URL
https://opencores.org/ocsvn/s6soc/s6soc/trunk
Subversion Repositories s6soc
[/] [s6soc/] [trunk/] [rtl/] [busmaster.v] - Rev 51
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: busmaster.v // // Project: CMod S6 System on a Chip, ZipCPU demonstration project // // Purpose: This is the highest level, simulatable, file in the S6SoC // project--of that portion of the project that includes the // ZipCPU. This portion therefore contains references to all of the // masters (ZipCPU) and slaves (flash, block RAM, I/O, Scope) on the // wishbone bus, and connects them all together. Hence, this contains // the wishbone interconnect logic as well. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `include "builddate.v" // `define IMPLEMENT_ONCHIP_RAM `define FLASH_ACCESS `define DBG_SCOPE // About 204 LUTs, at 2^6 addresses // `define COMPRESSED_SCOPE `define HAS_RXUART `define INCLUDE_CPU_RESET_LOGIC `define LOWLOGIC_FLASH // Saves about 154 LUTs `define USE_LITE_UART // Saves about 55 LUTs module busmaster(i_clk, i_rst, i_uart, o_uart_rts_n, o_uart, i_uart_cts_n, // The SPI Flash lines o_qspi_cs_n, o_qspi_sck, o_qspi_dat, i_qspi_dat, o_qspi_mod, // The board I/O i_btn, o_led, o_pwm, o_pwm_aux, // Keypad connections i_kp_row, o_kp_col, // GPIO lines i_gpio, o_gpio); parameter BUS_ADDRESS_WIDTH=23, ZIP_ADDRESS_WIDTH=BUS_ADDRESS_WIDTH, CMOD_ZIPCPU_RESET_ADDRESS=32'h1200000, UART_SETUP = 31'd25; localparam ZA=ZIP_ADDRESS_WIDTH, BAW=BUS_ADDRESS_WIDTH; // 24bits->2,258,23b->2181 // 2^14 bytes requires a LGMEMSZ of 14, and 12 address bits ranging from // 0 to 11. As with many other devices, the wb_cyc line is more for // form than anything else--it is ignored by the memory itself. localparam LGMEMSZ=14; // Takes 8 BLKRAM16 elements for LGMEMSZ=14 // As with the memory size, the flash size is also measured in log_2 of // the number of bytes. localparam LGFLASHSZ = 24; input i_clk, i_rst; // UART parameters input i_uart, i_uart_cts_n; output wire o_uart, o_uart_rts_n; // SPI flash control output wire o_qspi_cs_n; `ifdef LOWLOGIC_FLASH output wire [1:0] o_qspi_sck; `else output wire o_qspi_sck; `endif output wire [3:0] o_qspi_dat; input [3:0] i_qspi_dat; output wire [1:0] o_qspi_mod; // Board I/O input [1:0] i_btn; output wire [3:0] o_led; output wire o_pwm; output wire [1:0] o_pwm_aux; // Keypad input [3:0] i_kp_row; output wire [3:0] o_kp_col; // GPIO liines input [15:0] i_gpio; output wire [15:0] o_gpio; // // // Master wishbone wires // // wire wb_cyc, wb_stb, wb_we, wb_stall, wb_ack, wb_err; wire [31:0] wb_data, wb_idata; wire [3:0] wb_sel; wire [(BAW-1):0] wb_addr; // Wires going to devices // And then headed back home wire w_interrupt; // Oh, and the debug control for the ZIP CPU wire zip_dbg_ack, zip_dbg_stall; wire [31:0] zip_dbg_data; // // // The BUS master (source): The ZipCPU // // wire zip_cyc, zip_stb, zip_we, zip_cpu_int; wire [(ZA-1):0] w_zip_addr; wire [(BAW-1):0] zip_addr; wire [31:0] zip_data, zip_scope_data; // and then coming from devices wire zip_ack, zip_stall, zip_err; wire dwb_we, dwb_stb, dwb_cyc, dwb_ack, dwb_stall, dwb_err; wire [(BAW-1):0] dwb_addr; wire [31:0] dwb_odata; wire cpu_reset, watchdog_int; // `ifdef INCLUDE_CPU_RESET_LOGIC reg btn_reset, x_button, r_button; initial btn_reset = 1'b0; initial x_button = 1'b0; initial r_button = 1'b0; always @(posedge i_clk) begin x_button <= i_btn[1]; r_button <= x_button; btn_reset <= ((r_button)&&(zip_cpu_int))||(watchdog_int); end assign cpu_reset = btn_reset; `else assign cpu_reset = (watchdog_int); `endif zipbones #(CMOD_ZIPCPU_RESET_ADDRESS,ZA,6) swic(i_clk, cpu_reset, // 1'b0, // Zippys wishbone interface wb_cyc, wb_stb, wb_we, w_zip_addr, wb_data, wb_sel, wb_ack, wb_stall, wb_idata, wb_err, w_interrupt, zip_cpu_int, // Debug wishbone interface -- not really used 1'b0, 1'b0,1'b0, 1'b0, 32'h00, zip_dbg_ack, zip_dbg_stall, zip_dbg_data, zip_scope_data); generate if (ZA < BAW) assign wb_addr = { {(BAW-ZA){1'b0}}, w_zip_addr }; else assign wb_addr = w_zip_addr; endgenerate // Signals to build/detect bus errors wire none_sel, many_sel; wire io_sel, flash_sel, flctl_sel, scop_sel, mem_sel; wire flash_ack, scop_ack, cfg_ack, mem_ack, many_ack; wire io_stall, flash_stall, scop_stall, cfg_stall, mem_stall; reg io_ack; wire [31:0] flash_data, scop_data, cfg_data, mem_data, pwm_data, spio_data, gpio_data, uart_data; reg [31:0] io_data; reg [(BAW-1):0] bus_err_addr; // // wb_ack // // The returning wishbone ack is equal to the OR of every component that // might possibly produce an acknowledgement, gated by the CYC line. To // add new components, OR their acknowledgements in here. // // Note the reference to none_sel. If nothing is selected, the result // is an error. Here, we do nothing more than insure that the erroneous // request produces an ACK ... if it was ever made, rather than stalling // the bus. // assign wb_ack = (wb_cyc)&&((io_ack)||(scop_ack) ||(mem_ack)||(flash_ack)||((none_sel)&&(1'b1))); // // wb_stall // // The returning wishbone stall line really depends upon what device // is requested. Thus, if a particular device is selected, we return // the stall line for that device. // // To add a new device, simply and that devices select and stall lines // together, and OR the result with the massive OR logic below. // assign wb_stall = ((io_sel)&&(io_stall)) ||((scop_sel)&&(scop_stall)) ||((mem_sel)&&(mem_stall)) ||((flash_sel||flctl_sel)&&(flash_stall)); // (none_sel)&&(1'b0) // // wb_idata // // This is the data returned on the bus. Here, we select between a // series of bus sources to select what data to return. The basic // logic is simply this: the data we return is the data for which the // ACK line is high. // // The last item on the list is chosen by default if no other ACK's are // true. Although we might choose to return zeros in that case, by // returning something we can skimp a touch on the logic. // // To add another device, add another ack check, and another closing // parenthesis. // assign wb_idata = (io_ack|scop_ack)?((io_ack )? io_data : scop_data) : ((mem_ack)?(mem_data) : flash_data); // // wb_err // // This is the bus error signal. It should never be true, but practice // teaches us otherwise. Here, we allow for three basic errors: // // 1. STB is true, but no devices are selected // // This is the null pointer reference bug. If you try to access // something on the bus, at an address with no mapping, the bus // should produce an error--such as if you try to access something // at zero. // // 2. STB is true, and more than one device is selected // // (This can be turned off, if you design this file well. For // this line to be true means you have a design flaw.) // // 3. If more than one ACK is every true at any given time. // // This is a bug of bus usage, combined with a subtle flaw in the // WB pipeline