URL
https://opencores.org/ocsvn/s6soc/s6soc/trunk
Subversion Repositories s6soc
[/] [s6soc/] [trunk/] [rtl/] [cpu/] [zipcpu.v] - Rev 47
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: zipcpu.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This is the top level module holding the core of the Zip CPU // together. The Zip CPU is designed to be as simple as possible. // (actual implementation aside ...) The instruction set is about as // RISC as you can get, with only 26 instruction types currently supported. // (There are still 8-instruction Op-Codes reserved for floating point, // and 5 which can be used for transactions not requiring registers.) // Please see the accompanying spec.pdf file for a description of these // instructions. // // All instructions are 32-bits wide. All bus accesses, both address and // data, are 32-bits over a wishbone bus. // // The Zip CPU is fully pipelined with the following pipeline stages: // // 1. Prefetch, returns the instruction from memory. // // 2. Instruction Decode // // 3. Read Operands // // 4. Apply Instruction // // 4. Write-back Results // // Further information about the inner workings of this CPU, such as // what causes pipeline stalls, may be found in the spec.pdf file. (The // documentation within this file had become out of date and out of sync // with the spec.pdf, so look to the spec.pdf for accurate and up to date // information.) // // // In general, the pipelining is controlled by three pieces of logic // per stage: _ce, _stall, and _valid. _valid means that the stage // holds a valid instruction. _ce means that the instruction from the // previous stage is to move into this one, and _stall means that the // instruction from the previous stage may not move into this one. // The difference between these control signals allows individual stages // to propagate instructions independently. In general, the logic works // as: // // // assign (n)_ce = (n-1)_valid && (~(n)_stall) // // // always @(posedge i_clk) // if ((i_rst)||(clear_pipeline)) // (n)_valid = 0 // else if (n)_ce // (n)_valid = 1 // else if (n+1)_ce // (n)_valid = 0 // // assign (n)_stall = ( (n-1)_valid && ( pipeline hazard detection ) ) // || ( (n)_valid && (n+1)_stall ); // // and ... // // always @(posedge i_clk) // if (n)_ce // (n)_variable = ... whatever logic for this stage // // Note that a stage can stall even if no instruction is loaded into // it. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // // `define CPU_CC_REG 4'he `define CPU_PC_REG 4'hf `define CPU_CLRCACHE_BIT 14 // Set to clear the I-cache, automatically clears `define CPU_PHASE_BIT 13 // Set if we are executing the latter half of a CIS `define CPU_FPUERR_BIT 12 // Floating point error flag, set on error `define CPU_DIVERR_BIT 11 // Divide error flag, set on divide by zero `define CPU_BUSERR_BIT 10 // Bus error flag, set on error `define CPU_TRAP_BIT 9 // User TRAP has taken place `define CPU_ILL_BIT 8 // Illegal instruction `define CPU_BREAK_BIT 7 `define CPU_STEP_BIT 6 // Will step one (or two CIS) instructions `define CPU_GIE_BIT 5 `define CPU_SLEEP_BIT 4 // Compile time defines // `include "cpudefs.v" // // module zipcpu(i_clk, i_rst, i_interrupt, // Debug interface i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data, o_dbg_stall, o_dbg_reg, o_dbg_cc, o_break, // CPU interface to the wishbone bus o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel, i_wb_ack, i_wb_stall, i_wb_data, i_wb_err, // Accounting/CPU usage interface o_op_stall, o_pf_stall, o_i_count `ifdef DEBUG_SCOPE , o_debug `endif ); parameter [31:0] RESET_ADDRESS=32'h0100000; parameter ADDRESS_WIDTH=30, LGICACHE=8; `ifdef OPT_MULTIPLY parameter IMPLEMENT_MPY = `OPT_MULTIPLY; `else parameter IMPLEMENT_MPY = 0; `endif `ifdef OPT_DIVIDE parameter IMPLEMENT_DIVIDE = 1; `else parameter IMPLEMENT_DIVIDE = 0; `endif `ifdef OPT_IMPLEMENT_FPU parameter IMPLEMENT_FPU = 1, `else parameter IMPLEMENT_FPU = 0, `endif IMPLEMENT_LOCK=1; `ifdef OPT_EARLY_BRANCHING parameter EARLY_BRANCHING = 1; `else parameter EARLY_BRANCHING = 0; `endif parameter WITH_LOCAL_BUS = 1; localparam AW=ADDRESS_WIDTH; localparam [(AW-1):0] RESET_BUS_ADDRESS = RESET_ADDRESS[(AW+1):2]; input i_clk, i_rst, i_interrupt; // Debug interface -- inputs input i_halt, i_clear_pf_cache; input [4:0] i_dbg_reg; input i_dbg_we; input [31:0] i_dbg_data; // Debug interface -- outputs output wire o_dbg_stall; output reg [31:0] o_dbg_reg; output reg [3:0] o_dbg_cc; output wire o_break; // Wishbone interface -- outputs output wire o_wb_gbl_cyc, o_wb_gbl_stb; output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we; output wire [(AW-1):0] o_wb_addr; output wire [31:0] o_wb_data; output