URL
https://opencores.org/ocsvn/rtfbitmapcontroller/rtfbitmapcontroller/trunk
Subversion Repositories rtfbitmapcontroller
[/] [rtfbitmapcontroller/] [trunk/] [rtl/] [verilog/] [rtfBitmapController4.v] - Rev 28
Go to most recent revision | Compare with Previous | Blame | View Log
`timescale 1ns / 1ps // ============================================================================ // Bitmap Controller4 // - Displays a bitmap from memory. // // // __ // \\__/ o\ (C) 2008-2016 Robert Finch, Stratford // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // // The default base screen address is: // $0400000 - the second 4MiB of RAM // // // Verilog 1995 // // ============================================================================ module rtfBitmapController4( rst_i, s_clk_i, s_cyc_i, s_stb_i, s_ack_o, s_we_i, s_adr_i, s_dat_i, s_dat_o, irq_o, m_clk_i, m_bte_o, m_cti_o, m_cyc_o, m_stb_o, m_ack_i, m_we_o, m_sel_o, m_adr_o, m_dat_i, m_dat_o, vclk, hsync, vsync, blank, rgbo, xonoff ); parameter pIOAddress = 32'hFFDC5000; parameter BM_BASE_ADDR1 = 32'h0040_0000; parameter BM_BASE_ADDR2 = 32'h0050_0000; parameter REG_CTRL = 10'd0; parameter REG_CTRL2 = 10'd1; parameter REG_HDISPLAYED = 10'd2; parameter REG_VDISPLAYED = 10'd3; parameter REG_PAGE1ADDR = 10'd5; parameter REG_PAGE2ADDR = 10'd6; parameter REG_REFDELAY = 10'd7; parameter REG_MAP = 10'd8; parameter REG_PX = 10'd9; parameter REG_PY = 10'd10; parameter REG_COLOR = 10'd11; parameter REG_PCMD = 10'd12; parameter BPP6 = 3'd0; parameter BPP8 = 3'd1; parameter BPP12 = 3'd2; parameter BPP16 = 3'd3; parameter BPP24 = 3'd4; parameter BPP32 = 3'd5; // SYSCON input rst_i; // system reset // Peripheral slave port input s_clk_i; input s_cyc_i; input s_stb_i; output s_ack_o; input s_we_i; input [31:0] s_adr_i; input [31:0] s_dat_i; output [31:0] s_dat_o; reg [31:0] s_dat_o; output irq_o; // Video Master Port // Used to read memory via burst access input m_clk_i; // system bus interface clock output [1:0] m_bte_o; output [2:0] m_cti_o; output m_cyc_o; // video burst request output m_stb_o; output reg m_we_o; output [15:0] m_sel_o; input m_ack_i; // vid_acknowledge from memory output [31:0] m_adr_o; // address for memory access input [127:0] m_dat_i; // memory data input output reg [127:0] m_dat_o; // Video input vclk; // Video clock 85.71 MHz input hsync; // start/end of scan line input vsync; // start/end of frame input blank; // blank the output output [23:0] rgbo; // 24-bit RGB output reg [23:0] rgbo; input xonoff; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // IO registers // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg m_cyc_o; reg [31:0] m_adr_o; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire cs = s_cyc_i && s_stb_i && (s_adr_i[31:12]==pIOAddress[31:12]); reg ack,ack1; always @(posedge s_clk_i) begin ack1 <= cs; ack <= ack1 & cs; end assign s_ack_o = cs ? (s_we_i ? 