URL
https://opencores.org/ocsvn/rtfbitmapcontroller/rtfbitmapcontroller/trunk
Subversion Repositories rtfbitmapcontroller
[/] [rtfbitmapcontroller/] [trunk/] [rtl/] [verilog/] [rtfBitmapController5.v] - Rev 28
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================ // rtfBitmapController5 // Bitmap Controller (Frame Buffer Display) // - Displays a bitmap from memory. // // // __ // \\__/ o\ (C) 2008-2019 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // // The default base screen address is: // $0200000 - the third meg of RAM // // // Verilog 1995 // // ============================================================================ //`define USE_CLOCK_GATE 1'b1 `define INTERNAL_SYNC_GEN 1'b1 `define ABITS 31:0 `define HIGH 1'b1 `define LOW 1'b0 `define TRUE 1'b1 `define FALSE 1'b0 module rtfBitmapController5( rst_i, irq_o, s_clk_i, s_cs_i, s_cyc_i, s_stb_i, s_ack_o, s_we_i, s_sel_i, s_adr_i, s_dat_i, s_dat_o, m_clk_i, m_cyc_o, m_stb_o, m_ack_i, m_we_o, m_sel_o, m_adr_o, m_dat_i, m_dat_o, dot_clk_i, zrgb_o, xonoff_i `ifdef INTERNAL_SYNC_GEN , hsync_o, vsync_o, blank_o, border_o, hctr_o, vctr_o, fctr_o `else , hsync_i, vsync_i, blank_i `endif ); parameter MDW = 128; // Bus master data width parameter BM_BASE_ADDR1 = 32'h0020_0000; parameter BM_BASE_ADDR2 = 32'h0028_0000; parameter REG_CTRL = 9'd0; parameter REG_DISPLAYED = 9'd1; parameter REG_PAGE1ADDR = 9'd2; parameter REG_PAGE2ADDR = 9'd3; parameter REG_PXYZ = 9'd4; parameter REG_PCOLCMD = 9'd5; parameter REG_TOTAL = 9'd8; parameter REG_SYNC_ONOFF = 9'd9; parameter REG_BLANK_ONOFF = 9'd10; parameter REG_BORDER_ONOFF = 9'd11; parameter REG_RASTCMP = 9'd12; parameter BPP4 = 3'd0; parameter BPP8 = 3'd1; parameter BPP12 = 3'd2; parameter BPP16 = 3'd3; parameter BPP20 = 3'd4; parameter BPP32 = 3'd5; parameter OPBLACK = 4'd0; parameter OPCOPY = 4'd1; parameter OPINV = 4'd2; parameter OPAND = 4'd4; parameter OPOR = 4'd5; parameter OPXOR = 4'd6; parameter OPANDN = 4'd7; parameter OPNAND = 4'd8; parameter OPNOR = 4'd9; parameter OPXNOR = 4'd10; parameter OPORN = 4'd11; parameter OPWHITE = 4'd15; // Sync Generator defaults: 800x600 60Hz parameter phSyncOn = 40; // 40 front porch parameter phSyncOff = 168; // 128 sync parameter phBlankOff = 252; //256 // 88 back porch //parameter phBorderOff = 336; // 80 border parameter phBorderOff = 256; // 80 border //parameter phBorderOn = 976; // 640 display parameter phBorderOn = 1056; // 640 display parameter phBlankOn = 1052; // 80 border parameter phTotal = 1056; // 1056 total clocks parameter pvSyncOn = 1; // 1 front porch parameter pvSyncOff = 5; // 4 vertical sync parameter pvBlankOff = 28; // 23 back porch parameter pvBorderOff = 28; // 44 border 0 //parameter pvBorderOff = 72; // 44 border 0 parameter pvBorderOn = 628; // 512 display //parameter pvBorderOn = 584; // 512 display parameter pvBlankOn = 628; // 44 border 0 parameter pvTotal = 628; // 628 total scan lines // SYSCON input