wire [3:0] o_wb_sel; // Wishbone interface -- inputs input i_wb_ack, i_wb_stall; input [31:0] i_wb_data; input i_wb_err; // Accounting outputs ... to help us count stalls and usage output wire o_op_stall; output wire o_pf_stall; output wire o_i_count; // `ifdef DEBUG_SCOPE output reg [31:0] o_debug; `endif // Registers // // The distributed RAM style comment is necessary on the // SPARTAN6 with XST to prevent XST from oversimplifying the register // set and in the process ruining everything else. It basically // optimizes logic away, to where it no longer works. The logic // as described herein will work, this just makes sure XST implements // that logic. // (* ram_style = "distributed" *) `ifdef OPT_NO_USERMODE reg [31:0] regset [0:15]; `else reg [31:0] regset [0:31]; `endif // Condition codes // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z reg [3:0] flags, iflags; wire [14:0] w_uflags, w_iflags; reg break_en, step, sleep, r_halted; wire break_pending, trap, gie, ubreak; wire w_clear_icache, ill_err_u; reg ill_err_i; reg ibus_err_flag; wire ubus_err_flag; wire idiv_err_flag, udiv_err_flag; wire ifpu_err_flag, ufpu_err_flag; wire ihalt_phase, uhalt_phase; // The master chip enable wire master_ce; // // // PIPELINE STAGE #1 :: Prefetch // Variable declarations // reg [(AW+1):0] pf_pc; reg new_pc; wire clear_pipeline; assign clear_pipeline = new_pc; wire dcd_stalled; wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err; wire [(AW-1):0] pf_addr; wire [31:0] pf_data; wire [31:0] pf_instruction; wire [(AW-1):0] pf_instruction_pc; wire pf_valid, pf_gie, pf_illegal; // // // PIPELINE STAGE #2 :: Instruction Decode // Variable declarations // // reg op_valid /* verilator public_flat */, op_valid_mem, op_valid_alu; reg op_valid_div, op_valid_fpu; wire op_stall, dcd_ce, dcd_phase; wire [3:0] dcd_opn; wire [4:0] dcd_A, dcd_B, dcd_R; wire dcd_Acc, dcd_Bcc, dcd_Apc, dcd_Bpc, dcd_Rcc, dcd_Rpc; wire [3:0] dcd_F; wire dcd_wR, dcd_rA, dcd_rB, dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_wF, dcd_gie, dcd_break, dcd_lock, dcd_pipe, dcd_ljmp; reg r_dcd_valid; wire dcd_valid; wire [AW:0] dcd_pc /* verilator public_flat */; wire [31:0] dcd_I; wire dcd_zI; // true if dcd_I == 0 wire dcd_A_stall, dcd_B_stall, dcd_F_stall; wire dcd_illegal; wire dcd_early_branch; wire [(AW-1):0] dcd_branch_pc; wire dcd_sim; wire [22:0] dcd_sim_immv; // // // PIPELINE STAGE #3 :: Read Operands // Variable declarations // // // // Now, let's read our operands reg [4:0] alu_reg; wire [3:0] op_opn; wire [4:0] op_R; reg [31:0] r_op_Av, r_op_Bv; reg [(AW-1):0] op_pc; wire [31:0] w_op_Av, w_op_Bv; wire [31:0] op_A_nowait, op_B_nowait, op_Av, op_Bv; reg op_wR, op_wF; wire op_gie, op_Rcc; wire [14:0] op_Fl; reg [6:0] r_op_F; wire [7:0] op_F; wire op_ce, op_phase, op_pipe, op_change_data_ce; // Some pipeline control wires `ifdef OPT_PIPELINED reg op_A_alu, op_A_mem; reg op_B_alu, op_B_mem; `endif reg op_illegal; wire op_break; wire op_lock; `ifdef VERILATOR reg op_sim /* verilator public_flat */; reg [22:0] op_sim_immv /* verilator public_flat */; `endif // // // PIPELINE STAGE #4 :: ALU / Memory // Variable declarations // // wire [(AW-1):0] alu_pc; reg r_alu_pc_valid, mem_pc_valid; wire alu_pc_valid; wire alu_phase; wire alu_ce /* verilator public_flat */, alu_stall; wire [31:0] alu_result; wire [3:0] alu_flags; wire alu_valid, alu_busy; wire set_cond; reg alu_wR, alu_wF; wire alu_gie, alu_illegal; wire mem_ce, mem_stalled; wire mem_pipe_stalled; wire mem_valid, mem_ack, mem_stall, mem_err, bus_err, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we; wire [4:0] mem_wreg; wire mem_busy, mem_rdbusy; wire [(AW-1):0] mem_addr; wire [31:0] mem_data, mem_result; wire [3:0] mem_sel; wire div_ce, div_error, div_busy, div_valid; wire [31:0] div_result; wire [3:0] div_flags; assign div_ce = (master_ce)&&(~clear_pipeline)&&(op_valid_div) &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) &&(set_cond); wire fpu_ce, fpu_error, fpu_busy, fpu_valid; wire [31:0] fpu_result; wire [3:0] fpu_flags; assign fpu_ce = (master_ce)&&(~clear_pipeline)&&(op_valid_fpu) &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) &&(set_cond); wire adf_ce_unconditional; // // // PIPELINE STAGE #5 :: Write-back // Variable declarations // wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc, wr_write_scc, wr_write_ucc; wire [4:0] wr_reg_id; wire [31:0] wr_gpreg_vl, wr_spreg_vl; wire w_switch_to_interrupt, w_release_from_interrupt; reg [(AW+1):0] ipc; wire [(AW+1):0] upc; // // MASTER: clock enable. // assign master_ce = ((~i_halt)||(alu_phase))&&(~o_break)&&(~sleep); // // PIPELINE STAGE #1 :: Prefetch // Calculate stall conditions // // These are calculated