1'b1 : ack) : 1'b0; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [11:0] hDisplayed,vDisplayed; reg [31:0] bm_base_addr1,bm_base_addr2; reg [2:0] color_depth; wire [7:0] fifo_cnt; reg onoff; reg [2:0] hres,vres; reg greyscale; reg page; reg pals; // palette select reg [11:0] hrefdelay; reg [11:0] vrefdelay; reg [11:0] map; // memory access period reg [11:0] mapctr; reg [11:0] hctr; // horizontal reference counter wire [11:0] hctr1 = hctr - hrefdelay; reg [11:0] vctr; // vertical reference counter wire [11:0] vctr1 = vctr - vrefdelay; reg [31:0] baseAddr; // base address register wire [127:0] rgbo1; reg [11:0] pixelRow; reg [11:0] pixelCol; wire [31:0] pal_wo; wire [31:0] pal_o; reg [11:0] px; reg [11:0] py; reg [1:0] pcmd,pcmd_o; reg [31:0] color; reg [31:0] color_o; reg rstcmd,rstcmd1; always @(page or bm_base_addr1 or bm_base_addr2) baseAddr = page ? bm_base_addr2 : bm_base_addr1; // Color palette RAM for 8bpp modes syncRam512x32_1rw1r upal1 ( .wrst(1'b0), .wclk(s_clk_i), .wce(cs & s_adr_i[11]), .we(s_we_i), .wadr(s_adr_i[10:2]), .i(s_dat_i), .wo(pal_wo), .rrst(1'b0), .rclk(vclk), .rce(1'b1), .radr({pals,rgbo4[7:0]}), .o(pal_o) ); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - always @(posedge s_clk_i) if (rst_i) begin page <= 1'b0; pals <= 1'b0; hres <= 3'd4; vres <= 3'd3; hDisplayed <= 12'd340; vDisplayed <= 12'd256; onoff <= 1'b1; color_depth <= BPP12; greyscale <= 1'b0; bm_base_addr1 <= BM_BASE_ADDR1; bm_base_addr2 <= BM_BASE_ADDR2; hrefdelay <= 12'd54;//12'd218; vrefdelay <= 12'd18;//12'd27; map <= 12'd0; pcmd <= 2'b00; rstcmd1 <= 1'b0; end else begin rstcmd1 <= rstcmd; if (rstcmd & ~rstcmd1) pcmd <= 2'b00; if (cs) begin if (s_we_i) begin casex(s_adr_i[11:2]) REG_CTRL: begin onoff <= s_dat_i[0]; color_depth <= s_dat_i[10:8]; greyscale <= s_dat_i[11]; hres <= s_dat_i[18:16]; vres <= s_dat_i[21:19]; end REG_CTRL2: begin page <= s_dat_i[16]; pals <= s_dat_i[17]; end REG_HDISPLAYED: hDisplayed <= s_dat_i[11:0]; REG_VDISPLAYED: vDisplayed <= s_dat_i[11:0]; REG_PAGE1ADDR: bm_base_addr1 <= s_dat_i; REG_PAGE2ADDR: bm_base_addr2 <= s_dat_i; REG_REFDELAY: begin hrefdelay <= s_dat_i[11:0]; vrefdelay <= s_dat_i[27:16]; end REG_MAP: map <= s_dat_i[11:0]; REG_PX: px <= s_dat_i[11: 0]; REG_PY: py <= s_dat_i[11:0]; REG_PCMD: pcmd <= s_dat_i[1:0]; REG_COLOR: color <= s_dat_i; endcase end casex(s_adr_i[11:2]) REG_CTRL: begin s_dat_o[0] <= onoff; s_dat_o[10:8] <= color_depth; s_dat_o[11] <= greyscale; s_dat_o[18:16] <= hres; s_dat_o[21:19] <= vres; end REG_CTRL2: begin s_dat_o[16] <= page; s_dat_o[17] <= pals; end REG_HDISPLAYED: s_dat_o <= hDisplayed; REG_VDISPLAYED: s_dat_o <= vDisplayed; REG_PAGE1ADDR: s_dat_o <= bm_base_addr1; REG_PAGE2ADDR: s_dat_o <= bm_base_addr2; REG_REFDELAY: s_dat_o <= {vrefdelay,4'h0,hrefdelay}; REG_MAP: s_dat_o <= map; REG_PX: s_dat_o <= px; REG_PY: s_dat_o <= py; REG_COLOR: s_dat_o <= color_o; REG_PCMD: s_dat_o <= pcmd; 10'b1xxx_xxxx_xx: s_dat_o <= pal_wo; endcase end else s_dat_o <= 32'd0; end assign irq_o = 1'b0; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Horizontal and Vertical timing reference counters // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire pe_hsync, pe_hsync2; wire pe_vsync; edge_det edh1 ( .rst(rst_i), .clk(vclk), .ce(1'b1), .i(hsync), .pe(pe_hsync), .ne(), .ee() ); edge_det edh2 ( .rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(hsync), .pe(pe_hsync2), .ne(), .ee() ); edge_det edv1 ( .rst(rst_i), .clk(vclk), .ce(1'b1), .i(vsync), .pe(pe_vsync), .ne(), .ee() ); reg [3:0] hc; always @(posedge vclk) if (rst_i) hc <= 4'd1; else if (pe_hsync) begin hc <= 4'd1; pixelCol <= -hrefdelay; end else begin if (hc==hres) begin hc <= 4'd1; pixelCol <= pixelCol + 1; end else hc <= hc + 4'd1; end reg [3:0] vc; always @(posedge vclk) if (rst_i) vc <= 4'd1; else if (pe_vsync) begin vc <= 4'd1; pixelRow <= -vrefdelay; end else begin if (pe_hsync) begin vc <= vc + 4'd1; if (vc==vres) begin vc <= 4'd1; pixelRow <= pixelRow + 1; end end end reg [4:0] shifts; always @(color_depth) case(color_depth) BPP6: shifts = 5'd21; BPP8: shifts = 5'd16; BPP12: shifts = 5'd10; BPP16: shifts = 5'd8; BPP24: shifts = 5'd5; BPP32: shifts = 5'd4; default: shifts = 5'd16; endcase wire vFetch = pixelRow < vDisplayed; wire fifo_rrst = pixelCol==12'hFFF; wire fifo_wrst = pe_hsync2; wire[31:0] grAddr,xyAddr; reg [11:0] fetchCol; wire [6:0] mb,me; reg [127:0] mem_strip; wire [127:0] mem_strip_o; wire [31:0] mem_color; gfx_CalcAddress u1 ( .clk(vclk), .base_address_i(baseAddr), .color_depth_i({1'b0,color_depth}), .hdisplayed_i(hDisplayed), .x_coord_i(0), .y_coord_i(pixelRow), .address_o(grAddr), .mb_o(), .me_o() ); gfx_CalcAddress u2 ( .clk(vclk), .base_address_i(baseAddr), .color_depth_i({1'b0,color_depth}), .hdisplayed_i(hDisplayed), .x_coord_i(px), .y_coord_i(py), .address_o(xyAddr), .mb_o(mb), .me_o(me) ); mem2color u3 ( .mem_i(mem_strip), .mb_i(mb), .me_i(me), .color_o(mem_color) ); color2mem u4 ( .mem_i(mem_strip), .mb_i(mb), .me_i(me), .color_i(color), .mem_o(mem_strip_o) ); always @(posedge m_clk_i) if (pe_hsync2) mapctr <= 12'hFFE; else begin if (mapctr == map) mapctr <= 12'd0; else mapctr <= mapctr + 12'd1; end wire memreq = mapctr==12'd0; // The following bypasses loading the fifo when all the pixels from a scanline // are buffered in the fifo and the pixel row doesn't change. Since the fifo // pointers are reset at the beginning of a scanline, the fifo can be used like // a cache. wire blankEdge; edge_det ed2(.rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(blank), .pe(blankEdge), .ne(), .ee() ); reg do_loads; reg [11:0] opixelRow; reg load_fifo; always @(posedge m_clk_i) //load_fifo <= fifo_cnt < 10'd1000 && vFetch && onoff && xonoff && !m_cyc_o && do_loads; load_fifo <= /*fifo_cnt < 8'd224 &&*/ vFetch && onoff && xonoff && fetchCol < hDisplayed && !m_cyc_o && do_loads && memreq; // The following table indicates the number of pixel that will fit into the // video fifo. reg [11:0] hCmp; always @(color_depth) case(color_depth) BPP6: hCmp = 12'd4095; BPP8: hCmp = 12'd4095; // must be 12 bits BPP12: hCmp = 12'd2559; BPP16: hCmp = 12'd2048; BPP24: hCmp = 12'd1279; BPP32: hCmp = 12'd1024; default: hCmp = 12'd1024; endcase always @(posedge m_clk_i) // if hDisplayed > hCmp we always load because the fifo isn't large enough to act as a cache. if (!