URL
https://opencores.org/ocsvn/s1_core/s1_core/trunk
Subversion Repositories s1_core
[/] [s1_core/] [trunk/] [hdl/] [rtl/] [sparc_core/] [lsu_qdp2.v] - Rev 113
Compare with Previous | Blame | View Log
// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: lsu_qdp2.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ `ifdef SIMPLY_RISC_TWEAKS `define SIMPLY_RISC_SCANIN .si(0) `else `define SIMPLY_RISC_SCANIN .si() `endif /////////////////////////////////////////////////////////////////////// /* // Module Name: LSU_QDP2 // Description: LSU CPX Datapath. */ //////////////////////////////////////////////////////////////////////// // header file includes //////////////////////////////////////////////////////////////////////// `include "sys.h" // system level definition file which contains the // time scale definition `include "iop.h" `include "lsu.h" //////////////////////////////////////////////////////////////////////// // Local header file includes / local defines //////////////////////////////////////////////////////////////////////// //FPGA_SYN enables all FPGA related modifications `ifdef FPGA_SYN `define FPGA_SYN_CLK_EN `define FPGA_SYN_CLK_DFF `endif module lsu_qdp2 ( /*AUTOARG*/ // Outputs so, lsu_l2fill_data, dfq_wdata, dfq_tid, lsu_dcache_fill_data_e, lsu_ifill_pkt, lsu_pcx_fwd_pkt, lsu_cpx_pkt_strm_ack, lsu_cpx_pkt_vld, lsu_cpx_pkt_atm_st_cmplt, lsu_cpx_pkt_tid, lsu_cpx_pkt_invwy, lsu_cpx_pkt_inv_pa, lsu_cpx_pkt_l2miss, lsu_dfq_byp_invwy_vld, lsu_dfq_byp_type, lsu_dfq_byp_flush, lsu_dfq_byp_tid, lsu_cpu_inv_data_b13to9, lsu_cpu_inv_data_b7to2, lsu_cpu_inv_data_b0, lsu_iobrdge_wr_data, lsu_iobrdge_tap_rq_type, lsu_cpx_pkt_perror_dinv, lsu_cpx_pkt_perror_iinv, lsu_cpx_pkt_perror_set, lsu_cpx_pkt_ld_err, lsu_dfq_byp_binit_st, lsu_cpx_pkt_binit_st, lsu_cpx_pkt_prefetch, lsu_cpx_pkt_prefetch2, lsu_dfq_byp_cpx_inv, lsu_dfq_byp_stack_adr_b54, lsu_dfq_byp_stack_wrway, lsu_dfq_byp_atm, dcache_iob_addr_e, st_dcfill_addr, lsu_st_way_e, lsu_dcache_iob_way_e, lsu_st_dcfill_size_e, lsu_cpx_pkt_ifill_type, lsu_cpx_pkt_atomic, // Inputs rst_tri_en, rclk, si, se, lsu_dfill_data_sel_hi, dfq_byp_ff_en, dfq_rd_vld_d1, dfq_rdata, cpx_spc_data_cx, stb_rdata_ramd_buf, stb_rdata_ramd_b74_buf, stb_rdata_ramc_buf, lsu_stb_pcx_rvld_d1, lsu_diagnstc_wr_data_e, lsu_diagnstc_dc_prty_invrt_e, mbist_write_data, cpx_fwd_pkt_en_cx, lsu_cpu_dcd_sel, lsu_cpu_uhlf_sel, lsu_cpxpkt_type_dcd_cx, lsu_dc_iob_access_e, lsu_dcfill_data_mx_sel_e, lsu_cpx_spc_inv_vld, lsu_cpx_thrdid, lsu_cpx_stack_dcfill_vld, pcx_rq_for_stb_d1, lsu_dfq_ld_vld, lsu_dfq_st_vld, lsu_dfq_ldst_vld ) ; /*AUTOINPUT*/ // Beginning of automatic inputs (from unused autoinst inputs) // End of automatics // input rst_tri_en; input rclk ; input si; input se; output so; input lsu_dfill_data_sel_hi ; // select hi or low order 8B. //input dcfill_src_dfq_sel ; input dfq_byp_ff_en ; input dfq_rd_vld_d1 ; input [`DFQ_WIDTH:0] dfq_rdata ; // dfq rd output input [`CPX_WIDTH-1:0] cpx_spc_data_cx; // cpx to processor pkt //input [2:0] stb_dfq_rd_id ; // stb entry id input [69:0] stb_rdata_ramd_buf ; // stb0 data ram output. input stb_rdata_ramd_b74_buf ; // stb0 data ram output. input [14:9] stb_rdata_ramc_buf ; // stb0 tag ram output. input lsu_stb_pcx_rvld_d1 ; // stb has been read-delayby1cycle //input lsu_stb_dfq_rvld ; // wr to dfq stb bypass ff //input [1:0] lmq_pcx_pkt_sz ; //input [39:0] lmq_pcx_pkt_addr ; // diagnostic write information //input lsu_diagnstc_wr_src_sel_e ; // diagnstc write - diag/store input [63:0] lsu_diagnstc_wr_data_e ; // Store data input [7:0] lsu_diagnstc_dc_prty_invrt_e ; // invert parity of dw //input [3:0] lsu_diagnstc_wr_way_e ; // cache way to be written //input [10:0] lsu_diagnstc_wr_addr_e ; // address //input lsu_ifill_pkt_vld ; // ifill pkt vld //input lsu_bist_wvld_e ; // bist write to dcache //input lsu_bist_rvld_e ; // bist read from dcache //input [6:0] mbist_dcache_index ; // bist rd/wr address //input mbist_dcache_word; //input [1:0] mbist_dcache_way; input [7:0] mbist_write_data ; // bist wdata input cpx_fwd_pkt_en_cx ; // cpx fwd reply/req input [7:0] lsu_cpu_dcd_sel ; input lsu_cpu_uhlf_sel ; input [5:0] lsu_cpxpkt_type_dcd_cx ; //input lsu_st_wr_sel_e ; //input [1:0] lmq_ld_way ; //input [1:0] lsu_st_ack_wrwy ; // cache set way to write to. //input [1:0] lsu_st_ack_addr_b54 ; //input [1:0] lsu_stb_rd_tid ; input lsu_dc_iob_access_e ; // iob read/write of dcache //input tmb_l; //input [3:0] lsu_dcfill_mx_sel_e; //input lsu_dcfill_addr_mx_sel_e; input lsu_dcfill_data_mx_sel_e; input lsu_cpx_spc_inv_vld; input [3:0] lsu_cpx_thrdid; input lsu_cpx_stack_dcfill_vld ; input [3:0] pcx_rq_for_stb_d1; input lsu_dfq_ld_vld ; input lsu_dfq_st_vld ; input lsu_dfq_ldst_vld ; /*AUTOOUTPUT*/ // Beginning of automatic outputs (from unused autoinst outputs) // End of automatics // output [63:0] lsu_l2fill_data ; // dfill data for write to irf output [`DFQ_WIDTH:0] dfq_wdata ; output [1:0] dfq_tid ; // thread-id for load at head of DFQ. output [143:0] lsu_dcache_fill_data_e ;// store-write/ld-miss fill output [`CPX_VLD-1:0] lsu_ifill_pkt ; output [107:0] lsu_pcx_fwd_pkt ; // local fwd reply/req output lsu_cpx_pkt_strm_ack ; output lsu_cpx_pkt_vld ; output lsu_cpx_pkt_atm_st_cmplt ; output [1:0] lsu_cpx_pkt_tid ; output [1:0] lsu_cpx_pkt_invwy ; // invalidate way output [4:0] lsu_cpx_pkt_inv_pa ; // invalidate pa [10:6] output lsu_cpx_pkt_l2miss ; // ld req missed in L2 output lsu_dfq_byp_invwy_vld ; output [5:0] lsu_dfq_byp_type ; output lsu_dfq_byp_flush ; //output [2:0] lsu_dfq_byp_cpuid ; output [1:0] lsu_dfq_byp_tid ; //output [13:0] lsu_cpu_inv_data ; output [13:9] lsu_cpu_inv_data_b13to9 ; output [7:2] lsu_cpu_inv_data_b7to2 ; output lsu_cpu_inv_data_b0 ; //output lsu_dfq_byp_stquad_pkt2 ; //output lsu_cpx_pkt_stquad_pkt2 ; output [43:0] lsu_iobrdge_wr_data ; output [8:0] lsu_iobrdge_tap_rq_type ; //output lsu_dfq_byp_perror_dinv ; // dtag perror corr. st ack //output lsu_dfq_byp_perror_iinv ; // itag perror corr. st ack output lsu_cpx_pkt_perror_dinv ; // dtag perror corr. st ack output lsu_cpx_pkt_perror_iinv ; // itag perror corr. st ack output [1:0] lsu_cpx_pkt_perror_set ; // dtag perror - spec. b54 output [1:0] lsu_cpx_pkt_ld_err ; // err field - cpx ld pkt output lsu_dfq_byp_binit_st ; // blk-init st in bypass. output lsu_cpx_pkt_binit_st ; // blk-init store output lsu_cpx_pkt_prefetch; // prefetch output lsu_cpx_pkt_prefetch2; // prefetch - for dctl output lsu_dfq_byp_cpx_inv; //output lsu_dfq_byp_stack_dcfill_vld; output [1:0] lsu_dfq_byp_stack_adr_b54; output [1:0] lsu_dfq_byp_stack_wrway; output lsu_dfq_byp_atm; //dcache_fill_addr_e change output [7:0] dcache_iob_addr_e; output [10:0] st_dcfill_addr; output [1:0] lsu_st_way_e; output [1:0] lsu_dcache_iob_way_e; output [1:0] lsu_st_dcfill_size_e; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) // End of automatics wire [13:0] cpx_cpulo_inv_data ; wire [13:0] cpx_cpuhi_inv_data ; //wire [`STB_PCX_WIDTH-1:0] stb_pcx_pkt ; //wire [`STB_DFQ_WIDTH-1:0] stb_dfq_pkt_data ; wire [`STB_DFQ_WIDTH-1:0] stb_dfq_data_in ; //wire [`DFQ_WIDTH-1:0] cpx_dfq_data ; //wire [`DFQ_WIDTH-1:0] cpx_dfq_data_d1 ; //wire [`CPX_WIDTH-1:0] cpx_data_cx_d1 ; //wire cpx_st_cmplt_d1 ; wire [`DFQ_WIDTH:0] dfq_byp_mx_data ; wire [`DFQ_WIDTH-1:0] dfq_byp_ff_data ; //wire [`STB_DFQ_WIDTH-1:0] store_dfq_pkt ; wire [127:0] st_dcfill_data ; wire [63:0] dcache_wr_data ; wire [127:0] ldinv_dcfill_data ; //wire [`LMQ_WIDTH-1:0] lmq0_pcx_pkt, lmq1_pcx_pkt ; //wire [`LMQ_WIDTH-1:0] lmq2_pcx_pkt, lmq3_pcx_pkt ; wire [127:0] lsu_dcfill_data ; wire [15:0] dcache_wr_parity_mod ; //wire [3:0] bist_rsel_way_e ; wire [107:0] cpx_fwd_pkt_din ; //wire [3:0] bist_rsel_way_m ; //wire [3:0] lsu_bist_rsel_way_wb ; // way select for read wire [1:0] cpx_st_dcfill_wrway; wire [`STB_DFQ_VLD:0] stb_dcfill_data_mx; wire clk; wire [13:0] lsu_cpu_inv_data ; assign clk = rclk; //================================================================================================= // STB Datapath //================================================================================================= // PCX PKT FORMATTING // THREAD0 //assign stb_pcx_pkt[`STB_PCX_VLD] = lsu_stb_pcx_rvld_d1 ; // Valid // Support stores for now. //assign stb_pcx_pkt[`STB_PCX_RQ_HI:`STB_PCX_RQ_LO] = stb_rdata_ramd[74:72] ; // Rq-type //assign stb_pcx_pkt[`STB_PCX_NC] = stb_rdata_ramd[74] ; // NC // cpu-id will be inserted on way out of core. //assign stb_pcx_pkt[`STB_PCX_TH_HI:`STB_PCX_TH_LO] = lsu_stb_rd_tid[1:0] ; // TID // bf-id is not required. //assign stb_pcx_pkt[`STB_PCX_WY_HI:`STB_PCX_WY_LO] = stb_rdata_ramd[71:70] ; // WAY //assign stb_pcx_pkt[`STB_PCX_SZ_HI:`STB_PCX_SZ_LO] = // stb_rdata_ramd[69:68]; // Size //assign stb_pcx_pkt[`STB_PCX_AD_HI:`STB_PCX_AD_LO] = // {stb_rdata_ramc[44:9],stb_rdata_ramd[67:64]} ;// Addr //assign stb_pcx_pkt[`STB_PCX_DA_HI:`STB_PCX_DA_LO] = // stb_rdata_ramd[63:0]; // Data // STB to DFQ Data Formatting // THREAD0 assign stb_dfq_data_in[`STB_DFQ_WIDTH-1:0] = {lsu_stb_pcx_rvld_d1, // 82:82 vld //stb_pcx_pkt[`STB_PCX_VLD], stb_rdata_ramd_b74_buf, // 81:81 ?? //stb_rdata_ramd[74], 2'b00, // 80:79 not used //stb_pcx_pkt[`STB_PCX_WY_HI:`STB_PCX_WY_LO], 3'b000, // 78:76 instead of stb_dfq_rd_id[2:0], stb_rdata_ramd_buf[69:68], // 75:74 size //stb_pcx_pkt[`STB_PCX_SZ_HI:`STB_PCX_SZ_LO], {stb_rdata_ramc_buf[14:9],stb_rdata_ramd_buf[67:64]}, // 73:64 Addr //stb_pcx_pkt[`STB_PCX_AD_LO+9:`STB_PCX_AD_LO], stb_rdata_ramd_buf[63:0]}; // 63:0 data //stb_pcx_pkt[`STB_PCX_DA_HI:`STB_PCX_DA_LO]}; // STB DATA BYPASS FLOP // Data is read out on read for pcx. The data is then // bypassed to the dfq when the st-ack is received. //wire [3:0] pcx_rq_for_stb_d1; wire [3:0] clk_stb_data; wire [`STB_DFQ_VLD:0] stb_dfq_pkt_data0, stb_dfq_pkt_data1, stb_dfq_pkt_data2, stb_dfq_pkt_data3; // timing fix: 9/15/03 - reduce loading on pcx_rq_for_stb[3:0] to stb_clt[0-3]. it had FO2 (stb_ctl,qdp2 - cap=0.5-0.8) // move the flop from qdp2 to qctl1 //flop pcx rq to read stb data //dff #(4) pcx_rq_for_stb_ff ( // .din (pcx_rq_for_stb[3:0]), // .q (pcx_rq_for_stb_d1[3:0]), // .clk (clk), // .