externally, within the prefetch module. // // // PIPELINE STAGE #2 :: Instruction Decode // Calculate stall conditions assign dcd_ce = ((~dcd_valid)||(~dcd_stalled))&&(~clear_pipeline); `ifdef OPT_PIPELINED assign dcd_stalled = (dcd_valid)&&(op_stall); `else // If not pipelined, there will be no op_valid_ anything, and the // op_stall will be false, dcd_X_stall will be false, thus we can simply // do a ... assign dcd_stalled = 1'b0; `endif // // PIPELINE STAGE #3 :: Read Operands // Calculate stall conditions wire prelock_stall; `ifdef OPT_PIPELINED reg cc_invalid_for_dcd; always @(posedge i_clk) cc_invalid_for_dcd <= (wr_flags_ce) ||(wr_reg_ce)&&(wr_reg_id[3:0] == `CPU_CC_REG) ||(op_valid)&&((op_wF)||((op_wR)&&(op_R[3:0] == `CPU_CC_REG))) ||((alu_wF)||((alu_wR)&&(alu_reg[3:0] == `CPU_CC_REG))) ||(mem_busy)||(div_busy)||(fpu_busy); assign op_stall = (op_valid)&&( // Only stall if we're loaded w/validins // Stall if we're stopped, and not allowed to execute // an instruction // (~master_ce) // Already captured in alu_stall // // Stall if going into the ALU and the ALU is stalled // i.e. if the memory is busy, or we are single // stepping. This also includes our stalls for // op_break and op_lock, so we don't need to // include those as well here. // This also includes whether or not the divide or // floating point units are busy. (alu_stall) ||(((op_valid_div)||(op_valid_fpu)) &&(!adf_ce_unconditional)) // // Stall if we are going into memory with an operation // that cannot be pipelined, and the memory is // already busy ||(mem_stalled) // &&(op_valid_mem) part of mem_stalled ||(op_Rcc) ) ||(dcd_valid)&&( // Stall if we need to wait for an operand A // to be ready to read (dcd_A_stall) // Likewise for B, also includes logic // regarding immediate offset (register must // be in register file if we need to add to // an immediate) ||(dcd_B_stall) // Or if we need to wait on flags to work on the // CC register ||(dcd_F_stall) ); assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall); // BUT ... op_ce is too complex for many of the data operations. So // let's make their circuit enable code simpler. In particular, if // op_ doesn't need to be preserved, we can change it all we want // ... right? The clear_pipeline code, for example, really only needs // to determine whether op_valid is true. assign op_change_data_ce = (~op_stall); `else assign op_stall = (op_valid)&&(~master_ce); assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(~clear_pipeline); assign op_change_data_ce = 1'b1; `endif // // PIPELINE STAGE #4 :: ALU / Memory // Calculate stall conditions // // 1. Basic stall is if the previous stage is valid and the next is // busy. // 2. Also stall if the prior stage is valid and the master clock enable // is de-selected // 3. Stall if someone on the other end is writing the CC register, // since we don't know if it'll put us to sleep or not. // 4. Last case: Stall if we would otherwise move a break instruction // through the ALU. Break instructions are not allowed through // the ALU. `ifdef OPT_PIPELINED assign alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(op_valid_alu)) //Case 1&2 ||(prelock_stall) ||((op_valid)&&(op_break)) ||(wr_reg_ce)&&(wr_write_cc) ||(div_busy)||(fpu_busy); assign alu_ce = (master_ce)&&(op_valid_alu)&&(~alu_stall) &&(~clear_pipeline); `else assign alu_stall = (op_valid_alu)&&((~master_ce)||(op_break)); assign alu_ce = (master_ce)&&(op_valid_alu)&&(~alu_stall)&&(~clear_pipeline); `endif // // // Note: if you change the conditions for mem_ce, you must also change // alu_pc_valid. // `ifdef OPT_PIPELINED assign mem_ce = (master_ce)&&(op_valid_mem)&&(~mem_stalled) &&(~clear_pipeline); `else // If we aren't pipelined, then no one will be changing what's in the // pipeline (i.e. clear_pipeline), while our only instruction goes // through the ... pipeline. // // However, in hind sight this logic didn't work. What happens when // something gets in the pipeline and then (due to interrupt or some // such) needs to be voided? Thus we avoid simplification and keep // what worked here. assign mem_ce = (master_ce)&&(op_valid_mem)&&(~mem_stalled) &&(~clear_pipeline); `endif `ifdef OPT_PIPELINED_BUS_ACCESS assign mem_stalled = (~master_ce)||(alu_busy)||((op_valid_mem)&&( (mem_pipe_stalled) ||(prelock_stall) ||((~op_pipe)&&(mem_busy)) ||(div_busy) ||(fpu_busy) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie) &&((wr_write_pc)||(wr_write_cc))))); `else `ifdef OPT_PIPELINED assign mem_stalled = (mem_busy)||((op_valid_mem)&&( (~master_ce) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc))))); `else assign mem_stalled = (op_valid_mem)&&(~master_ce); `endif `endif // ALU, DIV, or