definition. You can issue bus requests, one per // clock, and if you cross device boundaries with your requests, // you may have things come back out of order (not detected here) // or colliding on return (detected here). The solution to this // problem is to make certain that any burst request does not cross // device boundaries. This is a requirement of whoever (or // whatever) drives the bus. // assign wb_err = ((wb_stb)&&(none_sel || many_sel)) || many_ack; // Addresses ... // // dev_sel // // The device select lines // // // // The skipaddr bitfield below is our cheaters way of handling // device selection. We grab particular wires from the bus to do // this, and ignore all others. While this may lead to some // surprising results for the CPU when it tries to access an // inappropriate address, it also minimizes our logic while also // placing every address at the right address. The only problem is // ... devices will also be at some unexpected addresses, but ... this // is still within our spec. // wire [3:0] skipaddr; assign skipaddr = { wb_addr[(LGFLASHSZ-2)], // Flash wb_addr[(LGMEMSZ-2)], // RAM wb_addr[ 9], // SCOPE wb_addr[ 8] }; // I/O // // This might not be the most efficient way in hardware, but it will // work for our purposes here. There are two phantom bits for each // of these ... bits that tell the CPU which byte within the word, and // another phantom bit because we allocated a minimum of two words to // every device. // wire idle_n; `ifdef ZERO_ON_IDLE assign idle_n = wb_stb; `else assign idle_n = 1'b1; `endif // `define ZERO_ON_IDLE `ifdef ZERO_ON_IDLE assign idle_n = (wb_cyc)&&(wb_stb); `else assign idle_n = 1'b1; `endif assign io_sel =((idle_n)&&(skipaddr[3:0]==4'h1)); assign scop_sel =((idle_n)&&(skipaddr[3:1]==3'h1)); // = 4'h2 assign flctl_sel= 1'b0; // ((wb_cyc)&&(skipaddr[3:0]==4'h3)); assign mem_sel =((idle_n)&&(skipaddr[3:2]==2'h1)); assign flash_sel=((idle_n)&&(skipaddr[3])); // // none_sel // // This wire is true if wb_stb is true and no device is selected. This // is an error condition, but here we present the logic to test for it. // // // If you add another device, add another OR into the select lines // associated with this term. // assign none_sel =((wb_stb)&&(skipaddr==4'h0)); // // many_sel // // This should *never* be true .... unless you mess up your address // decoding logic. Since I've done that before, I test/check for it // here. // // To add a new device here, simply add it to the list. Make certain // that the width of the add, however, is greater than the number // of devices below. Hence, for 3 devices, you will need an add // at least 3 bits in width, for 7 devices you will need at least 4 // bits, etc. // // Because this add uses the {} operator, the individual components to // it are by default unsigned ... just as we would like. // // There's probably another easier/better/faster/cheaper way to do this, // but I haven't found any such that are also easier to adjust with // new devices. I'm open to options. // assign many_sel = 1'b0; // // many_ack // // Normally this would capture the error when multiple things creates acks // at the same time. The S6 is small, though, and doesn't have the logic // we need to do this right. Hence we just declare (and hope) that this // will never be true and work with that. // assign many_ack = 1'b0; wire flash_interrupt, scop_interrupt, timer_int, gpio_int, pwm_int, keypad_int,button_int; // // bus_err_addr // // We'd like to know, after the fact, what (if any) address caused a // bus error. So ... if we get a bus error, let's record the address // on the bus for later analysis. // initial bus_err_addr = 0; always @(posedge i_clk) if (wb_err) bus_err_addr <= wb_addr; // // Interrupt processing // // The interrupt controller will be used to tell us if any interrupts // take place. // // To add more interrupts, you can just add more wires to this // int_vector. // reg rx_rdy; wire [10:0] int_vector; assign int_vector = { gpio_int, pwm_int, keypad_int, (!tx_stb), rx_rdy, 1'b0, timer_int, 1'b0, scop_interrupt, wb_err, button_int }; wire [31:0] pic_data; icontrol #(11) pic(i_clk, 1'b0, (wb_stb)&&(io_sel) &&(wb_addr[3:0]==4'h0)&&(wb_we), wb_data, pic_data, int_vector, w_interrupt); wire [31:0] timer_data, watchdog_data; wire zta_ack, zta_stall, ztb_ack, ztb_stall; ziptimer #(32,31,1) thetimer(i_clk, 1'b0, 1'b1, wb_cyc, (wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h2), wb_we, wb_data, zta_ack, zta_stall, timer_data, timer_int); ziptimer #(32,31,0) watchdog(i_clk, cpu_reset, 1'b1, wb_cyc, (wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h3), wb_we, wb_data, ztb_ack, ztb_stall, watchdog_data, watchdog_int); always @(posedge i_clk) case(wb_addr[3:0]) 4'h0: io_data <= pic_data; 4'h1: io_data <= { {(30-BAW){1'b0}}, bus_err_addr, 2'b00 }; 4'h2: io_data <= timer_data; 4'h3: io_data <= watchdog_data; 4'h4: io_data <= pwm_data; 4'h5: io_data <= spio_data; 4'h6: io_data <= gpio_data; 4'h7: io_data <= uart_data; default: io_data <= `DATESTAMP; // 4'h8: io_data <= `DATESTAMP; endcase always @(posedge i_clk) io_ack <= (wb_stb)&&(io_sel); assign io_stall = 1'b0; wire pwm_ack, pwm_stall; wbpwmaudio #(14'd10000,2,0,14) theaudio(i_clk, wb_cyc, ((wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h4)), wb_we, 1'b0, wb_data, pwm_ack, pwm_stall, pwm_data, o_pwm, o_pwm_aux, //={pwm_shutdown_n,pwm_gain} pwm_int); // // Special Purpose I/O: Keypad, button, LED status and control // wire [3:0] w_led; spio thespio(i_clk, wb_cyc,(wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h5), wb_we, wb_data, spio_data, o_kp_col, i_kp_row, i_btn, w_led, keypad_int, button_int); assign o_led = { w_led[3]|w_interrupt,w_led[2]|zip_cpu_int, w_led[1], w_led[0] }; // // General purpose (sort of) I/O: (Bottom two bits robbed in each // direction for an I2C link at the toplevel.v design) // wbgpio #(16,16,16'hffff) thegpio(i_clk, wb_cyc, (wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h6), wb_we, wb_data, gpio_data, i_gpio, o_gpio, gpio_int); // // // UART device: our console // // wire [30:0] uart_setup; // wire rx_break, rx_parity_err, rx_frame_err, rx_ck_uart, rx_stb; wire [7:0] rx_data; // assign uart_setup = UART_SETUP; // `ifdef HAS_RXUART `ifdef USE_LITE_UART rxuartlite #(UART_SETUP[23:0]) rcvuart(i_clk, i_uart, rx_stb, rx_data); assign rx_break = 1'b0; assign rx_parity_err = 1'b0; assign rx_frame_err = 1'b0; assign rx_ck_uart = 1'b0; `else rxuart #(UART_SETUP) rcvuart(i_clk, 1'b0, uart_setup, i_uart, rx_stb, rx_data, rx_break, rx_parity_err, rx_frame_err, rx_ck_uart); `endif `else assign rx_break = 1'b0; assign rx_parity_err = 1'b0; assign rx_frame_err = 1'b0; assign rx_ck_uart = 1'b0; assign rx_stb = 1'b0; assign rx_data = 8'h0; `endif // wire tx_break, tx_busy; reg tx_stb; reg [7:0] tx_data; assign tx_break = 1'b0; `ifdef