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); //dffe #(83) stb_dfq_byp_ff ( // .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), // .q (stb_dfq_pkt_data[`STB_DFQ_VLD:0]), // .en (lsu_stb_dfq_rvld), .clk (clk), // .se (1'b0), `SIMPLY_RISC_SCANIN, .so () // ); //THREAD0 `ifdef FPGA_SYN_CLK_EN `else clken_buf stb_dfq_byp0_clken( .clk(clk_stb_data[0]), .rclk(clk), .enb_l(~pcx_rq_for_stb_d1[0]), .tmb_l(~se)); `endif `ifdef FPGA_SYN_CLK_DFF dffe_s #(83) stb_dfq_byp0_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data0[`STB_DFQ_VLD:0]), .en (~(~pcx_rq_for_stb_d1[0])), .clk(clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `else dff_s #(83) stb_dfq_byp0_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data0[`STB_DFQ_VLD:0]), .clk (clk_stb_data[0]), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `endif //THREAD1 `ifdef FPGA_SYN_CLK_EN `else clken_buf stb_dfq_byp1_clken( .clk(clk_stb_data[1]), .rclk(clk), .enb_l(~pcx_rq_for_stb_d1[1]), .tmb_l(~se)); `endif `ifdef FPGA_SYN_CLK_DFF dffe_s #(83) stb_dfq_byp1_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data1[`STB_DFQ_VLD:0]), .en (~(~pcx_rq_for_stb_d1[1])), .clk(clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `else dff_s #(83) stb_dfq_byp1_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data1[`STB_DFQ_VLD:0]), .clk (clk_stb_data[1]), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `endif //THREAD2 `ifdef FPGA_SYN_CLK_EN `else clken_buf stb_dfq_byp2_clken( .clk(clk_stb_data[2]), .rclk(clk), .enb_l(~pcx_rq_for_stb_d1[2]), .tmb_l(~se)); `endif `ifdef FPGA_SYN_CLK_DFF dffe_s #(83) stb_dfq_byp2_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data2[`STB_DFQ_VLD:0]), .en (~(~pcx_rq_for_stb_d1[2])), .clk(clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `else dff_s #(83) stb_dfq_byp2_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data2[`STB_DFQ_VLD:0]), .clk (clk_stb_data[2]), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `endif //THREAD3 `ifdef FPGA_SYN_CLK_EN `else clken_buf stb_dfq_byp3_clken( .clk(clk_stb_data[3]), .rclk(clk), .enb_l(~pcx_rq_for_stb_d1[3]), .tmb_l(~se)); `endif `ifdef FPGA_SYN_CLK_DFF dffe_s #(83) stb_dfq_byp3_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data3[`STB_DFQ_VLD:0]), .en (~(~pcx_rq_for_stb_d1[3])), .clk(clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `else dff_s #(83) stb_dfq_byp3_ff ( .din (stb_dfq_data_in[`STB_DFQ_VLD:0]), .q (stb_dfq_pkt_data3[`STB_DFQ_VLD:0]), .clk (clk_stb_data[3]), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `endif // MUX the store data if cpx_pkt==st_ack w/ dcfill vld=1 mux4ds #(`STB_DFQ_VLD+1) stb_data_mx ( .in0 (stb_dfq_pkt_data0[`STB_DFQ_VLD:0]), .in1 (stb_dfq_pkt_data1[`STB_DFQ_VLD:0]), .in2 (stb_dfq_pkt_data2[`STB_DFQ_VLD:0]), .in3 (stb_dfq_pkt_data3[`STB_DFQ_VLD:0]), .sel0 (lsu_cpx_thrdid[0]), .sel1 (lsu_cpx_thrdid[1]), .sel2 (lsu_cpx_thrdid[2]), .sel3 (lsu_cpx_thrdid[3]), .dout (stb_dcfill_data_mx[`STB_DFQ_VLD:0]) ); //NOTE: mux this raw data w/ modified data to generate dfq input and feed into dfq_wdata //================================================================================================= // FWD PKT - REQ/REPLY //================================================================================================= // Design Note !! - Bus can be decreased - do not have to keep tag. // TAP ACCESS FORMAT // BEGIN (OLD) // Control bits : // R/W,TID,BIST,MARGIN,DEFEATURE,PC (R=1,W=0) // These 7b are mapped to bits 70:64 of the cpx pkt. // (R/W is the highest order bit). // *Note that a write to pc is ignored by hardware. // *The cpx-reply will not contain the control information. // *TID(Thread id) applies only to pc and defeature. // Data bits : // PC(48b),Margin(36b),Bist-Ctl(14b),Defeature(4b). // The largest field of 48b is mapped to bits 47:0 of the cpx pkt. // END (OLD) // Control bits (mapped to data[127:96] of cpx packet): // L1I data,L1D data,BIST,MARGIN,DEFEATURE,PC,TID[1:0] // These 8b are mapped to bits 103:96 of the cpx pkt. // Unused bits are zeros. // (TID is the lowest order 2 bits). // *Note that a write to pc is ignored by hardware. // *The cpx-reply will not contain the control information. // *TID(Thread id) applies only to pc and defeature. // // Address bits (mapped to data[95:64] of cpx packet): // This is used to access the L1 cache arrays. This field // is a dont-care for the bist/margin/defeature/pc ASIs. // Only the lower 32 address bits are specified here. // The core (lsu) will pad zeros create a 64-bit address. // // Data bits (mapped to data[63:0] of cpx packet): // PC(48b),Margin(36b),Bist-Ctl(14b),Defeature(4b). // The largest field of 48b is mapped to bits 47:0 of the cpx pkt. // Formatted to contain fwd req which is of largest size. // Truncate address !!! 