FPU CE ... equivalent to the OR of all three of these assign adf_ce_unconditional = (master_ce)&&(~clear_pipeline)&&(op_valid) &&(~op_valid_mem)&&(~mem_rdbusy) &&((~op_valid_alu)||(~alu_stall))&&(~op_break) &&(~div_busy)&&(~fpu_busy)&&(~clear_pipeline); // // // PIPELINE STAGE #1 :: Prefetch // // `ifdef OPT_SINGLE_FETCH wire pf_ce; assign pf_ce = (~pf_valid)&&(~dcd_valid)&&(~op_valid)&&(~alu_busy)&&(~mem_busy)&&(~alu_pc_valid)&&(~mem_pc_valid); prefetch #(ADDRESS_WIDTH) pf(i_clk, (i_rst), (pf_ce), (~dcd_stalled), pf_pc[(AW+1):2], gie, pf_instruction, pf_instruction_pc, pf_gie, pf_valid, pf_illegal, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data); initial r_dcd_valid = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_dcd_valid <= 1'b0; else if (dcd_ce) r_dcd_valid <= (pf_valid)||(pf_illegal); else if (op_ce) r_dcd_valid <= 1'b0; assign dcd_valid = r_dcd_valid; `else // Pipe fetch wire pf_stalled; assign pf_stalled = (dcd_stalled)||(dcd_phase); `ifdef OPT_TRADITIONAL_PFCACHE wire [(AW-1):0] pf_request_address; assign pf_request_address = ((dcd_early_branch)&&(!clear_pipeline)) ? dcd_branch_pc:pf_pc[(AW+1):2]; pfcache #(LGICACHE, ADDRESS_WIDTH) pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)), w_clear_icache, // dcd_pc, (!pf_stalled), pf_request_address, pf_instruction, pf_instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, pf_illegal); `else pipefetch #(RESET_BUS_ADDRESS, LGICACHE, ADDRESS_WIDTH) pf(i_clk, i_rst, (new_pc)||(dcd_early_branch), w_clear_icache, (!pf_stalled), (new_pc)?pf_pc[(AW+1):2]:dcd_branch_pc, pf_instruction, pf_instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, (mem_cyc_lcl)||(mem_cyc_gbl), pf_illegal); `endif `ifdef OPT_NO_USERMODE assign pf_gie = 1'b0; `else assign pf_gie = gie; `endif initial r_dcd_valid = 1'b0; always @(posedge i_clk) if ((clear_pipeline)||(w_clear_icache)) r_dcd_valid <= 1'b0; else if (dcd_ce) r_dcd_valid <= ((dcd_phase)||(pf_valid)) &&(~dcd_ljmp)&&(~dcd_early_branch); else if (op_ce) r_dcd_valid <= 1'b0; assign dcd_valid = r_dcd_valid; `endif // If not pipelined, there will be no op_valid_ anything, and the idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE, IMPLEMENT_FPU) instruction_decoder(i_clk, (clear_pipeline), (~dcd_valid)||(~op_stall), dcd_stalled, pf_instruction, pf_gie, pf_instruction_pc, pf_valid, pf_illegal, dcd_phase, dcd_illegal, dcd_pc, dcd_gie, { dcd_Rcc, dcd_Rpc, dcd_R }, { dcd_Acc, dcd_Apc, dcd_A }, { dcd_Bcc, dcd_Bpc, dcd_B }, dcd_I, dcd_zI, dcd_F, dcd_wF, dcd_opn, dcd_ALU, dcd_M, dcd_DIV, dcd_FP, dcd_break, dcd_lock, dcd_wR,dcd_rA, dcd_rB, dcd_early_branch, dcd_branch_pc, dcd_ljmp, dcd_pipe, dcd_sim, dcd_sim_immv); `ifdef OPT_PIPELINED_BUS_ACCESS reg r_op_pipe; initial r_op_pipe = 1'b0; // To be a pipeable operation, there must be // two valid adjacent instructions // Both must be memory instructions // Both must be writes, or both must be reads // Both operations must be to the same identical address, // or at least a single (one) increment above that address // // However ... we need to know this before this clock, hence this is // calculated in the instruction decoder. always @(posedge i_clk) if (clear_pipeline) r_op_pipe <= 1'b0; else if (op_ce) r_op_pipe <= dcd_pipe; else if (mem_ce) // Clear us any time an op_ is clocked in r_op_pipe <= 1'b0; assign op_pipe = r_op_pipe; `else assign op_pipe = 1'b0; `endif // // // PIPELINE STAGE #3 :: Read Operands (Registers) // // `ifdef OPT_NO_USERMODE assign w_op_Av = regset[dcd_A[3:0]]; assign w_op_Bv = regset[dcd_B[3:0]]; `else assign w_op_Av = regset[dcd_A]; assign w_op_Bv = regset[dcd_B]; `endif wire [8:0] w_cpu_info; assign w_cpu_info = { 1'b1, (IMPLEMENT_MPY >0)? 1'b1:1'b0, (IMPLEMENT_DIVIDE >0)? 1'b1:1'b0, (IMPLEMENT_FPU >0)? 1'b1:1'b0, `ifdef OPT_PIPELINED 1'b1, `else 1'b0, `endif `ifdef OPT_TRADITIONAL_CACHE 1'b1, `else 1'b0, `endif `ifdef OPT_EARLY_BRANCHING 1'b1, `else 1'b0, `endif `ifdef OPT_PIPELINED_BUS_ACCESS 1'b1, `else 1'b0, `endif `ifdef OPT_CIS 1'b1 `else 1'b0 `endif }; wire [31:0] w_pcA_v; assign w_pcA_v[(AW+1):0] = { (dcd_A[4] == dcd_gie) ? { dcd_pc[AW:1], 2'b00 } : { upc[(AW+1):2], uhalt_phase, 1'b0 } }; generate if (AW < 30) assign w_pcA_v[31:(AW+2)] = 0; endgenerate `ifdef OPT_PIPELINED reg [4:0] op_Aid, op_Bid; reg op_rA, op_rB; always @(posedge i_clk) if (op_ce) begin op_Aid <= dcd_A; op_Bid <= dcd_B; op_rA <= dcd_rA; op_rB <= dcd_rB; end `endif always @(posedge i_clk) `ifdef OPT_PIPELINED if (op_ce) `endif begin `ifdef OPT_PIPELINED if ((wr_reg_ce)&&(wr_reg_id == dcd_A)) r_op_Av <= wr_gpreg_vl; else `endif if (dcd_Apc) r_op_Av <= w_pcA_v; else if (dcd_Acc) r_op_Av <= { w_cpu_info, w_op_Av[22:16], 1'b0, (dcd_A[4])?w_uflags:w_iflags }; else r_op_Av <= w_op_Av; `ifdef OPT_PIPELINED end else begin // We were going to pick these up when they became valid, // but for some reason we're stuck here as they became // valid. Pick them up now anyway // if (((op_A_alu)&&(alu_wR))||((op_A_mem)&&(mem_valid))) // r_op_Av <= wr_gpreg_vl; if ((wr_reg_ce)&&(wr_reg_id == op_Aid)&&(op_rA)) r_op_Av <= wr_gpreg_vl; `endif end wire [31:0] w_op_BnI, w_pcB_v; assign w_pcB_v[(AW+1):0] = { (dcd_B[4] == dcd_gie) ? { dcd_pc[AW:1], 2'b00 } : { upc[(AW+1):2], uhalt_phase, 1'b0 } }; generate if (AW < 30) assign w_pcB_v[31:(AW+2)] = 0; endgenerate assign w_op_BnI = (!dcd_rB) ? 