rst_i; // system reset output irq_o; // Peripheral IO slave port input s_clk_i; input s_cs_i; input s_cyc_i; input s_stb_i; output s_ack_o; input s_we_i; input [7:0] s_sel_i; input [11:0] s_adr_i; input [63:0] s_dat_i; output [63:0] s_dat_o; reg [63:0] s_dat_o; // Video Memory Master Port // Used to read memory via burst access input m_clk_i; // system bus interface clock output m_cyc_o; // video burst request output m_stb_o; output reg m_we_o; output [MDW/8-1:0] m_sel_o; input m_ack_i; // vid_acknowledge from memory output [`ABITS] m_adr_o; // address for memory access input [MDW-1:0] m_dat_i; // memory data input output reg [MDW-1:0] m_dat_o; // Video input dot_clk_i; // Video clock 80 MHz `ifdef INTERNAL_SYNC_GEN output hsync_o; output vsync_o; output blank_o; output border_o; output [11:0] hctr_o; output [11:0] vctr_o; output [5:0] fctr_o; `else input hsync_i; // start/end of scan line input vsync_i; // start/end of frame input blank_i; // blank the output `endif output [31:0] zrgb_o; // 24-bit RGB output + z-order reg [31:0] zrgb_o; input xonoff_i; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // IO registers // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg irq_o; reg m_cyc_o; reg [31:0] m_adr_o; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire vclk; reg cs; reg we; reg [7:0] sel; reg [11:0] adri; reg [63:0] dat; always @(posedge s_clk_i) cs <= s_cyc_i & s_stb_i & s_cs_i; always @(posedge s_clk_i) we <= s_we_i; always @(posedge s_clk_i) sel <= s_sel_i; always @(posedge s_clk_i) adri <= s_adr_i; always @(posedge s_clk_i) dat <= s_dat_i; ack_gen #( .READ_STAGES(2), .WRITE_STAGES(0), .REGISTER_OUTPUT(1) ) uag1 ( .clk_i(s_clk_i), .ce_i(1'b1), .i(cs), .we_i(s_cyc_i & s_stb_i & s_cs_i & s_we_i), .o(s_ack_o) ); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - integer n; reg [11:0] hDisplayed,vDisplayed; reg [11:0] rastcmp; reg [`ABITS] bm_base_addr1,bm_base_addr2; reg [2:0] color_depth; wire [7:0] fifo_cnt; reg onoff; reg [2:0] hres,vres; reg greyscale; reg page; reg pals; // palette select reg [11:0] hrefdelay; reg [11:0] vrefdelay; reg [11:0] map; // memory access period reg [11:0] mapctr; reg [`ABITS] baseAddr; // base address register wire [63:0] rgbo1; reg [11:0] pixelRow; reg [11:0] pixelCol; wire [31:0] pal_wo; wire [31:0] pal_o; reg [11:0] px; reg [11:0] py; reg [7:0] pz; reg [1:0] pcmd,pcmd_o; reg [3:0] raster_op; reg [31:0] color; reg [31:0] color_o; reg rstcmd,rstcmd1; reg [11:0] hTotal = phTotal; reg [11:0] vTotal = pvTotal; reg [11:0] hSyncOn = phSyncOn, hSyncOff = phSyncOff; reg [11:0] vSyncOn = pvSyncOn, vSyncOff = pvSyncOff; reg [11:0] hBlankOn = phBlankOn, hBlankOff = phBlankOff; reg [11:0] vBlankOn = pvBlankOn, vBlankOff = pvBlankOff; reg [11:0] hBorderOn = phBorderOn, hBorderOff = phBorderOff; reg [11:0] vBorderOn = pvBorderOn, vBorderOff = pvBorderOff; reg sgLock; wire pe_hsync, pe_hsync2; wire pe_vsync; `ifdef INTERNAL_SYNC_GEN wire hsync_i, vsync_i, blank_i; VGASyncGen