40b should not be required. assign cpx_fwd_pkt_din[107:0] = { cpx_spc_data_cx[`CPX_NC], // r/!w (1b) cpx_spc_data_cx[133:131], // src/tar (3b) cpx_spc_data_cx[103:0] // 64b data + 40b addr (104b) } ; // Contains cpx fwd reply or req //dffe #(108) fwdpkt_ff ( // .din (cpx_fwd_pkt_din[107:0]), // .q (lsu_pcx_fwd_pkt[107:0]), // .en (cpx_fwd_pkt_en_cx), // .clk (clk), // .se (1'b0), `SIMPLY_RISC_SCANIN, .so () // ); `ifdef FPGA_SYN_CLK_EN `else clken_buf fwdpkt_clken( .clk(clk_cpx_fwd_pkt_en_cx), .rclk(clk), .enb_l(~cpx_fwd_pkt_en_cx), .tmb_l(~se)); `endif `ifdef FPGA_SYN_CLK_DFF dffe_s #(108) fwdpkt_ff ( .din (cpx_fwd_pkt_din[107:0]), .q (lsu_pcx_fwd_pkt[107:0]), .en (~(~cpx_fwd_pkt_en_cx)), .clk(clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `else dff_s #(108) fwdpkt_ff ( .din (cpx_fwd_pkt_din[107:0]), .q (lsu_pcx_fwd_pkt[107:0]), .clk (clk_cpx_fwd_pkt_en_cx), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `endif // New mapping for address bits given that tag is gone. (OBSOLETE) // pkt[74:73] - Way // pkt[72:65] - Set Index // pkt[64] - Word // New mapping - based on 0-in testing, alignment with PRM. // pkt[76:75] - Way // pkt[74:68] - Set Index // pkt[67] -DWord wire [7:0] dcache_iob_addr_e ; assign dcache_iob_addr_e[7:0] = lsu_pcx_fwd_pkt[74:67] ; //wire [3:0] dcache_iob_wy_e ; //assign dcache_iob_wy_e[0] = ~lsu_pcx_fwd_pkt[76] & ~lsu_pcx_fwd_pkt[75] ; //assign dcache_iob_wy_e[1] = ~lsu_pcx_fwd_pkt[76] & lsu_pcx_fwd_pkt[75] ; //assign dcache_iob_wy_e[2] = lsu_pcx_fwd_pkt[76] & ~lsu_pcx_fwd_pkt[75] ; //assign dcache_iob_wy_e[3] = lsu_pcx_fwd_pkt[76] & lsu_pcx_fwd_pkt[75] ; assign lsu_dcache_iob_way_e [1:0] = {lsu_pcx_fwd_pkt[76], lsu_pcx_fwd_pkt[75]}; wire [63:0] dcache_iob_data_e ; assign dcache_iob_data_e[63:0] = lsu_pcx_fwd_pkt[63:0] ; assign lsu_iobrdge_wr_data[43:0] = lsu_pcx_fwd_pkt[43:0] ; assign lsu_iobrdge_tap_rq_type[8:0] = {lsu_pcx_fwd_pkt[107],lsu_pcx_fwd_pkt[103:96]} ; //================================================================================================= // DFQ PKT SELECTION //================================================================================================= // There are two sources : // - from the ccx - load,inv // - from the stb - ack'ed store update. // ** store updates do not have to be inserted into DFQ for ordering purposes. An inv will // clear stale data in the stb and bypass flops to ensure TSO. // to be written to dfq if bypass full else wr to byp mx. //assign dfq_wdata[`DFQ_WIDTH:0] = // {lsu_cpx_spc_inv_vld,lsu_cpxpkt_type_dcd_cx[5:0],cpx_spc_data_cx[`CPX_WIDTH-1:0]}; // //{{(`DFQ_WIDTH-`CPX_WIDTH)1'b0},cpx_spc_data_cx[`CPX_WIDTH-1:0]}, wire [`DFQ_WIDTH:0] dfq_st_data,dfq_cpx_raw_wdata; wire [1:0] cpx_st_ack_addr_b54; assign dfq_cpx_raw_wdata[`DFQ_WIDTH:0] = {lsu_cpx_spc_inv_vld,lsu_cpxpkt_type_dcd_cx[5:0],cpx_spc_data_cx[`CPX_WIDTH-1:0]}; assign dfq_st_data[`DFQ_WIDTH:0] = {lsu_cpx_spc_inv_vld,lsu_cpxpkt_type_dcd_cx[5:0], cpx_spc_data_cx[`CPX_WIDTH-1:87], cpx_st_ack_addr_b54[1:0], // 86:85 cpx_st_dcfill_wrway[1:0], // 84:83 stb_dcfill_data_mx[`STB_DFQ_VLD:0]}; // 82:0 mux2ds #(`DFQ_WIDTH+1) dfq_st_data_mx ( .in0 (dfq_st_data[`DFQ_WIDTH:0]), .in1 (dfq_cpx_raw_wdata[`DFQ_WIDTH:0]), .sel0 (lsu_cpx_stack_dcfill_vld), .sel1 (~lsu_cpx_stack_dcfill_vld), .dout (dfq_wdata[`DFQ_WIDTH:0]) ); //timing fix: 05/31/03: decouple byp mux from lsu_cpx_stack_dcfill_vld // i.e. replace dfq_wdata w/ dfq_cpx_raw_wdata in byp mux // select between dfq output and cpx bypass. mux2ds #(`DFQ_WIDTH+1) dfq_byp_mx ( .in0 (dfq_rdata[`DFQ_WIDTH:0]), .in1 (dfq_cpx_raw_wdata[`DFQ_WIDTH:0]), .sel0 (dfq_rd_vld_d1), .sel1 (~dfq_rd_vld_d1), .dout (dfq_byp_mx_data[`DFQ_WIDTH:0]) ); assign lsu_dfq_byp_cpx_inv = dfq_byp_mx_data[`DFQ_WIDTH]; assign lsu_dfq_byp_tid[1:0] = dfq_byp_mx_data[`CPX_TH_HI:`CPX_TH_LO] ; //assign lsu_dfq_byp_cpuid[2:0] = dfq_byp_mx_data[`CPX_INV_CID_HI:`CPX_INV_CID_LO] ; assign lsu_dfq_byp_flush = dfq_byp_mx_data[`CPX_NC] ; assign lsu_dfq_byp_invwy_vld = dfq_byp_mx_data[`CPX_WYVLD] ; //assign lsu_dfq_byp_type[5:0] = dfq_byp_mx_data[`DFQ_WIDTH-1:`DFQ_WIDTH-6] ; assign lsu_dfq_byp_type[5:3] = dfq_byp_mx_data[`DFQ_WIDTH-1:`DFQ_WIDTH-3] ; assign lsu_dfq_byp_type[2] = dfq_byp_mx_data[`DFQ_WIDTH-4] & dfq_rd_vld_d1; assign lsu_dfq_byp_type[1:0] = dfq_byp_mx_data[`DFQ_WIDTH-5:`DFQ_WIDTH-6] ; //assign lsu_dfq_byp_stquad_pkt2 = dfq_byp_mx_data[130] ; assign lsu_dfq_byp_binit_st = dfq_byp_mx_data[125] ; //assign lsu_dfq_byp_perror_iinv = dfq_byp_mx_data[`CPX_PERR_DINV+1] ; //assign lsu_dfq_byp_perror_dinv = dfq_byp_mx_data[`CPX_PERR_DINV] ; //assign lsu_dfq_byp_stack_dcfill_vld = dfq_byp_mx_data[87] ; assign lsu_dfq_byp_stack_adr_b54[1:0] = dfq_byp_mx_data[86:85] ; assign lsu_dfq_byp_stack_wrway[1:0] = dfq_byp_mx_data[84:83] ; assign