32'h00 `ifdef OPT_PIPELINED : ((wr_reg_ce)&&(wr_reg_id == dcd_B)) ? wr_gpreg_vl `endif : ((dcd_Bcc) ? { w_cpu_info, w_op_Bv[22:16], // w_op_B[31:14], 1'b0, (dcd_B[4])?w_uflags:w_iflags} : w_op_Bv); always @(posedge i_clk) `ifdef OPT_PIPELINED if ((op_ce)&&(dcd_Bpc)&&(dcd_rB)) r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 }; else if (op_ce) r_op_Bv <= w_op_BnI + dcd_I; else if ((wr_reg_ce)&&(op_Bid == wr_reg_id)&&(op_rB)) r_op_Bv <= wr_gpreg_vl; `else if ((dcd_Bpc)&&(dcd_rB)) r_op_Bv <= w_pcB_v + { dcd_I[29:0], 2'b00 }; else r_op_Bv <= w_op_BnI + dcd_I; `endif // The logic here has become more complex than it should be, no thanks // to Xilinx's Vivado trying to help. The conditions are supposed to // be two sets of four bits: the top bits specify what bits matter, the // bottom specify what those top bits must equal. However, two of // conditions check whether bits are on, and those are the only two // conditions checking those bits. Therefore, Vivado complains that // these two bits are redundant. Hence the convoluted expression // below, arriving at what we finally want in the (now wire net) // op_F. always @(posedge i_clk) `ifdef OPT_PIPELINED if (op_ce) // Cannot do op_change_data_ce here since op_F depends // upon being either correct for a valid op, or correct // for the last valid op `endif begin // Set the flag condition codes, bit order is [3:0]=VNCZ case(dcd_F[2:0]) 3'h0: r_op_F <= 7'h00; // Always 3'h1: r_op_F <= 7'h11; // Z 3'h2: r_op_F <= 7'h44; // LT 3'h3: r_op_F <= 7'h22; // C 3'h4: r_op_F <= 7'h08; // V 3'h5: r_op_F <= 7'h10; // NE 3'h6: r_op_F <= 7'h40; // GE (!N) 3'h7: r_op_F <= 7'h20; // NC endcase end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value } assign op_F = { r_op_F[3], r_op_F[6:0] }; wire w_op_valid; assign w_op_valid = (~clear_pipeline)&&(dcd_valid)&&(~dcd_ljmp)&&(!dcd_early_branch); initial op_valid = 1'b0; initial op_valid_alu = 1'b0; initial op_valid_mem = 1'b0; initial op_valid_div = 1'b0; initial op_valid_fpu = 1'b0; always @(posedge i_clk) if (clear_pipeline) begin op_valid <= 1'b0; op_valid_alu <= 1'b0; op_valid_mem <= 1'b0; op_valid_div <= 1'b0; op_valid_fpu <= 1'b0; end else if (op_ce) begin // Do we have a valid instruction? // The decoder may vote to stall one of its // instructions based upon something we currently // have in our queue. This instruction must then // move forward, and get a stall cycle inserted. // Hence, the test on dcd_stalled here. If we must // wait until our operands are valid, then we aren't // valid yet until then. op_valid<= (w_op_valid)||(dcd_illegal)&&(dcd_valid)||(dcd_early_branch); op_valid_alu <= (w_op_valid)&&((dcd_ALU)||(dcd_illegal) ||(dcd_early_branch)); op_valid_mem <= (dcd_M)&&(~dcd_illegal)&&(w_op_valid); op_valid_div <= (dcd_DIV)&&(~dcd_illegal)&&(w_op_valid); op_valid_fpu <= (dcd_FP)&&(~dcd_illegal)&&(w_op_valid); end else if ((adf_ce_unconditional)||(mem_ce)) begin op_valid <= 1'b0; op_valid_alu <= 1'b0; op_valid_mem <= 1'b0; op_valid_div <= 1'b0; op_valid_fpu <= 1'b0; end // Here's part of our debug interface. When we recognize a break // instruction, we set the op_break flag. That'll prevent this // instruction from entering the ALU, and cause an interrupt before // this instruction. Thus, returning to this code will cause the // break to repeat and continue upon return. To get out of this // condition, replace the break instruction with what it is supposed // to be, step through it, and then replace it back. In this fashion, // a debugger can step through code. // assign w_op_break = (dcd_break)&&(r_dcd_I[15:0] == 16'h0001); `ifdef OPT_PIPELINED reg r_op_break; initial r_op_break = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) r_op_break <= 1'b0; else if (op_ce) r_op_break <= (dcd_break); else if (!op_valid) r_op_break <= 1'b0; assign op_break = r_op_break; `else assign op_break = dcd_break; `endif `ifdef OPT_PIPELINED generate if (IMPLEMENT_LOCK != 0) begin reg r_op_lock; initial r_op_lock = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_op_lock <= 1'b0; else if (op_ce) r_op_lock <= (dcd_valid)&&(dcd_lock)&&(~clear_pipeline); assign op_lock = r_op_lock; end else begin assign op_lock = 1'b0; end endgenerate `else assign op_lock = 1'b0; `endif `ifdef OPT_ILLEGAL_INSTRUCTION initial op_illegal = 1'b0; always @(posedge i_clk) if (clear_pipeline) op_illegal <= 1'b0; else if(op_ce) `ifdef OPT_PIPELINED op_illegal <= (dcd_valid)&&((dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0))); `else op_illegal <= (dcd_valid)&&((dcd_illegal)||(dcd_lock)); `endif else if(alu_ce) op_illegal <= 1'b0; `endif // No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not // set, dcd_early_branch will simply be a wire connected to zero and // this logic should just optimize. `ifdef OPT_PIPELINED always @(posedge i_clk) if (op_ce) begin op_wF <= (dcd_wF)&&((~dcd_Rcc)||(~dcd_wR)) &&(~dcd_early_branch)&&(~dcd_illegal); op_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal); end `else always @(posedge i_clk) begin op_wF <= (dcd_wF)&&((~dcd_Rcc)||(~dcd_wR)) &&(~dcd_early_branch)&&(~dcd_illegal); op_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal); end `endif `ifdef VERILATOR `ifdef OPT_PIPELINED always @(posedge i_clk) if (op_change_data_ce) begin op_sim <= dcd_sim; op_sim_immv <= dcd_sim_immv; end `else always @(*) begin op_sim = dcd_sim; op_sim_immv = dcd_sim_immv; end `endif `endif `ifdef OPT_PIPELINED reg [3:0] r_op_opn; reg [4:0] r_op_R; reg r_op_Rcc; reg r_op_gie; always @(posedge i_clk) if (op_change_data_ce) begin // Which ALU operation? Early branches are // unimplemented moves r_op_opn <= (dcd_early_branch) ? 4'hf : dcd_opn; // opM <= dcd_M; // Is this a memory operation? // What register will these results be written into? r_op_R <= dcd_R; r_op_Rcc <= (dcd_Rcc)&&(dcd_wR)&&(dcd_R[4]==dcd_gie); // User level (1), vs supervisor (0)/interrupts disabled r_op_gie <= dcd_gie; // op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1]; end assign op_opn = r_op_opn; assign op_R = r_op_R; `ifdef OPT_NO_USERMODE assign op_gie = 1'b0; `else assign op_gie = r_op_gie; `endif assign op_Rcc = r_op_Rcc; `else assign op_opn = dcd_opn; assign op_R = dcd_R; `ifdef OPT_NO_USERMODE assign op_gie = 1'b0; `else assign op_gie = dcd_gie; `endif // With no pipelining, there is no early branching. We keep it always @(posedge i_clk) op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1]; `endif assign op_Fl = (op_gie)?(w_uflags):(w_iflags); `ifdef OPT_CIS reg r_op_phase; initial r_op_phase = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_op_phase <= 1'b0; else if (op_change_data_ce) r_op_phase <= (dcd_phase)&&((!dcd_wR)||(!dcd_Rpc)); assign op_phase = r_op_phase; `else assign op_phase = 1'b0; `endif // This is tricky. First, the PC and Flags registers aren't kept in // register set but in special registers of their own. So step one // is to select the right register. Step to is to replace that // register with the results of an ALU or memory operation, if such // results are now available. Otherwise, we'd need to insert a wait // state of some type. // // The alternative approach would be to define some sort of // op_stall wire, which would stall any upstream stage. // We'll create a flag here to start our coordination. Once we // define this flag to something other than just plain zero, then // the stalls will already be in place. `ifdef OPT_PIPELINED assign op_Av = ((wr_reg_ce)&&(wr_reg_id == op_Aid)) // &&(op_rA)) ? wr_gpreg_vl : r_op_Av; `else assign op_Av = r_op_Av; `endif `ifdef OPT_PIPELINED // Stall if we have decoded an instruction that will read register A // AND ... something that may write a register is running // AND (series of conditions here ...) // The operation might set flags, and we wish to read the // CC register // OR ... (No other conditions) assign dcd_A_stall = (dcd_rA) // &&(dcd_valid) is checked for elsewhere &&((op_valid)||(mem_rdbusy) ||(div_busy)||(fpu_busy)) &&(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Acc)) ||((dcd_rA)&&(dcd_Acc)&&(cc_invalid_for_dcd)); `else // There are no pipeline hazards, if we aren't pipelined assign dcd_A_stall = 1'b0; `endif `ifdef OPT_PIPELINED assign op_Bv = ((wr_reg_ce)&&(wr_reg_id == op_Bid)&&(op_rB)) ? wr_gpreg_vl: r_op_Bv; `else assign op_Bv = r_op_Bv; `endif `ifdef OPT_PIPELINED // Stall if we have decoded an instruction that will read register B // AND ... something that may write a (unknown) register is running // AND (series of conditions here ...) // The operation might set flags, and we wish to read the // CC register // OR the operation might set register B, and we still need // a clock to add the offset to it assign dcd_B_stall = (dcd_rB) // &&(dcd_valid) is checked for elsewhere // If the op stage isn't valid, yet something // is