usg1 ( .rst(rst_i), .clk(vclk), .eol(), .eof(), .hSync(hsync_o), .vSync(vsync_o), .hCtr(hctr_o), .vCtr(vctr_o), .blank(blank_o), .vblank(vblank), .vbl_int(), .border(border_o), .hTotal_i(hTotal), .vTotal_i(vTotal), .hSyncOn_i(hSyncOn), .hSyncOff_i(hSyncOff), .vSyncOn_i(vSyncOn), .vSyncOff_i(vSyncOff), .hBlankOn_i(hBlankOn), .hBlankOff_i(hBlankOff), .vBlankOn_i(vBlankOn), .vBlankOff_i(vBlankOff), .hBorderOn_i(hBorderOn), .hBorderOff_i(hBorderOff), .vBorderOn_i(vBorderOn), .vBorderOff_i(vBorderOff) ); assign hsync_i = hsync_o; assign vsync_i = vsync_o; assign blank_i = blank_o; `endif edge_det edcs1 ( .rst(rst_i), .clk(s_clk_i), .ce(1'b1), .i(cs), .pe(cs_edge), .ne(), .ee() ); // Frame counter // VT163 #(6) ub1 ( .clk(vclk), .clr_n(!rst_i), .ent(pe_vsync), .enp(1'b1), .ld_n(1'b1), .d(6'd0), .q(fctr_o), .rco() ); reg rst_irq; always @(posedge vclk) if (rst_i) irq_o <= `LOW; else begin if (hctr_o==12'd02 && rastcmp==vctr_o) irq_o <= `HIGH; else if (rst_irq) irq_o <= `LOW; end always @(page or bm_base_addr1 or bm_base_addr2) baseAddr = page ? bm_base_addr2 : bm_base_addr1; // Color palette RAM for 8bpp modes syncRam512x32_1rw1r upal1 ( .wrst(1'b0), .wclk(s_clk_i), .wce(cs & adri[11]), .we(we), .wadr({2'b0,adri[9:3]}), .i(dat[31:0]), .wo(pal_wo), .rrst(1'b0), .rclk(vclk), .rce(1'b1), .radr({2'b0,pals,rgbo4[5:0]}), .o(pal_o) ); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - always @(posedge s_clk_i) if (rst_i) begin page <= 1'b0; pals <= 1'b0; hres <= 3'd2; vres <= 3'd2; hDisplayed <= 12'd400; vDisplayed <= 12'd300; onoff <= 1'b1; color_depth <= BPP16; greyscale <= 1'b0; bm_base_addr1 <= BM_BASE_ADDR1; bm_base_addr2 <= BM_BASE_ADDR2; hrefdelay <= 12'd103;//12'd218; vrefdelay <= 12'd13;//12'd27; map <= 12'd0; pcmd <= 2'b00; rstcmd1 <= 1'b0; rst_irq <= 1'b0; rastcmp <= 12'hFFF; end else begin rstcmd1 <= rstcmd; rst_irq <= 1'b0; if (rstcmd & ~rstcmd1) pcmd <= 2'b00; if (cs_edge) begin if (we) begin casez(adri[11:3]) REG_CTRL: begin if (sel[0]) onoff <= dat[0]; if (sel[1]) begin color_depth <= dat[10:8]; greyscale <= dat[11]; end if (sel[2]) begin hres <= dat[18:16]; vres <= dat[21:19]; end if (sel[3]) begin page <= dat[24]; pals <= dat[25]; end if (|sel[7:6]) map <= dat[59:48]; end REG_DISPLAYED: begin if (|sel[1:0]) hDisplayed <= dat[11:0]; if (|sel[3:2]) vDisplayed <= dat[27:16]; if (|sel[5:4]) hrefdelay <= dat[43:32]; if (|sel[7:6]) vrefdelay <= dat[59:48]; end REG_PAGE1ADDR: bm_base_addr1 <= dat; REG_PAGE2ADDR: bm_base_addr2 <= dat; REG_PXYZ: begin if (|sel[1:0]) px <= dat[11:0]; if (|sel[3:2]) py <= dat[27:16]; if (|sel[ 4]) pz <= dat[39:32]; end REG_PCOLCMD: begin if (sel[0]) pcmd <= dat[1:0]; if (sel[2]) raster_op <= dat[19:16]; if (|sel[7:4]) color <= dat[63:32]; end REG_RASTCMP: begin if (sel[0]) rastcmp[7:0] <= dat[7:0]; if (sel[1]) rastcmp[11:8] <= dat[11:8]; if (sel[7]) rst_irq <= dat[63]; end `ifdef INTERNAL_SYNC_GEN REG_TOTAL: begin if (!sgLock) begin if (|sel[1:0]) hTotal <= dat[11:0]; if (|sel[3:2]) vTotal <= dat[27:16]; end if (|sel[7:4]) begin if (dat[63:32]==32'hA1234567) sgLock <= 1'b0; else if (dat[63:32]==32'h7654321A) sgLock <= 1'b1; end end REG_SYNC_ONOFF: if (!sgLock) begin if (|sel[1:0]) hSyncOff <= dat[11:0]; if (|sel[3:2]) hSyncOn <= dat[27:16]; if (|sel[5:4]) vSyncOff <= dat[43:32]; if (|sel[7:6]) vSyncOn <= dat[59:48]; end REG_BLANK_ONOFF: if (!sgLock) begin if (|sel[1:0]) hBlankOff <= dat[11:0]; if (|sel[3:2]) hBlankOn <= dat[27:16]; if (|sel[5:4]) vBlankOff <= dat[43:32]; if (|sel[7:6]) vBlankOn <= dat[59:48]; end REG_BORDER_ONOFF: begin if (|sel[1:0]) hBorderOff <= dat[11:0]; if (|sel[3:2]) hBorderOn <= dat[27:16]; if (|sel[5:4]) vBorderOff <= dat[43:32]; if (|sel[7:6]) vBorderOn <= dat[59:48]; end `endif default: ; endcase end end casez(adri[11:3]) REG_CTRL: begin s_dat_o[0] <= onoff; s_dat_o[10:8] <= color_depth; s_dat_o[11] <= greyscale; s_dat_o[18:16] <= hres; s_dat_o[21:19] <= vres; s_dat_o[24] <= page; s_dat_o[25] <= pals; s_dat_o[59:48] <= map; end REG_DISPLAYED: s_dat_o <= {4'h0,vrefdelay,4'h0,hrefdelay,4'h0,vDisplayed,4'h0,hDisplayed}; REG_PAGE1ADDR: s_dat_o <= bm_base_addr1; REG_PAGE2ADDR: s_dat_o <= bm_base_addr2; REG_PXYZ: s_dat_o <= {20'h0,pz,4'h0,py,4'h0,px}; REG_PCOLCMD: s_dat_o <= {color_o,12'd0,raster_op,14'd0,pcmd}; 9'b10??_????_?: s_dat_o <= {32'h0,pal_wo}; default: s_dat_o <= 64'd0; endcase end `ifdef USE_CLOCK_GATE BUFHCE ucb1 ( .I(dot_clk_i), .CE(onoff), .O(vclk) ); `else assign vclk = dot_clk_i; `endif // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Horizontal and Vertical timing reference counters // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - edge_det edh1 ( .rst(rst_i), .clk(vclk), .ce(1'b1), .i(hsync_i), .pe(pe_hsync), .ne(), .ee() ); edge_det edh2 ( .rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(hsync_i), .pe(pe_hsync2), .ne(), .ee() ); edge_det edv1 ( .rst(rst_i), .clk(vclk), .ce(1'b1), .i(vsync_i), .pe(pe_vsync), .ne(), .ee() ); reg [3:0] hc; always @(posedge vclk) if (rst_i) hc <= 4'd1; else if (pe_hsync) begin hc <= 4'd1; pixelCol <= -hrefdelay; end else begin if (hc==hres) begin hc <= 4'd1; pixelCol <= pixelCol + 1; end else hc <= hc + 4'd1; end reg [3:0] vc; always @(posedge vclk) if (rst_i) vc <= 4'd1; else if (pe_vsync) begin vc <= 4'd1; pixelRow <= -vrefdelay; end else begin if (pe_hsync) begin vc <= vc + 4'd1; if (vc==vres) begin vc <= 4'd1; pixelRow <= pixelRow + 1; end end end // Bits per pixel minus one. reg [4:0] bpp; always @(color_depth) case(color_depth) BPP4: bpp = 3; BPP8: bpp = 7; BPP12: bpp = 11; BPP16: bpp = 15; BPP20: bpp = 19; BPP32: bpp = 31; default: bpp = 15; endcase reg [5:0] shifts; always @(color_depth) case(MDW) 128: case(color_depth) BPP4: shifts = 6'd32; BPP8: shifts = 6'd16; BPP12: shifts = 6'd10; BPP16: shifts = 6'd8; BPP20: shifts = 6'd6; BPP32: shifts = 6'd4; default: shifts = 6'd8; endcase 64: case(color_depth) BPP4: shifts = 6'd16; BPP8: shifts = 6'd8; BPP12: shifts = 6'd5; BPP16: shifts = 6'd4; BPP20: shifts = 6'd3; BPP32: shifts = 6'd2; default: shifts = 6'd4; endcase 32: case(color_depth) BPP4: shifts = 6'd8; BPP8: shifts = 6'd4; BPP12: shifts = 6'd2; BPP16: shifts = 6'd2; BPP20: shifts = 6'd1; BPP32: shifts = 6'd1; default: shifts = 6'd2; endcase default: begin $display("rtfBitmapController5: Bad master bus width"); $finish; end endcase wire vFetch = pixelRow < vDisplayed; wire fifo_rrst = pixelCol==12'hFFF; wire fifo_wrst = pe_hsync2; wire[31:0] grAddr,xyAddr; reg [11:0] fetchCol; localparam CMS = MDW==128 ? 6 : MDW==64 ? 5 : 4; wire [CMS:0] mb,me,ce; reg [MDW-1:0] mem_strip; wire [MDW-1:0] mem_strip_o; wire [31:0] mem_color; gfx_CalcAddress6 #(MDW) u1 ( .clk(m_clk_i), .base_address_i(baseAddr), .color_depth_i(color_depth), .hdisplayed_i(hDisplayed), .x_coord_i(12'b0), .y_coord_i(pixelRow), .address_o(grAddr), .mb_o(), .me_o(), .ce_o() ); gfx_CalcAddress6 #(MDW) u2 ( .clk(m_clk_i), .base_address_i(baseAddr), .color_depth_i(color_depth), .hdisplayed_i(hDisplayed), .x_coord_i(px), .y_coord_i(py), .address_o(xyAddr), .mb_o(mb), .me_o(me), .ce_o(ce) ); always @(posedge m_clk_i) if (pe_hsync2) mapctr <= 12'hFFE; else begin if (mapctr == map) mapctr <= 12'd0; else mapctr <= mapctr + 12'd1; end wire memreq = mapctr==12'd0; // The following bypasses loading the fifo when all the pixels from a scanline // are buffered in the fifo and the pixel row doesn't change. Since the fifo // pointers are reset at the beginning of a scanline, the fifo can be used like // a cache. wire blankEdge; edge_det ed2(.rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(blank_i), .pe(blankEdge), .ne(), .ee() ); reg do_loads; reg [11:0] opixelRow; reg load_fifo; always @(posedge m_clk_i) //load_fifo <= fifo_cnt < 10'd1000 && vFetch && onoff && xonoff && !m_cyc_o && do_loads; load_fifo <= /*fifo_cnt < 8'd224 &&*/ vFetch && onoff && xonoff_i && fetchCol < hDisplayed && !m_cyc_o && do_loads && memreq; // The following table indicates the number of pixel that will fit into the // video fifo. reg [11:0] hCmp; always @(color_depth) case(color_depth) BPP4: hCmp = 12'd4095; // must be 12 bits BPP8: hCmp = 12'd2048; BPP12: hCmp = 12'd1536; BPP16: hCmp = 12'd1024; BPP20: hCmp = 12'd768; BPP32: hCmp = 12'd512; default: hCmp = 12'd1024; endcase always @(posedge m_clk_i) // if hDisplayed > hCmp we always load because the fifo isn't large enough to act as a cache. if (!(hDisplayed < hCmp)) do_loads <= 1'b1; // otherwise load the fifo only when the row changes to conserve memory bandwidth else if (vc==4'd1)//pixelRow != opixelRow) do_loads <= 1'b1; else if (blankEdge) do_loads <= 1'b0; assign m_stb_o = m_cyc_o; assign m_sel_o = MDW==128 ? 16'hFFFF : MDW==64 ? 