i), .clk(vclk), .ce(1'b1), .i(hSync), .pe(hSyncEdge), .ne(), .ee() ); edge_det ed1(.rst(rst_i), .clk(vclk), .ce(1'b1), .i(vSync), .pe(vSyncEdge), .ne(), .ee() ); always @(posedge vclk) if (rst_i) hctr <= 1; else if (hSyncEdge) hctr <= 1; else hctr <= hctr + 1; always @(posedge vclk) if (rst_i) vctr <= 1; else if (vSyncEdge) vctr <= 1; else if (hSyncEdge) vctr <= vctr + 1; // Pixel row and column are derived from the horizontal and vertical counts. always @(posedge vclk) case(vres) 2'b00: pixelRow <= vctr1[11:0]; 2'b01: pixelRow <= vctr1[11:1]; 2'b10: pixelRow <= vctr1[11:2]; default: pixelRow <= vctr1[11:2]; endcase always @(hctr1) case(hres) 2'b00: pixelCol = hctr1[11:0]; 2'b01: pixelCol = hctr1[11:1]; 2'b10: pixelCol = hctr1[11:2]; default: pixelCol = hctr1[11:2]; endcase wire vFetch = pixelRow < vDisplayed; wire fifo_rst = hctr[11:4]==8'h00; wire[23:0] rowOffset = pixelRow * hDisplayed; reg [11:0] fetchCol; // The following bypasses loading the fifo when all the pixels from a scanline // are buffered in the fifo and the pixel row doesn't change. Since the fifo // pointers are reset at the beginning of a scanline, the fifo can be used like // a cache. wire blankEdge; edge_det ed2(.rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(blank), .pe(blankEdge), .ne(), .ee() ); reg do_loads; reg [11:0] opixelRow; reg load_fifo; always @(posedge m_clk_i) load_fifo <= fifo_cnt < 9'd500 && vFetch && onoff && xonoff && fetchCol < hDisplayed && !m_cyc_o && do_loads; reg [11:0] hCmp; always @(color_depth) case(color_depth) BPP6: hCmp = 12'd2048; BPP8: hCmp = 12'd2048; BPP12: hCmp = 12'd1024; BPP16: hCmp = 12'd1024; BPP24: hCmp = 12'd512; default: hCmp = 12'd512; endcase always @(posedge m_clk_i) if (!(hDisplayed < hCmp)) do_loads <= 1'b1; else if (pixelRow != opixelRow) do_loads <= 1'b1; else if (blankEdge) do_loads <= 1'b0; reg [31:0] adr; always @(posedge m_clk_i) if (rst_i) begin wb_nack(); fetchCol <= 12'd0; opixelRow <= 12'hFFF; end else begin if (fifo_rst) begin fetchCol <= 12'd0; adr <= baseAddr + rowOffset; opixelRow <= pixelRow; end else if (load_fifo) begin m_cyc_o <= 1'b1; m_stb_o <= 1'b1; m_adr_o <= adr; end if (m_cyc_o & m_ack_i) begin case(color_depth) BPP6,BPP8: fetchCol <= fetchCol + 12'd16; BPP12,BPP16: fetchCol <= fetchCol + 12'd8; default: fetchCol <= fetchCol + 12'd4; endcase wb_nack(); adr <= adr + 32'd16; end end task wb_nack; begin m_cyc_o <= 1'b0; m_stb_o <= 1'b0; m_adr_o <= 32'h0000_0000; end endtask reg [11:0] pixelColD1; reg [31:0] rgbo2,rgbo3,rgbo4; always @(posedge vclk) case(color_depth) BPP6: rgbo4 <= greyscale ? {3{rgbo2[5:0],2'b00}} : {rgbo2[7:6],6'b00,rgbo2[5:4],6'b00,rgbo2[3:2],6'b00,rgbo2[1:0],6'b00}; BPP8: rgbo4 <= greyscale ? {3{rgbo2[7:0]}} : rgbo2; BPP12: rgbo4 <= {rgbo3[15:14],6'd0,rgbo3[11:8],4'h0,rgbo3[7:4],4'h0,rgbo3[3:0],4'h0}; BPP16: rgbo4 <= {rgbo3[14:10],3'b0,rgbo3[9:5],3'b0,rgbo3[4:0],3'b0}; default: rgbo4 <= rgbo1; endcase reg rd_fifo,rd_fifo1,rd_fifo2; reg de; always @(posedge vclk) if (rd_fifo1) de <= ~blank; always @(posedge vclk) if (onoff & xonoff & de) begin if (color_depth[2:1]==2'b00 && !greyscale) begin rgbo <= pal_o; rgbPriority <= pal_o[31:30]; end else begin rgbo <= rgbo4[23:0]; rgbPriority <= rgbo4[31:30]; end end else rgbo <= 24'd0; // Before the hrefdelay expires, pixelCol will be negative, which is greater // than hDisplayed as the value is unsigned. That means that fifo reading is // active only during the display area 0 to hDisplayed. wire vrd; always @(posedge vclk) pixelColD1 <= pixelCol; always @(posedge vclk) if (pixelCol < hDisplayed + 12'd8) case({color_depth[2:1],hres}) 4'b0000: rd_fifo1 <= hctr[1:0]==2'b00; // 4 clocks 4'b0001: rd_fifo1 <= hctr[2:0]==3'b000; // 8 clocks 4'b0010: rd_fifo1 <= hctr[3:0]==4'b0000; // 16 clocks 4'b0011: rd_fifo1 <= hctr[3:0]==4'b0000; // unsupported 4'b0100: rd_fifo1 <= hctr[0]==1'b0; // 2 clocks 4'b0101: rd_fifo1 <= hctr[1:0]==2'b00; // 4 clocks 4'b0110: rd_fifo1 <= hctr[2:0]==3'b000; // 8 clocks (twice as often as a byte) 4'b0111: rd_fifo1 <= hctr[2:0]==3'b000; 4'b1000: rd_fifo1 <= 1'b0; 4'b1001: rd_fifo1 <= 1'b0; 4'b1010: rd_fifo1 <= 1'b0; 4'b1011: rd_fifo1 <= 1'b0; 4'b1100: rd_fifo1 <= 1'b1; 4'b1101: rd_fifo1 <= hctr[0]==1'b0; 4'b1110: rd_fifo1 <= hctr[1:0]==2'b00; 4'b1111: rd_fifo1 <= hctr[1:0]==2'b00; endcase else rd_fifo1 <= 1'b0; reg shift,shift1,shift2; always @(posedge vclk) if (pixelCol < hDisplayed + 12'd8) case({color_depth[2:1],hres}) // shift four times as often as a load 4'b0000: shift1 <= 1'b1; 4'b0001: shift1 <= hctr[0]==1'b0; 4'b0010: shift1 <= hctr[1:0]==2'b00; 4'b0011: shift1 <= hctr[1:0]==2'b00; // shift twice as often as a load 4'b0100: shift1 <= 1'b1; 4'b0101: shift1 <= hctr[0]==1'b0; 4'b0110: shift1 <= hctr[1:0]==2'b00; 4'b0111: shift1 <= hctr[1:0]==2'b00; // unsupported color depth 4'b1000: shift1 <= 1'b0; 4'b1001: shift1 <= 1'b0; 4'b1010: shift1 <= 1'b0; 4'b1011: shift1 <= 1'b0; // nothing to shift (all loads) 4'b1100: shift1 <= 1'b0; 4'b1101: shift1 <= 1'b0; 4'b1110: shift1 <= 1'b0; 4'b1111: shift1 <= 1'b0; endcase always @(posedge vclk) shift2 <= shift1; always @(posedge vclk) shift <= shift2; always @(posedge vclk) rd_fifo2 <= rd_fifo1; always @(posedge vclk) rd_fifo <= rd_fifo2; always @(posedge vclk) if (rd_fifo) rgbo2 <= rgbo1; else if (shift) rgbo2 <= {8'h00,rgbo2[31:8]}; always @(posedge vclk) if (rd_fifo) rgbo3 <= rgbo1; else if (shift) rgbo3 <= {16'h0000,rgbo3[31:16]}; rtfVideoFifo2 uf1 ( .rst(fifo_rst), .wclk(m_clk_i), .wr(m_cyc_o & m_ack_i), .di(m_dat_i), .rclk(vclk), .rd(rd_fifo), .do(rgbo1), .cnt(fifo_cnt) ); endmodule