lsu_ifill_pkt[`CPX_VLD-1:0] = dfq_byp_mx_data[`CPX_VLD-1:0] ; //assign lsu_ifill_pkt[`CPX_WIDTH-1:0] = {lsu_ifill_pkt_vld,dfq_byp_mx_data[`CPX_VLD-1:0]} ; assign lsu_dfq_byp_atm = dfq_byp_mx_data[129] ; // Decode in qctl !!! //assign dfq_byp_tid[1:0] = dfq_byp_mx_data[`CPX_TH_HI:`CPX_TH_LO] ; //assign dfq_byp_tid[1:0] = dfq_byp_mx_data[`DFQ_TH_HI:`DFQ_TH_LO] ; // Stage dfq output // In case of multiple inv or other such cases, pkt will be held in // byp ff until pkt completely utilized. //dffe #(`DFQ_WIDTH) dfq_data_stg ( // .din (dfq_byp_mx_data[`DFQ_WIDTH-1:0]), // .q (dfq_byp_ff_data[`DFQ_WIDTH-1:0]), // .en (dfq_byp_ff_en), .clk (clk), // .se (1'b0), `SIMPLY_RISC_SCANIN, .so () //); `ifdef FPGA_SYN_CLK_EN `else clken_buf dfq_byp_ff_en_clken( .clk(clk_dfq_byp_ff_en), .rclk(clk), .enb_l(~dfq_byp_ff_en), .tmb_l(~se)); `endif `ifdef FPGA_SYN_CLK_DFF dffe_s #(`DFQ_WIDTH) dfq_data_stg ( .din (dfq_byp_mx_data[`DFQ_WIDTH-1:0]), .q (dfq_byp_ff_data[`DFQ_WIDTH-1:0]), .en (~(~dfq_byp_ff_en)), .clk(clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `else dff_s #(`DFQ_WIDTH) dfq_data_stg ( .din (dfq_byp_mx_data[`DFQ_WIDTH-1:0]), .q (dfq_byp_ff_data[`DFQ_WIDTH-1:0]), .clk (clk_dfq_byp_ff_en), .se (1'b0), `SIMPLY_RISC_SCANIN, .so ()); `endif // To be decoded in qctl //assign lsu_st_cmplt_type = dfq_byp_ff_data[`DFQ_ST_CMPLT]; assign dfq_tid[1:0] = dfq_byp_ff_data[`CPX_TH_HI:`CPX_TH_LO] ; output lsu_cpx_pkt_ifill_type; output lsu_cpx_pkt_atomic ; // Should some of these be in-flight ? //assign lsu_cpx_pkt_rqtype[3:0] = dfq_byp_ff_data[`CPX_RQ_HI:`CPX_RQ_LO] ; assign lsu_cpx_pkt_ifill_type = dfq_byp_ff_data[`DFQ_WIDTH-2]; assign lsu_cpx_pkt_tid[1:0] = dfq_byp_ff_data[`CPX_TH_HI:`CPX_TH_LO] ; assign lsu_cpx_pkt_vld = dfq_byp_ff_data[`CPX_VLD] ; assign lsu_cpx_pkt_atm_st_cmplt = dfq_byp_ff_data[129] ; assign lsu_cpx_pkt_invwy[1:0] = dfq_byp_ff_data[`CPX_WY_HI:`CPX_WY_LO] ; // Upper 6bits are used to store decoded request type information. assign lsu_cpx_pkt_strm_ack = dfq_byp_ff_data[`DFQ_WIDTH-5]; //assign lsu_cpx_pkt_inv_pa[4:0] = dfq_byp_ff_data[`CPX_INV_PA_HI-1:`CPX_INV_PA_LO]; //!! assign lsu_cpx_pkt_inv_pa[4:0] = dfq_byp_ff_data[`CPX_INV_PA_HI:`CPX_INV_PA_LO]; assign lsu_cpx_pkt_atomic = dfq_byp_ff_data[129] | //atomic st ack dfq_byp_ff_data[131] ; //stquad pkt1 //assign lsu_cpx_pkt_stquad_pkt2 = dfq_byp_ff_data[130] ; assign lsu_cpx_pkt_binit_st = dfq_byp_ff_data[125] ; assign lsu_cpx_pkt_prefetch = dfq_byp_ff_data[128] ; // for qctl2 assign lsu_cpx_pkt_prefetch2 = dfq_byp_ff_data[128] ; // for dctl //assign lsu_spu_strm_st = dfq_byp_ff_data[134] ; // strm store ack (vs. ma) assign lsu_cpx_pkt_perror_iinv = dfq_byp_ff_data[`CPX_PERR_DINV+1] ; assign lsu_cpx_pkt_perror_dinv = dfq_byp_ff_data[`CPX_PERR_DINV] ; assign lsu_cpx_pkt_perror_set[1:0] = dfq_byp_ff_data[`CPX_PERR_DINV_AD5:`CPX_PERR_DINV_AD4] ; assign lsu_cpx_pkt_ld_err[1:0] = dfq_byp_ff_data[138:137] ; assign lsu_cpx_pkt_l2miss = dfq_byp_ff_data[139] ; //================================================================================================= // DFQ OUTPUT - LOCAL PROCESSING //================================================================================================= mux4ds #(14) invfld_lo_sel ( .in0 ({dfq_byp_mx_data[`CPX_A11_C0_HI:`CPX_A11_C0_LO], dfq_byp_mx_data[`CPX_A10_C0_HI:`CPX_A10_C0_LO], dfq_byp_mx_data[`CPX_A01_C0_HI:`CPX_A01_C0_LO], dfq_byp_mx_data[`CPX_A00_C0_HI:`CPX_A00_C0_LO]}), .in1 ({dfq_byp_mx_data[`CPX_A11_C1_HI:`CPX_A11_C1_LO], dfq_byp_mx_data[`CPX_A10_C1_HI:`CPX_A10_C1_LO], dfq_byp_mx_data[`CPX_A01_C1_HI:`CPX_A01_C1_LO], dfq_byp_mx_data[`CPX_A00_C1_HI:`CPX_A00_C1_LO]}), .in2 ({dfq_byp_mx_data[`CPX_A11_C2_HI:`CPX_A11_C2_LO], dfq_byp_mx_data[`CPX_A10_C2_HI:`CPX_A10_C2_LO], dfq_byp_mx_data[`CPX_A01_C2_HI:`CPX_A01_C2_LO], dfq_byp_mx_data[`CPX_A00_C2_HI:`CPX_A00_C2_LO]}), .in3 ({dfq_byp_mx_data[`CPX_A11_C3_HI:`CPX_A11_C3_LO], dfq_byp_mx_data[`CPX_A10_C3_HI:`CPX_A10_C3_LO], dfq_byp_mx_data[`CPX_A01_C3_HI:`CPX_A01_C3_LO], dfq_byp_mx_data[`CPX_A00_C3_HI:`CPX_A00_C3_LO]}), .sel0 (lsu_cpu_dcd_sel[0]), .sel1 (lsu_cpu_dcd_sel[1]), .sel2 (lsu_cpu_dcd_sel[2]), .sel3 (lsu_cpu_dcd_sel[3]), .dout (cpx_cpulo_inv_data[13:0]) ); mux4ds #(14) invfld_hi_sel ( .in0 ({dfq_byp_mx_data[`CPX_A11_C4_HI:`CPX_A11_C4_LO], dfq_byp_mx_data[`CPX_A10_C4_HI:`CPX_A10_C4_LO], dfq_byp_mx_data[`CPX_A01_C4_HI:`CPX_A01_C4_LO], dfq_byp_mx_data[`CPX_A00_C4_HI:`CPX_A00_C4_LO]}), .in1 ({dfq_byp_mx_data[`CPX_A11_C5_HI:`CPX_A11_C5_LO], dfq_byp_mx_data[`CPX_A10_C5_HI:`CPX_A10_C5_LO], dfq_byp_mx_data[`CPX_A01_C5_HI:`CPX_A01_C5_LO], dfq_byp_mx_data[`CPX_A00_C5_HI:`CPX_A00_C5_LO]}), .in2 ({dfq_byp_mx_data[`CPX_A11_C6_HI:`CPX_A11_C6_LO], dfq_byp_mx_data[`CPX_A10_C6_HI:`CPX_A10_C6_LO], dfq_byp_mx_data[`CPX_A01_C6_HI:`CPX_A01_C6_LO], dfq_byp_mx_data[`CPX_A00_C6_HI:`CPX_A00_C6_LO]}), .in3 ({dfq_byp_mx_data[`CPX_A11_C7_HI:`CPX_A11_C7_LO], dfq_byp_mx_data[`CPX_A10_C7_HI:`CPX_A10_C7_LO], dfq_byp_mx_data[`CPX_A01_C7_HI:`CPX_A01_C7_LO], dfq_byp_mx_data[`CPX_A00_C7_HI:`CPX_A00_C7_LO]}), .sel0 (lsu_cpu_dcd_sel[4]), .sel1 (lsu_cpu_dcd_sel[5]), .sel2 (lsu_cpu_dcd_sel[6]), .sel3 (lsu_cpu_dcd_sel[7]), .dout (cpx_cpuhi_inv_data[13:0]) ); mux2ds #(14) invfld_sel ( .in0 (cpx_cpulo_inv_data[13:0]), .in1 (cpx_cpuhi_inv_data[13:0]), .sel0 (~lsu_cpu_uhlf_sel), .sel1 (lsu_cpu_uhlf_sel), .dout (lsu_cpu_inv_data[13:0]) ); assign lsu_cpu_inv_data_b13to9[13:9] = lsu_cpu_inv_data[13:9] ; assign lsu_cpu_inv_data_b7to2[7:2] = lsu_cpu_inv_data[7:2] ; assign lsu_cpu_inv_data_b0 = lsu_cpu_inv_data[0] ; // same structure as above for st data write way wire [13:0] cpx_cpulo_dcfill_wrway, cpx_cpuhi_dcfill_wrway, cpx_st_dcfill_wrway_sel; mux4ds #(14) st_dcfill_wrway_lo ( .in0 ({cpx_spc_data_cx[`CPX_A11_C0_HI:`CPX_A11_C0_LO], cpx_spc_data_cx[`CPX_A10_C0_HI:`CPX_A10_C0_LO], cpx_spc_data_cx[`CPX_A01_C0_HI:`CPX_A01_C0_LO], cpx_spc_data_cx[`CPX_A00_C0_HI:`CPX_A00_C0_LO]}), .in1 ({cpx_spc_data_cx[`CPX_A11_C1_HI:`CPX_A11_C1_LO], cpx_spc_data_cx[`CPX_A10_C1_HI:`CPX_A10_C1_LO], cpx_spc_data_cx[`CPX_A01_C1_HI:`CPX_A01_C1_LO], cpx_spc_data_cx[`CPX_A00_C1_HI:`CPX_A00_C1_LO]}), .in2 ({cpx_spc_data_cx[`CPX_A11_C2_HI:`CPX_A11_C2_LO], cpx_spc_data_cx[`CPX_A10_C2_HI:`CPX_A10_C2_LO], cpx_spc_data_cx[`CPX_A01_C2_HI:`CPX_A01_C2_LO], cpx_spc_data_cx[`CPX_A00_C2_HI:`CPX_A00_C2_LO]}), .in3 ({cpx_spc_data_cx[`CPX_A11_C3_HI:`CPX_A11_C3_LO], cpx_spc_data_cx[`CPX_A10_C3_HI:`CPX_A10_C3_LO], cpx_spc_data_cx[`CPX_A01_C3_HI:`CPX_A01_C3_LO], cpx_spc_data_cx[`CPX_A00_C3_HI:`CPX_A00_C3_LO]}), .sel0 (lsu_cpu_dcd_sel[0]), .sel1 (lsu_cpu_dcd_sel[1]), .sel2 (lsu_cpu_dcd_sel[2]), .sel3 (lsu_cpu_dcd_sel[3]), .dout (cpx_cpulo_dcfill_wrway[13:0]) ); mux4ds #(14) st_dcfill_wrway_hi ( .in0 ({cpx_spc_data_cx[`CPX_A11_C4_HI:`CPX_A11_C4_LO], cpx_spc_data_cx[`CPX_A10_C4_HI:`CPX_A10_C4_LO], cpx_spc_data_cx[`CPX_A01_C4_HI:`CPX_A01_C4_LO], cpx_spc_data_cx[`CPX_A00_C4_HI:`CPX_A00_C4_LO]}), .in1 ({cpx_spc_data_cx[`CPX_A11_C5_HI:`CPX_A11_C5_LO], cpx_spc_data_cx[`CPX_A10_C5_HI:`CPX_A10_C5_LO], cpx_spc_data_cx[`CPX_A01_C5_HI:`CPX_A01_C5_LO], cpx_spc_data_cx[`CPX_A00_C5_HI:`CPX_A00_C5_LO]}), .in2 ({cpx_spc_data_cx[`CPX_A11_C6_HI:`CPX_A11_C6_LO], cpx_spc_data_cx[`CPX_A10_C6_HI:`CPX_A10_C6_LO], cpx_spc_data_cx[`CPX_A01_C6_HI:`CPX_A01_C6_LO], cpx_spc_data_cx[`CPX_A00_C6_HI:`CPX_A00_C6_LO]}), .in3 ({cpx_spc_data_cx[`CPX_A11_C7_HI:`CPX_A11_C7_LO], cpx_spc_data_cx[`CPX_A10_C7_HI:`CPX_A10_C7_LO], cpx_spc_data_cx[`CPX_A01_C7_HI:`CPX_A01_C7_LO], cpx_spc_data_cx[`CPX_A00_C7_HI:`CPX_A00_C7_LO]}), .sel0 (lsu_cpu_dcd_sel[4]), .sel1 (lsu_cpu_dcd_sel[5]), .sel2 (lsu_cpu_dcd_sel[6]), .sel3 (lsu_cpu_dcd_sel[7]), .dout (cpx_cpuhi_dcfill_wrway[13:0]) ); mux2ds #(14) st_dcfill_wrway_sel ( .in0 (cpx_cpulo_dcfill_wrway[13:0]), .in1 (cpx_cpuhi_dcfill_wrway[13:0]), .sel0 (~lsu_cpu_uhlf_sel), .sel1 (lsu_cpu_uhlf_sel), .dout (cpx_st_dcfill_wrway_sel[13:0]) ); // select the appropriate offset //bug3718 - 0in bug - cpx_st_dcfill_wrway_sel can be multi-hot foe non-stack cpx responses // hence qual w/ stack req type wire [3:0] st_dcfill_wrway_mxsel ; assign st_dcfill_wrway_mxsel[0] = (lsu_cpxpkt_type_dcd_cx[2] & cpx_st_dcfill_wrway_sel[0]) & ~rst_tri_en ; assign st_dcfill_wrway_mxsel[1] = (lsu_cpxpkt_type_dcd_cx[2] & cpx_st_dcfill_wrway_sel[4]) & ~rst_tri_en ; assign st_dcfill_wrway_mxsel[2] = (lsu_cpxpkt_type_dcd_cx[2] & cpx_st_dcfill_wrway_sel[7]) & ~rst_tri_en ; assign st_dcfill_wrway_mxsel[3] = ~|st_dcfill_wrway_mxsel[2:0] | rst_tri_en; mux4ds #(2) st_dcfill_wrway_sel_b54 ( .in0 (cpx_st_dcfill_wrway_sel[3:2]), .in1 (cpx_st_dcfill_wrway_sel[6:5]), .in2 (cpx_st_dcfill_wrway_sel[10:9]), .in3 (cpx_st_dcfill_wrway_sel[13:12]), .sel0 (st_dcfill_wrway_mxsel[0]), .sel1 (st_dcfill_wrway_mxsel[1]), .sel2 (st_dcfill_wrway_mxsel[2]), .sel3 (st_dcfill_wrway_mxsel[3]), .dout (cpx_st_dcfill_wrway[1:0]) ); assign cpx_st_ack_addr_b54[0] = cpx_st_dcfill_wrway_sel[4] | cpx_st_dcfill_wrway_sel[11] ; assign cpx_st_ack_addr_b54[1] = cpx_st_dcfill_wrway_sel[7] | cpx_st_dcfill_wrway_sel[11] ; //================================================================================================= //assign store_dfq_pkt[`STB_DFQ_WIDTH-1:0] = stb_dfq_pkt_data[`STB_DFQ_WIDTH-1:0] ; // Items generated/prior to fill cycle (but after DFQ read). // This logic will be put in qctl and then be fwded to dcache. // - Parity (16b) - load & store. // - Byte Enable (16b) - store (8b), ld (16b) all high. // - Cache Tag (30b) - obtained from LMQ. // - RD1 (5b) - obtained from LMQ. // - RD2 (5b) - obtained from LMQ. // ** DFQ will contain either loads or inv. // Need to do alignment. Assume dw for now. // For a load, a bypass will always happen, a write is // Mux in diagnostic information. Only data is muxed in because // all other info is critical wire [63:0] diagnstc_wr_data; dff_s #(64) diagnstc_wr_data_ff ( .din (lsu_diagnstc_wr_data_e[63:0]), .q (diagnstc_wr_data[63:0]), .clk (clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so () ); mux2ds #(64) dcwr_sel ( //.in0 ({store_dfq_pkt[`STB_DFQ_DA_HI:`STB_DFQ_DA_LO]}), .in0 ({dfq_byp_ff_data[`STB_DFQ_DA_HI:`STB_DFQ_DA_LO]}), .in1 ({diagnstc_wr_data[63:0]}), .sel0 ( lsu_dfq_st_vld), .sel1 (~lsu_dfq_st_vld), //.sel0 (~lsu_diagnstc_wr_src_sel_e), //.sel1 ( lsu_diagnstc_wr_src_sel_e), .dout (dcache_wr_data[63:0]) ); // store currently assumed to be dword. // st dword is duplicated across 16B. // currently assume st and not atomics supported. // The width can be reduced !!! assign st_dcfill_data[127:0] = { //dfq_byp_ff_data[`STB_DFQ_VLD], //2'b00, // need thread-id //2'b00,1'b0,5'b00000, // dfq_byp_ff_data[84:83], // 131:130 - wr_way[1:0] // dfq_byp_ff_data[`STB_DFQ_SZ_HI:`STB_DFQ_SZ_LO], // 129:128 - size[1:0] //29'd0, //!!! reduce //{dfq_byp_ff_data[`CPX_INV_PA_HI:`CPX_INV_PA_LO], // addr 10:6 //dfq_byp_ff_data[86:85], // addr 5:4 //dfq_byp_ff_data[`STB_DFQ_AD_LO+3:`STB_DFQ_AD_LO]}, // addr 3:0 dcache_wr_data[63:0], // 127:64 dcache_wr_data[63:0]}; // 63:0 assign st_dcfill_addr[10:0] = {dfq_byp_ff_data[`CPX_INV_PA_HI:`CPX_INV_PA_LO], // addr 10:6 dfq_byp_ff_data[86:85], // addr 5:4 dfq_byp_ff_data[`STB_DFQ_AD_LO+3:`STB_DFQ_AD_LO]}; // addr 3:0 // lmq0_pcx_pkt will have to be brought in. Same for lmq_ld_addr // The width can be reduced !!! //potentially we can take one cycle earlier version dfq_st_data assign lsu_st_way_e[1:0] = dfq_byp_ff_data[84:83]; assign lsu_st_dcfill_size_e [1:0] = dfq_byp_ff_data[`STB_DFQ_SZ_HI:`STB_DFQ_SZ_LO]; assign ldinv_dcfill_data[127:0] = { //1'b0, //dfq_byp_ff_data[`DFQ_TH_HI:`DFQ_TH_LO], //dfq_byp_ff_data[`DFQ_LD_TYPE:`DFQ_INV_TYPE], //1'b1, //assume ld always writes. //5'b00000, // lmq_ld_way[1:0], // 131:130 - way[1:0]- dfq_byp_ff_data[`DFQ_WY_HI:`DFQ_WY_LO], // 2'b0, // 129:128 - size[1:0]- lmq_pcx_pkt_sz[1:0], //!!! reduce //40'b0, //lmq_pcx_pkt_addr[39:0], //!!! reduce dfq_byp_ff_data[`DFQ_DA_HI:`DFQ_DA_LO]}; // 127:0 // Select between dfq-bypass (ld-inv) and store. // *** cpu-id currently hardwired in pkt // This may be further restricted in width !!! mux2ds #(128) dfq_pkt_src ( .in0 (st_dcfill_data[127:0]), .in1 (ldinv_dcfill_data[127:0]), .sel0 (~lsu_dfq_ld_vld), .sel1 (lsu_dfq_ld_vld), .dout (lsu_dcfill_data[127:0]) ); // Parity Generation for write data - from load or store. wire [15:0] dcache_wr_parity ; lsu_dc_parity_gen parity_gen ( .data_in (lsu_dcfill_data[`DCFILL_DA_HI:`DCFILL_DA_LO]), .parity_out (dcache_wr_parity[15:0]) ); // Bug 4125. Corrupt parity if l2 unc err detected. Corrupt both upper and lower half // as subsequent read will pick up one of two halves. //wire parity_byte0_flip ; //wire parity_byte8_flip ; wire ld_unc_error ; assign ld_unc_error = (dfq_byp_ff_data[138] & dfq_byp_ff_data[`DFQ_WIDTH-1]); // not critical ! //bug7021/ECO7022 //assign parity_byte0_flip = dcache_wr_parity[0] ^ ld_unc_error ; //assign parity_byte8_flip = dcache_wr_parity[8] ^ ld_unc_error ; wire [15:0] parity_byte_flip; assign parity_byte_flip[15:0] = dcache_wr_parity[15:0] ^ {16{ld_unc_error }}; //assign dcache_wr_parity_mod[15:0] = // lsu_diagnstc_wr_src_sel_e ? // ({lsu_diagnstc_dc_prty_invrt_e[7:0],lsu_diagnstc_dc_prty_invrt_e[7:0]} ^ dcache_wr_parity[15:0]) : // dcache_wr_parity[15:0] ; wire [15:0] diagnstc_wr_parity; assign diagnstc_wr_parity[15:0] = {lsu_diagnstc_dc_prty_invrt_e[7:0],lsu_diagnstc_dc_prty_invrt_e[7:0]} ^ dcache_wr_parity[15:0]; mux2ds #(16) dcache_wr_parity_mod_mux ( .in0(diagnstc_wr_parity[15:0]), // .in1({dcache_wr_parity[15:9],parity_byte8_flip,dcache_wr_parity[7:1],parity_byte0_flip}), .in1(parity_byte_flip[15:0]), //bug7021/ECO7022 .sel0(~lsu_dfq_ldst_vld), .sel1( lsu_dfq_ldst_vld), //.sel0(lsu_diagnstc_wr_src_sel_e), //.sel1(~lsu_diagnstc_wr_src_sel_e), .dout(dcache_wr_parity_mod[15:0]) ); // Bist read and write address sent thru fill_addr //assign lsu_dcache_fill_addr_e[10:0] = //lsu_dc_iob_access_e ? {dcache_iob_addr_e[7:0],2'b00} : //(lsu_bist_wvld_e | lsu_bist_rvld_e) ? {1'b0, lsu_bist_addr_e[7:0],2'b00} : //??FIX // lsu_diagnstc_wr_src_sel_e ? lsu_diagnstc_wr_addr_e[10:0] : // lsu_dcfill_data[`DCFILL_AD_LO+10:`DCFILL_AD_LO]; // wire [10:0] lsu_dcache_fill_addr_e; //mux4ds #(11) lsu_dcache_fill_addr_e_mux ( // .in0 ({dcache_iob_addr_e[8:0],2'b00}), // .in1 ({mbist_dcache_index[6:0], mbist_dcache_word, 3'b00}), // .in2 (lsu_diagnstc_wr_addr_e[10:0]), // .in3 (lsu_dcfill_data[`DCFILL_AD_LO+10:`DCFILL_AD_LO]), // .sel0 (lsu_dcfill_mx_sel_e[0]), // .sel1 (lsu_dcfill_mx_sel_e[1]), // .sel2 (lsu_dcfill_mx_sel_e[2]), // .sel3 (lsu_dcfill_mx_sel_e[3]), // .dout (lsu_dcache_fill_addr_e[10:0]) //); wire [63:0] misc_fill_data_e ; // Use smaller width mux to save area. //assign misc_fill_data_e[63:0] = //lsu_dc_iob_access_e ? dcache_iob_data_e[63:0] : // {32{lsu_bist_wdata_e[1:0]}} ; wire [7:0] mbist_write_data_d1; dff_s #(8) mbist_write_data_ff ( .din (mbist_write_data[7:0]), .q (mbist_write_data_d1[7:0]), .clk (clk), .se (1'b0), `SIMPLY_RISC_SCANIN, .so () ); wire [3:0] misc_fill_parity_e; assign misc_fill_parity_e[3:0] = {4{~lsu_dc_iob_access_e}} & mbist_write_data_d1[3:0]; mux2ds #(64) misc_fill_data_e_mux ( .in0(dcache_iob_data_e[63:0]), .in1({8{mbist_write_data_d1[7:0]}}), .sel0(lsu_dc_iob_access_e), .sel1(~lsu_dc_iob_access_e), .dout(misc_fill_data_e[63:0]) ); mux2ds #(144) lsu_dcache_fill_data_e_mux ( .in0({misc_fill_data_e[63:0],misc_fill_data_e[63:0],{4{misc_fill_parity_e[3:0]}}}), .in1({lsu_dcfill_data[`DCFILL_DA_HI:`DCFILL_DA_LO],dcache_wr_parity_mod[15:0]}), .sel0(lsu_dcfill_data_mx_sel_e), .sel1(~lsu_dcfill_data_mx_sel_e), .dout(lsu_dcache_fill_data_e[143:0]) ); //assign lsu_dcache_fill_size_e[1:0] = //(lsu_dc_iob_access_e | lsu_bist_wvld_e | lsu_diagnstc_wr_src_sel_e) ? 2'b11 : // lsu_dcfill_data[`DCFILL_SZ_HI:`DCFILL_SZ_LO] ; // wire [1:0] bist_way_e; //assign bist_way_e[1:0] = (lsu_bist_rvld_e | lsu_bist_wvld_e) ? // mbist_dcache_way[1:0] : 2'b00; //assign bist_rsel_way_e[0] = ~bist_way_e[1] & ~bist_way_e[0] ; //assign bist_rsel_way_e[1] = ~bist_way_e[1] & bist_way_e[0] ; //assign bist_rsel_way_e[2] = bist_way_e[1] & ~bist_way_e[0] ; //assign bist_rsel_way_e[3] = bist_way_e[1] & bist_way_e[0] ; // assign lsu_bist_rsel_way_e[3:0] = bist_rsel_way_e[3:0]; // This staging may have to go elsewhere //always @(posedge clk) // begin // bist_rsel_way_m[3:0] <= bist_rsel_way_e[3:0] ; // end //always @(posedge clk) // begin // lsu_bist_rsel_way_wb[3:0] <= bist_rsel_way_m[3:0] ; // end //dff #(4) bist_rsel_way_m_ff ( // .din (bist_rsel_way_e[3:0]), // .q (bist_rsel_way_m[3:0]), // .clk (clk), // .se (1'b0), `SIMPLY_RISC_SCANIN, .so () // ); //dff #(4) lsu_bist_rsel_way_wb_ff ( // .din (bist_rsel_way_m[3:0]), // .q (lsu_bist_rsel_way_wb[3:0]), // .clk (clk), // .se (1'b0), `SIMPLY_RISC_SCANIN, .so () // ); //assign lsu_dcache_fill_way_e[0] = //lsu_dc_iob_access_e ? dcache_iob_wy_e[0] : // (lsu_bist_wvld_e | lsu_bist_rvld_e) ? bist_rsel_way_e[0] : // lsu_diagnstc_wr_src_sel_e ? lsu_diagnstc_wr_way_e[0] : // ~lsu_dcfill_data[`DCFILL_WY_HI] & ~lsu_dcfill_data[`DCFILL_WY_LO] ; //assign lsu_dcache_fill_way_e[1] = //lsu_dc_iob_access_e ? dcache_iob_wy_e[1] : // (lsu_bist_wvld_e | lsu_bist_rvld_e) ? bist_rsel_way_e[1] : // lsu_diagnstc_wr_src_sel_e ? lsu_diagnstc_wr_way_e[1] : // ~lsu_dcfill_data[`DCFILL_WY_HI] & lsu_dcfill_data[`DCFILL_WY_LO] ; //assign lsu_dcache_fill_way_e[2] = //lsu_dc_iob_access_e ? dcache_iob_wy_e[2] : // (lsu_bist_wvld_e | lsu_bist_rvld_e) ? bist_rsel_way_e[2] : // lsu_diagnstc_wr_src_sel_e ? lsu_diagnstc_wr_way_e[2] : // lsu_dcfill_data[`DCFILL_WY_HI] & ~lsu_dcfill_data[`DCFILL_WY_LO] ; //assign lsu_dcache_fill_way_e[3] = //lsu_dc_iob_access_e ? dcache_iob_wy_e[3] : // (lsu_bist_wvld_e | lsu_bist_rvld_e) ? bist_rsel_way_e[3] : // lsu_diagnstc_wr_src_sel_e ? lsu_diagnstc_wr_way_e[3] : // lsu_dcfill_data[`DCFILL_WY_HI] & lsu_dcfill_data[`DCFILL_WY_LO] ; /* mux4ds #(1) lsu_dcache_fill_way0_e_mux ( .in0 (dcache_iob_wy_e[0]), .in1 (bist_rsel_way_e[0]), .in2 (lsu_diagnstc_wr_way_e[0]), .in3 (~lsu_dcfill_data[131] & ~lsu_dcfill_data[130]), .sel0 (lsu_dcfill_mx_sel_e[0]), .sel1 (lsu_dcfill_mx_sel_e[1]), .sel2 (lsu_dcfill_mx_sel_e[2]), .sel3 (lsu_dcfill_mx_sel_e[3]), .dout (lsu_dcache_fill_way_e[0])); mux4ds #(1) lsu_dcache_fill_way1_e_mux ( .in0 (dcache_iob_wy_e[1]), .in1 (bist_rsel_way_e[1]), .in2 (lsu_diagnstc_wr_way_e[1]), .in3 (~lsu_dcfill_data[131] & lsu_dcfill_data[130]), .sel0 (lsu_dcfill_mx_sel_e[0]), .sel1 (lsu_dcfill_mx_sel_e[1]), .sel2 (lsu_dcfill_mx_sel_e[2]), .sel3 (lsu_dcfill_mx_sel_e[3]), .dout (lsu_dcache_fill_way_e[1])); mux4ds #(1) lsu_dcache_fill_way2_e_mux ( .in0 (dcache_iob_wy_e[2]), .in1 (bist_rsel_way_e[2]), .in2 (lsu_diagnstc_wr_way_e[2]), .in3 ( lsu_dcfill_data[131] & ~lsu_dcfill_data[130]), .sel0 (lsu_dcfill_mx_sel_e[0]), .sel1 (lsu_dcfill_mx_sel_e[1]), .sel2 (lsu_dcfill_mx_sel_e[2]), .sel3 (lsu_dcfill_mx_sel_e[3]), .dout (lsu_dcache_fill_way_e[2])); mux4ds #(1) lsu_dcache_fill_way3_e_mux ( .in0 (dcache_iob_wy_e[3]), .in1 (bist_rsel_way_e[3]), .in2 (lsu_diagnstc_wr_way_e[3]), .in3 ( lsu_dcfill_data[131] & lsu_dcfill_data[130]), .sel0 (lsu_dcfill_mx_sel_e[0]), .sel1 (lsu_dcfill_mx_sel_e[1]), .sel2 (lsu_dcfill_mx_sel_e[2]), .sel3 (lsu_dcfill_mx_sel_e[3]), .dout (lsu_dcache_fill_way_e[3])); */ // assign lsu_dcache_fill_way_enc_e[0] = lsu_dcache_fill_way_e[1] | lsu_dcache_fill_way_e[3]; // assign lsu_dcache_fill_way_enc_e[1] = lsu_dcache_fill_way_e[2] | lsu_dcache_fill_way_e[3]; wire [63:0] l2fill_data_e; mux2ds #(64) half_sel ( .in0 (lsu_dcfill_data[`DCFILL_DA_HI:`DCFILL_DA_LO+64]), .in1 (lsu_dcfill_data[`DCFILL_DA_LO+63:`DCFILL_DA_LO]), .sel0 (lsu_dfill_data_sel_hi), .sel1 (~lsu_dfill_data_sel_hi), .dout (l2fill_data_e[63:0]) ); dff_s #(64) stgm_l2fd ( .din (l2fill_data_e[63:0]), .q (lsu_l2fill_data[63:0]), .clk (clk), .se (se), `SIMPLY_RISC_SCANIN, .so () ); endmodule