USE_LITE_UART txuartlite #(UART_SETUP[23:0]) tcvuart(i_clk, tx_stb, tx_data, o_uart, tx_busy); `else txuart #(UART_SETUP) tcvuart(i_clk, 1'b0, uart_setup, tx_break, tx_stb, tx_data, i_uart_cts_n, o_uart, tx_busy); `endif // // Rudimentary serial port control // reg [7:0] r_rx_data; // Baud rate is set by clock rate / baud rate. initial tx_stb = 1'b0; initial tx_data = 8'h00; always @(posedge i_clk) if ((wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h7)&&(wb_we)) begin tx_data <= wb_data[7:0]; tx_stb <= 1'b1; end else if ((tx_stb)&&(!tx_busy)) tx_stb <= 1'b0; `ifdef HAS_RXUART initial rx_rdy = 1'b0; always @(posedge i_clk) if (rx_stb) r_rx_data <= rx_data; always @(posedge i_clk) begin if((wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h7)&&(!wb_we)) rx_rdy <= rx_stb; else rx_rdy <= (rx_rdy | rx_stb); end assign o_uart_rts_n = (rx_rdy); assign uart_data = { 23'h0, !rx_rdy, r_rx_data }; `else assign o_uart_rts_n = 1'b1; assign uart_data = 32'h00; `endif // // uart_ack gets returned as part of io_ack, since that happens when // io_sel and wb_stb are defined // // always @(posedge i_clk) // uart_ack<= ((wb_stb)&&(io_sel)&&(wb_addr[3:0]==4'h7)); // // FLASH MEMORY CONFIGURATION ACCESS // `ifdef FLASH_ACCESS `ifdef LOWLOGIC_FLASH qflashxpress flashmem(i_clk, wb_cyc,(wb_stb)&&(flash_sel), wb_addr[(LGFLASHSZ-3):0], flash_ack, flash_stall, flash_data, o_qspi_sck, o_qspi_cs_n, o_qspi_mod, o_qspi_dat, i_qspi_dat); assign flash_interrupt = 1'b0; `else wbqspiflash #(LGFLASHSZ) flashmem(i_clk, wb_cyc,(wb_stb)&&(flash_sel),(wb_stb)&&(flctl_sel),wb_we, wb_addr[(LGFLASHSZ-3):0], wb_data, flash_ack, flash_stall, flash_data, o_qspi_sck, o_qspi_cs_n, o_qspi_mod, o_qspi_dat, i_qspi_dat, flash_interrupt); `endif `else reg r_flash_ack; initial r_flash_ack = 1'b0; always @(posedge i_clk) r_flash_ack <= (wb_stb)&&((flash_sel)||(flctl_sel)); assign flash_ack = r_flash_ack; assign flash_stall = 1'b0; assign flash_data = 32'h0000; assign flash_interrupt = 1'b0; assign o_qspi_sck = 1'b1; assign o_qspi_cs_n = 1'b1; assign o_qspi_mod = 2'b01; assign o_qspi_dat = 4'b1111; `endif // // ON-CHIP RAM MEMORY ACCESS // `ifdef IMPLEMENT_ONCHIP_RAM memdev #(.LGMEMSZ(LGMEMSZ)) ram(i_clk, wb_cyc, (wb_stb)&&(mem_sel), wb_we, wb_addr[(LGMEMSZ-3):0], wb_data, wb_sel, mem_ack, mem_stall, mem_data); `else assign mem_data = 32'h00; assign mem_stall = 1'b0; reg r_mem_ack; always @(posedge i_clk) r_mem_ack <= (wb_stb)&&(mem_sel); assign mem_ack = r_mem_ack; `endif // // // WISHBONE SCOPE // // // // wire [31:0] scop_cpu_data; wire scop_cpu_ack, scop_cpu_stall, scop_cpu_interrupt; `ifdef DBG_SCOPE wire scop_trigger = (zip_cpu_int) || (cpu_reset); `ifdef COMPRESSED_SCOPE wbscopc #(5'ha) `else wbscope #(.LGMEM(5'h6), .HOLDOFFBITS(9)) `endif cpuscope(i_clk, 1'b1, scop_trigger, `ifdef COMPRESSED_SCOPE // cfg_scope[30:0], zip_scope_data[30:0], `else // cfg_scope[31:0], zip_scope_data[31:0], `endif // Wishbone interface i_clk, wb_cyc, (wb_stb)&&(scop_sel), wb_we, wb_addr[0], wb_data, scop_cpu_ack, scop_cpu_stall, scop_cpu_data, scop_cpu_interrupt); `else reg r_scop_cpu_ack; always @(posedge i_clk) r_scop_cpu_ack <= (wb_stb)&&(scop_sel); assign scop_cpu_ack = r_scop_cpu_ack; assign scop_cpu_data = 32'h000; assign scop_cpu_stall= 1'b0; `endif assign scop_interrupt = scop_cpu_interrupt; assign scop_ack = scop_cpu_ack; assign scop_stall = scop_cpu_stall; assign scop_data = scop_cpu_data; endmodule