URL
https://opencores.org/ocsvn/rtftextcontroller/rtftextcontroller/trunk
Subversion Repositories rtftextcontroller
[/] [rtftextcontroller/] [trunk/] [rtl/] [verilog/] [rfTextScreenRam.sv] - Rev 32
Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2018-2023 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ============================================================================
//
`define VENDOR_XILINX
module rfTextScreenRam(clka_i, csa_i, wea_i, sela_i, adra_i, data_i, data_o,
clkb_i, csb_i, web_i, selb_i, adrb_i, datb_i, datb_o);
input clka_i;
input csa_i;
input wea_i;
input [7:0] sela_i;
input [16:3] adra_i;
input [63:0] data_i;
output [63:0] data_o;
input clkb_i;
input csb_i;
input web_i;
input [7:0] selb_i;
input [16:3] adrb_i;
input [63:0] datb_i;
output [63:0] datb_o;
parameter TEXT_CELL_COUNT = 16384;
localparam AWID = $clog2(TEXT_CELL_COUNT);
// xpm_memory_tdpram: True Dual Port RAM
// Xilinx Parameterized Macro, version 2020.2
`ifdef VENDOR_XILINX
xpm_memory_tdpram #(
.ADDR_WIDTH_A(AWID),
.ADDR_WIDTH_B(AWID),
.AUTO_SLEEP_TIME(0),
.BYTE_WRITE_WIDTH_A(8),
.BYTE_WRITE_WIDTH_B(8),
.CASCADE_HEIGHT(0),
.CLOCKING_MODE("independent_clock"), // String
.ECC_MODE("no_ecc"), // String
.MEMORY_INIT_FILE("none"), // String
.MEMORY_INIT_PARAM("0"), // String
.MEMORY_OPTIMIZATION("true"), // String
.MEMORY_PRIMITIVE("block"), // String
.MEMORY_SIZE(TEXT_CELL_COUNT*64),
.MESSAGE_CONTROL(0),
.READ_DATA_WIDTH_A(64),
.READ_DATA_WIDTH_B(64),
.READ_LATENCY_A(2),
.READ_LATENCY_B(1),
.READ_RESET_VALUE_A("0"), // String
.READ_RESET_VALUE_B("0"), // String
.RST_MODE_A("SYNC"), // String
.RST_MODE_B("SYNC"), // String
.SIM_ASSERT_CHK(0), // DECIMAL; 0=disable simulation messages, 1=enable simulation messages
.USE_EMBEDDED_CONSTRAINT(0), // DECIMAL
.USE_MEM_INIT(1),
.WAKEUP_TIME("disable_sleep"), // String
.WRITE_DATA_WIDTH_A(64),
.WRITE_DATA_WIDTH_B(64),
.WRITE_MODE_A("no_change"), // String
.WRITE_MODE_B("no_change") // String
)
xpm_memory_tdpram_inst (
.dbiterra(), // 1-bit output: Status signal to indicate double bit error occurrence
// on the data output of port A.
.dbiterrb(), // 1-bit output: Status signal to indicate double bit error occurrence
// on the data output of port A.
.douta(data_o), // READ_DATA_WIDTH_A-bit output: Data output for port A read operations.
.doutb(datb_o), // READ_DATA_WIDTH_B-bit output: Data output for port B read operations.
.sbiterra(), // 1-bit output: Status signal to indicate single bit error occurrence
// on the data output of port A.
.sbiterrb(), // 1-bit output: Status signal to indicate single bit error occurrence
// on the data output of port B.
.addra(adra_i), // ADDR_WIDTH_A-bit input: Address for port A write and read operations.
.addrb(adrb_i), // ADDR_WIDTH_B-bit input: Address for port B write and read operations.
.clka(clka_i), // 1-bit input: Clock signal for port A. Also clocks port B when
// parameter CLOCKING_MODE is "common_clock".
.clkb(clkb_i), // 1-bit input: Clock signal for port B when parameter CLOCKING_MODE is
// "independent_clock". Unused when parameter CLOCKING_MODE is
// "common_clock".
.dina(data_i), // WRITE_DATA_WIDTH_A-bit input: Data input for port A write operations.
.dinb(datb_i), // WRITE_DATA_WIDTH_B-bit input: Data input for port B write operations.
.ena(csa_i), // 1-bit input: Memory enable signal for port A. Must be high on clock
// cycles when read or write operations are initiated. Pipelined
// internally.
.enb(csb_i), // 1-bit input: Memory enable signal for port B. Must be high on clock
// cycles when read or write operations are initiated. Pipelined
// internally.
.injectdbiterra(1'b0), // 1-bit input: Controls double bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectdbiterrb(1'b0), // 1-bit input: Controls double bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectsbiterra(1'b0), // 1-bit input: Controls single bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectsbiterrb(1'b0), // 1-bit input: Controls single bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.regcea(csa_i), // 1-bit input: Clock Enable for the last register stage on the output
// data path.
.regceb(csb_i), // 1-bit input: Clock Enable for the last register stage on the output
// data path.
.rsta(1'b0), // 1-bit input: Reset signal for the final port A output register stage.
// Synchronously resets output port douta to the value specified by
// parameter READ_RESET_VALUE_A.
.rstb(1'b0), // 1-bit input: Reset signal for the final port B output register stage.
// Synchronously resets output port doutb to the value specified by
// parameter READ_RESET_VALUE_B.
.sleep(1'b0), // 1-bit input: sleep signal to enable the dynamic power saving feature.
.wea({8{wea_i}} & sela_i), // WRITE_DATA_WIDTH_A/BYTE_WRITE_WIDTH_A-bit input: Write enable vector
// for port A input data port dina. 1 bit wide when word-wide writes are
// used. In byte-wide write configurations, each bit controls the
// writing one byte of dina to address addra. For example, to
// synchronously write only bits [15-8] of dina when WRITE_DATA_WIDTH_A
// is 32, wea would be 4'b0010.
.web({8{web_i}} & selb_i) // WRITE_DATA_WIDTH_B/BYTE_WRITE_WIDTH_B-bit input: Write enable vector
// for port B input data port dinb. 1 bit wide when word-wide writes are
// used. In byte-wide write configurations, each bit controls the
// writing one byte of dinb to address addrb. For example, to
// synchronously write only bits [15-8] of dinb when WRITE_DATA_WIDTH_B
// is 32, web would be 4'b0010.
);
`elsif VENDOR_ALTERA
always_comb
begin
$display("ToDo: Add ALTERA RAM support.");
$finish();
end
`else
always_comb
begin
$display("No RAM vendor selected.");
$finish();
end
`endif
endmodule