(hDisplayed < hCmp)) do_loads <= 1'b1; // otherwise load the fifo only when the row changes to conserve memory bandwidth else if (vc==4'd1)//pixelRow != opixelRow) do_loads <= 1'b1; else if (blankEdge) do_loads <= 1'b0; assign m_bte_o = 2'b00; assign m_cti_o = 3'b000; assign m_stb_o = 1'b1; assign m_sel_o = 16'hFFFF; reg [31:0] adr; reg [2:0] state; parameter IDLE = 3'd1; parameter LOADCOLOR = 3'd2; parameter LOADSTRIP = 3'd3; parameter STORESTRIP = 3'd4; parameter ACKSTRIP = 3'd5; parameter WAITLOAD = 3'd6; parameter WAITRST = 3'd7; reg [31:0] adr; always @(posedge m_clk_i) if (fifo_wrst) adr <= grAddr; else begin if (state==WAITLOAD && m_ack_i) adr <= adr + 32'd16; end always @(posedge m_clk_i) if (fifo_wrst) fetchCol <= 12'd0; else begin if (state==WAITLOAD && m_ack_i) fetchCol <= fetchCol + shifts; end always @(posedge m_clk_i) if (rst_i) begin wb_nack(); rstcmd <= 1'b0; state <= IDLE; end else begin case(state) WAITRST: if (pcmd==2'b00) begin rstcmd <= 1'b0; state <= IDLE; end else rstcmd <= 1'b1; IDLE: if (load_fifo) begin m_cyc_o <= 1'b1; m_we_o <= 1'b0; m_adr_o <= adr; state <= WAITLOAD; end // The adr_o[5:4]==2'b11 causes the controller to wait until all four // 128 bit strips from the memory controller have been processed. Otherwise // there would be cache thrashing in the memory controller and the memory // bandwidth available would be greatly reduced. However fetches are also // allowed when loads are not active or all strips for the current scan- // line have been fetched. else if (pcmd!=2'b00 && (m_adr_o[5:4]==2'b11 || !(vFetch && onoff && xonoff && fetchCol < hDisplayed) || !do_loads)) begin m_cyc_o <= 1'b1; m_we_o <= 1'b0; m_adr_o <= xyAddr; state <= LOADSTRIP; end LOADCOLOR: begin color_o <= mem_color; rstcmd <= 1'b1; state <= WAITRST; end LOADSTRIP: if (m_ack_i) begin wb_nack(); mem_strip <= m_dat_i; if (pcmd==2'b01) state <= LOADCOLOR; else if (pcmd==2'b10) state <= STORESTRIP; else begin rstcmd <= 1'b1; state <= WAITRST; end end STORESTRIP: begin rstcmd <= 1'b1; m_cyc_o <= 1'b1; m_we_o <= 1'b1; m_dat_o <= mem_strip_o; mem_strip <= mem_strip_o; state <= ACKSTRIP; end ACKSTRIP: if (m_ack_i) begin wb_nack(); state <= WAITRST; end WAITLOAD: if (m_ack_i) begin wb_nack(); state <= IDLE; end endcase end task wb_nack; begin m_cyc_o <= 1'b0; m_we_o <= 1'b0; end endtask reg [11:0] pixelColD1; reg [23:0] rgbo2,rgbo4; reg [127:0] rgbo3; always @(posedge vclk) case(color_depth) BPP6: rgbo4 <= greyscale ? {3{rgbo3[5:0],2'b00}} : rgbo3[5:0]; BPP8: rgbo4 <= greyscale ? {3{rgbo3[7:0]}} : rgbo3[7:0]; BPP12: rgbo4 <= {rgbo3[11:8],4'h0,rgbo3[7:4],4'h0,rgbo3[3:0],4'h0}; BPP16: rgbo4 <= {rgbo3[15:11],3'b0,rgbo3[10:5],2'b0,rgbo3[4:0],3'b0}; BPP24: rgbo4 <= rgbo3[23:0]; BPP32: rgbo4 <= rgbo3[23:0]; endcase reg rd_fifo,rd_fifo1,rd_fifo2; reg de; always @(posedge vclk) if (rd_fifo1) de <= ~blank; always @(posedge vclk) if (onoff && xonoff && !blank) begin if (color_depth[2:1]==2'b00 && !greyscale) rgbo <= pal_o; else rgbo <= rgbo4[23:0]; end else rgbo <= 24'd0; // Before the hrefdelay expires, pixelCol will be negative, which is greater // than hDisplayed as the value is unsigned. That means that fifo reading is // active only during the display area 0 to hDisplayed. wire shift1 = hc==hres; reg [4:0] shift_cnt; always @(posedge vclk) if (pe_hsync) shift_cnt <= 5'd1; else begin if (shift1) begin if (pixelCol==12'hFFF) shift_cnt <= shifts; else if (!pixelCol[11]) begin shift_cnt <= shift_cnt + 5'd1; if (shift_cnt==shifts) shift_cnt <= 5'd1; end else shift_cnt <= 5'd1; end end wire next_strip = (shift_cnt==shifts) && (hc==hres); wire vrd; always @(posedge vclk) pixelColD1 <= pixelCol; reg shift,shift2; always @(posedge vclk) shift2 <= shift1; always @(posedge vclk) shift <= shift2; always @(posedge vclk) rd_fifo2 <= next_strip; always @(posedge vclk) rd_fifo <= rd_fifo2; always @(posedge vclk) if (rd_fifo) rgbo3 <= rgbo1; else if (shift) begin case(color_depth) BPP6: rgbo3 <= {rgbo3[127:6]}; BPP8: rgbo3 <= {rgbo3[127:8]}; BPP12: rgbo3 <= {rgbo3[127:12]}; BPP16: rgbo3 <= {rgbo3[127:16]}; BPP24: rgbo3 <= {rgbo3[127:24]}; BPP32: rgbo3 <= {rgbo3[127:32]}; endcase end /* Debugging wire [127:0] dat; assign dat[11:0] = pixelRow[0] ? 12'hEA4 : 12'h000; assign dat[23:12] = pixelRow[1] ? 12'hEA4 : 12'h000; assign dat[35:24] = pixelRow[2] ? 12'hEA4 : 12'h000; assign dat[47:36] = pixelRow[3] ? 12'hEA4 : 12'h000; assign dat[59:48] = pixelRow[4] ? 12'hEA4 : 12'h000; assign dat[71:60] = pixelRow[5] ? 12'hEA4 : 12'h000; assign dat[83:72] = pixelRow[6] ? 12'hEA4 : 12'h000; assign dat[95:84] = pixelRow[7] ? 12'hEA4 : 12'h000; assign dat[107:96] = pixelRow[8] ? 12'hEA4 : 12'h000; assign dat[119:108] = pixelRow[9] ? 12'hEA4 : 12'h000; */ rtfVideoFifo3 uf1 ( .wrst(fifo_wrst), .wclk(m_clk_i), .wr(m_ack_i && state==WAITLOAD), .di(m_dat_i), .rrst(fifo_rrst), .rclk(vclk), .rd(rd_fifo), .dout(rgbo1), .cnt(fifo_cnt) ); endmodule // do a bitfield extract of color data module mem2color(mem_i, mb_i, me_i, color_o); input [127:0] mem_i; input [6:0] mb_i; input [6:0] me_i; output reg [31:0] color_o; reg [127:0] mask; reg [127:0] o1; integer nn,n; always @(mb_i or me_i or nn) for (nn = 0; nn < 128; nn = nn + 1) mask[nn] <= (nn >= mb_i) & (nn <= me_i); always @* begin for (n = 0; n < 128; n = n + 1) o1[n] = mask[n] ? mem_i[n] : 1'b0; color_o <= o1 >> mb_i; end endmodule module color2mem(mem_i, mb_i, me_i, color_i, mem_o); input [127:0] mem_i; input [6:0] mb_i; input [6:0] me_i; input [31:0] color_i; output reg [127:0] mem_o; reg [127:0] o2; reg [127:0] mask; integer nn,n; always @(mb_i or me_i or nn) for (nn = 0; nn < 128; nn = nn + 1) mask[nn] <= (nn >= mb_i) & (nn <= me_i); always @* begin o2 = color_i << mb_i; for (n = 0; n < 128; n = n + 1) mem_o[n] = (mask[n] ? o2[n] : mem_i[n]); end endmodule
Go to most recent revision | Compare with Previous | Blame | View Log