8'hFF : 4'hF; reg [31:0] adr; reg [3:0] state; reg [127:0] icolor1; parameter IDLE = 4'd0; parameter LOADCOLOR = 4'd2; parameter LOADSTRIP = 4'd3; parameter STORESTRIP = 4'd4; parameter ACKSTRIP = 4'd5; parameter WAITLOAD = 4'd6; parameter WAITRST = 4'd7; parameter ICOLOR1 = 4'd8; parameter ICOLOR2 = 4'd9; parameter ICOLOR3 = 4'd10; parameter ICOLOR4 = 4'd11; parameter WAIT_NACK = 4'd12; function rastop; input [3:0] op; input a; input b; case(op) OPBLACK: rastop = 1'b0; OPCOPY: rastop = b; OPINV: rastop = ~a; OPAND: rastop = a & b; OPOR: rastop = a | b; OPXOR: rastop = a ^ b; OPANDN: rastop = a & ~b; OPNAND: rastop = ~(a & b); OPNOR: rastop = ~(a | b); OPXNOR: rastop = ~(a ^ b); OPORN: rastop = a | ~b; OPWHITE: rastop = 1'b1; default: rastop = 1'b0; endcase endfunction always @(posedge m_clk_i) if (fifo_wrst) adr <= grAddr; else begin if (state==WAITLOAD && m_ack_i) adr <= adr + 32'd8; end always @(posedge m_clk_i) if (fifo_wrst) fetchCol <= 12'd0; else begin if (state==WAITLOAD && m_ack_i) fetchCol <= fetchCol + shifts; end always @(posedge m_clk_i) if (rst_i) begin wb_nack(); rstcmd <= 1'b0; state <= IDLE; end else begin case(state) WAITRST: if (pcmd==2'b00 && ~m_ack_i) begin rstcmd <= 1'b0; state <= IDLE; end else rstcmd <= 1'b1; IDLE: if (load_fifo & ~m_ack_i) begin m_cyc_o <= `HIGH; m_we_o <= `LOW; m_adr_o <= adr; state <= WAITLOAD; end // The adr_o[5:3]==3'b111 causes the controller to wait until all eight // 64 bit strips from the memory controller have been processed. Otherwise // there would be cache thrashing in the memory controller and the memory // bandwidth available would be greatly reduced. However fetches are also // allowed when loads are not active or all strips for the current scan- // line have been fetched. else if (pcmd!=2'b00 && (m_adr_o[5:3]==3'b111 || !(vFetch && onoff && xonoff_i && fetchCol < hDisplayed) || !do_loads)) begin m_cyc_o <= `HIGH; m_we_o <= `LOW; m_adr_o <= xyAddr; state <= LOADSTRIP; end LOADSTRIP: if (m_ack_i) begin wb_nack(); mem_strip <= m_dat_i; icolor1 <= {96'b0,color} << mb; rstcmd <= 1'b1; if (pcmd==2'b01) state <= ICOLOR3; else if (pcmd==2'b10) state <= ICOLOR2; else begin state <= WAITRST; end end // Registered inline mem2color ICOLOR3: begin color_o <= mem_strip >> mb; state <= ICOLOR4; end ICOLOR4: begin for (n = 0; n < 32; n = n + 1) color_o[n] <= (n <= bpp) ? color_o[n] : 1'b0; state <= pcmd == 2'b0 ? (~m_ack_i ? IDLE : WAITRST) : WAITRST; if (pcmd==2'b00) rstcmd <= 1'b0; end // Registered inline color2mem ICOLOR2: begin for (n = 0; n < MDW; n = n + 1) m_dat_o[n] <= (n >= mb && n <= me) ? ((n <= ce) ? rastop(raster_op, mem_strip[n], icolor1[n]) : icolor1[n]) : mem_strip[n]; state <= STORESTRIP; end STORESTRIP: if (~m_ack_i) begin m_cyc_o <= `HIGH; m_we_o <= `HIGH; state <= ACKSTRIP; end ACKSTRIP: if (m_ack_i) begin wb_nack(); state <= pcmd == 2'b0 ? IDLE : WAITRST; if (pcmd==2'b00) rstcmd <= 1'b0; end WAITLOAD: if (m_ack_i) begin wb_nack(); state <= IDLE; // state <= WAIT_NACK; end WAIT_NACK: if (~m_ack_i) state <= IDLE; default: state <= IDLE; endcase end task wb_nack; begin m_cyc_o <= `LOW; m_we_o <= `LOW; end endtask reg [11:0] pixelColD1; reg [31:0] rgbo2,rgbo4; reg [MDW-1:0] rgbo3; always @(posedge vclk) case(color_depth) BPP4: rgbo4 <= {rgbo3[3],7'h00,21'd0,rgbo3[2:0]}; // feeds into palette BPP8: rgbo4 <= {rgbo3[7:6],6'h00,18'h0,rgbo3[5:0]}; // feeds into palette BPP12: rgbo4 <= {rgbo3[11:9],5'd0,rgbo3[8:6],5'd0,rgbo3[5:3],5'd0,rgbo3[2:0],5'd0}; BPP16: rgbo4 <= {rgbo3[15:12],4'b0,rgbo3[11:8],4'b0,rgbo3[7:4],4'b0,rgbo3[3:0],4'b0}; BPP20: rgbo4 <= {rgbo3[19:15],3'b0,rgbo3[14:10],4'b0,rgbo3[9:5],3'b0,rgbo3[4:0],3'b0}; BPP32: rgbo4 <= rgbo3; default: rgbo4 <= {rgbo3[15:12],4'b0,rgbo3[11:8],4'b0,rgbo3[7:4],4'b0,rgbo3[3:0],4'b0}; endcase reg rd_fifo,rd_fifo1,rd_fifo2; reg de; always @(posedge vclk) if (rd_fifo1) de <= ~blank_i; always @(posedge vclk) if (onoff && xonoff_i && !blank_i) begin if (color_depth[2:1]==2'b00) begin if (!greyscale) zrgb_o <= pal_o[31:0]; else zrgb_o <= {pal_o[31:24],{3{pal_o[7:0]}}}; end else zrgb_o <= rgbo4; end else zrgb_o <= 32'd0; // Before the hrefdelay expires, pixelCol will be negative, which is greater // than hDisplayed as the value is unsigned. That means that fifo reading is // active only during the display area 0 to hDisplayed. wire shift1 = hc==hres; reg [5:0] shift_cnt; always @(posedge vclk) if (pe_hsync) shift_cnt <= 5'd1; else begin if (shift1) begin if (pixelCol==12'hFFF) shift_cnt <= shifts; else if (!pixelCol[11]) begin shift_cnt <= shift_cnt + 5'd1; if (shift_cnt==shifts) shift_cnt <= 5'd1; end else shift_cnt <= 5'd1; end end wire next_strip = (shift_cnt==shifts) && (hc==hres); wire vrd; always @(posedge vclk) pixelColD1 <= pixelCol; reg shift,shift2; always @(posedge vclk) shift2 <= shift1; always @(posedge vclk) shift <= shift2; always @(posedge vclk) rd_fifo2 <= next_strip; always @(posedge vclk) rd_fifo <= rd_fifo2; always @(posedge vclk) if (rd_fifo) rgbo3 <= rgbo1; else if (shift) begin case(color_depth) BPP4: rgbo3 <= {4'h0,rgbo3[MDW-1:4]}; BPP8: rgbo3 <= {8'h0,rgbo3[MDW-1:8]}; BPP12: rgbo3 <= {12'h0,rgbo3[MDW-1:12]}; BPP16: rgbo3 <= {16'h0,rgbo3[MDW-1:16]}; BPP20: rgbo3 <= {20'h0,rgbo3[MDW-1:20]}; BPP32: rgbo3 <= {32'h0,rgbo3[MDW-1:32]}; default: rgbo3 <= {16'h0,rgbo3[MDW-1:16]}; endcase end /* Debugging wire [127:0] dat; assign dat[11:0] = pixelRow[0] ? 12'hEA4 : 12'h000; assign dat[23:12] = pixelRow[1] ? 12'hEA4 : 12'h000; assign dat[35:24] = pixelRow[2] ? 12'hEA4 : 12'h000; assign dat[47:36] = pixelRow[3] ? 12'hEA4 : 12'h000; assign dat[59:48] = pixelRow[4] ? 12'hEA4 : 12'h000; assign dat[71:60] = pixelRow[5] ? 12'hEA4 : 12'h000; assign dat[83:72] = pixelRow[6] ? 12'hEA4 : 12'h000; assign dat[95:84] = pixelRow[7] ? 12'hEA4 : 12'h000; assign dat[107:96] = pixelRow[8] ? 12'hEA4 : 12'h000; assign dat[119:108] = pixelRow[9] ? 12'hEA4 : 12'h000; */ rtfVideoFifo3 #(MDW) uf1 ( .wrst(fifo_wrst), .wclk(m_clk_i), .wr(m_ack_i && state==WAITLOAD), .di(m_dat_i), .rrst(fifo_rrst), .rclk(vclk), .rd(rd_fifo), .dout(rgbo1), .cnt(fifo_cnt) ); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log