running, then it must have been valid. // We'll use the last values from that stage // (op_wR, op_wF, op_R) in our logic below. &&((op_valid)||(mem_rdbusy) ||(div_busy)||(fpu_busy)||(alu_busy)) &&( // Okay, what happens if the result register // from instruction 1 becomes the input for // instruction two, *and* there's an immediate // offset in instruction two? In that case, we // need an extra clock between the two // instructions to calculate the base plus // offset. // // What if instruction 1 (or before) is in a // memory pipeline? We may no longer know what // the register was! We will then need to // blindly wait. We'll temper this only waiting // if we're not piping this new instruction. // If we were piping, the pipe logic in the // decode circuit has told us that the hazard // is clear, so we're okay then. // ((~dcd_zI)&&( ((op_R == dcd_B)&&(op_wR)) ||((mem_rdbusy)&&(~dcd_pipe)) )) // Stall following any instruction that will // set the flags, if we're going to need the // flags (CC) register for op_B. ||(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Bcc)) // Stall on any ongoing memory operation that // will write to op_B -- captured above // ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcd_B)&&(~dcd_zI)) ) ||((dcd_rB)&&(dcd_Bcc)&&(cc_invalid_for_dcd)); assign dcd_F_stall = ((~dcd_F[3]) ||((dcd_rA)&&(dcd_Acc)) ||((dcd_rB)&&(dcd_Bcc))) &&(op_valid)&&(op_Rcc); // &&(dcd_valid) is checked for elsewhere `else // No stalls without pipelining, 'cause how can you have a pipeline // hazard without the pipeline? assign dcd_B_stall = 1'b0; assign dcd_F_stall = 1'b0; `endif // // // PIPELINE STAGE #4 :: Apply Instruction // // cpuops #(IMPLEMENT_MPY) doalu(i_clk, (clear_pipeline), alu_ce, op_opn, op_Av, op_Bv, alu_result, alu_flags, alu_valid, alu_busy); generate if (IMPLEMENT_DIVIDE != 0) begin div thedivide(i_clk, (clear_pipeline), div_ce, op_opn[0], op_Av, op_Bv, div_busy, div_valid, div_error, div_result, div_flags); end else begin assign div_error = 1'b0; // Can't be high unless div_valid assign div_busy = 1'b0; assign div_valid = 1'b0; assign div_result= 32'h00; assign div_flags = 4'h0; end endgenerate generate if (IMPLEMENT_FPU != 0) begin // // sfpu thefpu(i_clk, i_rst, fpu_ce, // op_Av, op_Bv, fpu_busy, fpu_valid, fpu_err, fpu_result, // fpu_flags); // assign fpu_error = 1'b0; // Must only be true if fpu_valid assign fpu_busy = 1'b0; assign fpu_valid = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end else begin assign fpu_error = 1'b0; assign fpu_busy = 1'b0; assign fpu_valid = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end endgenerate assign set_cond = ((op_F[7:4]&op_Fl[3:0])==op_F[3:0]); initial alu_wF = 1'b0; initial alu_wR = 1'b0; always @(posedge i_clk) if (i_rst) begin alu_wR <= 1'b0; alu_wF <= 1'b0; end else if (alu_ce) begin // alu_reg <= op_R; alu_wR <= (op_wR)&&(set_cond); alu_wF <= (op_wF)&&(set_cond); end else if (~alu_busy) begin // These are strobe signals, so clear them if not // set for any particular clock alu_wR <= (i_halt)&&(i_dbg_we); alu_wF <= 1'b0; end `ifdef OPT_CIS reg r_alu_phase; initial r_alu_phase = 1'b0; always @(posedge i_clk) if (i_rst) r_alu_phase <= 1'b0; else if ((adf_ce_unconditional)||(mem_ce)) r_alu_phase <= op_phase; assign alu_phase = r_alu_phase; `else assign alu_phase = 1'b0; `endif `ifdef OPT_PIPELINED always @(posedge i_clk) if (adf_ce_unconditional) alu_reg <= op_R; else if ((i_halt)&&(i_dbg_we)) alu_reg <= i_dbg_reg; `else always @(posedge i_clk) if ((i_halt)&&(i_dbg_we)) alu_reg <= i_dbg_reg; else alu_reg <= op_R; `endif // // DEBUG Register write access starts here // reg dbgv; initial dbgv = 1'b0; always @(posedge i_clk) dbgv <= (~i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted); reg [31:0] dbg_val; always @(posedge i_clk) dbg_val <= i_dbg_data; `ifdef OPT_NO_USERMODE assign alu_gie = 1'b0; `else `ifdef OPT_PIPELINED reg r_alu_gie; always @(posedge i_clk) if ((adf_ce_unconditional)||(mem_ce)) r_alu_gie <= op_gie; assign alu_gie = r_alu_gie; `else assign alu_gie = op_gie; `endif `endif `ifdef OPT_PIPELINED reg [(AW-1):0] r_alu_pc; always @(posedge i_clk) if ((adf_ce_unconditional) ||((master_ce)&&(op_valid_mem)&&(~clear_pipeline) &&(~mem_stalled))) r_alu_pc <= op_pc; assign alu_pc = r_alu_pc; `else assign alu_pc = op_pc; `endif reg r_alu_illegal; initial r_alu_illegal = 0; always @(posedge i_clk) if (clear_pipeline) r_alu_illegal <= 1'b0; else if (alu_ce) r_alu_illegal <= op_illegal; else r_alu_illegal <= 1'b0; assign alu_illegal = (r_alu_illegal); initial r_alu_pc_valid = 1'b0; initial mem_pc_valid = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_alu_pc_valid <= 1'b0; else if ((adf_ce_unconditional)&&(!op_phase)) //Includes&&(~alu_clear_pipeline) r_alu_pc_valid <= 1'b1; else if (((~alu_busy)&&(~div_busy)&&(~fpu_busy))||(clear_pipeline)) r_alu_pc_valid <= 1'b0; assign alu_pc_valid = (r_alu_pc_valid)&&((~alu_busy)&&(~div_busy)&&(~fpu_busy)); always @(posedge i_clk) if (i_rst) mem_pc_valid <= 1'b0; else mem_pc_valid <= (mem_ce); wire bus_lock; `ifdef OPT_PIPELINED generate if (IMPLEMENT_LOCK != 0) begin reg r_prelock_stall; initial r_prelock_stall = 1'b0; always @(posedge i_clk) if (clear_pipeline) r_prelock_stall <= 1'b0; else if ((op_valid)&&(op_lock)&&(op_ce)) r_prelock_stall <= 1'b1; else if ((op_valid)&&(dcd_valid)&&(pf_valid)) r_prelock_stall <= 1'b0; assign prelock_stall = r_prelock_stall; reg r_prelock_primed; always @(posedge i_clk) if (clear_pipeline) r_prelock_primed <= 1'b0; else if (r_prelock_stall) r_prelock_primed <= 1'b1; else if ((adf_ce_unconditional)||(mem_ce)) r_prelock_primed <= 1'b0; reg [1:0] r_bus_lock; initial r_bus_lock = 2'b00; always @(posedge i_clk) if (clear_pipeline) r_bus_lock <= 2'b00; else if ((op_valid)&&((adf_ce_unconditional)||(mem_ce))) begin if (r_prelock_primed) r_bus_lock <= 2'b10; else if (r_bus_lock != 2'h0) r_bus_lock <= r_bus_lock + 2'b11; end assign bus_lock = |r_bus_lock; end else begin assign prelock_stall = 1'b0; assign bus_lock = 1'b0; end endgenerate `else assign bus_lock = 1'b0; `endif `ifdef OPT_PIPELINED_BUS_ACCESS pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock, (op_opn[2:0]), op_Bv, op_Av, op_R, mem_busy, mem_pipe_stalled, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, i_wb_data); `else // PIPELINED_BUS_ACCESS memops #(AW,IMPLEMENT_LOCK,WITH_LOCAL_BUS) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock, (op_opn[2:0]), op_Bv, op_Av, op_R, mem_busy, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, i_wb_data); assign mem_pipe_stalled = 1'b0; `endif // PIPELINED_BUS_ACCESS assign mem_rdbusy = ((mem_busy)&&(~mem_we)); // Either the prefetch or the instruction gets the memory bus, but // never both. wbdblpriarb #(32,AW) pformem(i_clk, i_rst, // Memory access to the arbiter, priority position mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_sel, mem_ack, mem_stall, mem_err, // Prefetch access to the arbiter // // At a first glance, we might want something like: // // pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, 4'hf, // // However, we know that the prefetch will not generate any // writes. Therefore, the write specific lines (mem_data and // mem_sel) can be shared with the memory in order to ease // timing and LUT usage. pf_cyc,1'b0,pf_stb, 1'b0, pf_we, pf_addr, mem_data, mem_sel, pf_ack, pf_stall, pf_err, // Common wires, in and out, of the arbiter o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel, i_wb_ack, i_wb_stall, i_wb_err); // // // // // // // // // PIPELINE STAGE #5 :: Write-back results // // // This stage is not allowed to stall. If results are ready to be // written back, they are written back at all cost. Sleepy CPU's // won't prevent write back, nor debug modes, halting the CPU, nor // anything else. Indeed, the (master_ce) bit is only as relevant // as knowinig something is available for writeback. // // Write back to our generic register set ... // When shall we write back? On one of two conditions // Note that the flags needed to be checked before issuing the // bus instruction, so they don't need to be checked here. // Further, alu_wR includes (set_cond), so we don't need to // check for that here either. assign wr_reg_ce = (dbgv)||(mem_valid) ||((~clear_pipeline)&&(~alu_illegal) &&(((alu_wR)&&(alu_valid)) ||(div_valid)||(fpu_valid))); // Which register shall be written? // COULD SIMPLIFY THIS: by adding three bits to these registers, // One or PC, one for CC, and one for GIE match // Note that the alu_reg is the register to write on a divide or // FPU operation. `ifdef OPT_NO_USERMODE assign wr_reg_id[3:0] = (alu_wR|div_valid|fpu_valid) ? alu_reg[3:0]:mem_wreg[3:0]; assign wr_reg_id[4] = 1'b0; `else assign wr_reg_id = (alu_wR|div_valid|fpu_valid)?alu_reg:mem_wreg; `endif // Are we writing to the CC register? assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG); assign wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG}); assign wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG}); // Are we writing to the PC? assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); // What value to write? assign wr_gpreg_vl = ((mem_valid) ? mem_result :((div_valid|fpu_valid)) ? ((div_valid) ? div_result:fpu_result) :((dbgv) ? dbg_val : alu_result)); assign wr_spreg_vl = ((mem_valid) ? mem_result :((dbgv) ? dbg_val : alu_result)); always @(posedge i_clk) if (wr_reg_ce) `ifdef OPT_NO_USERMODE regset[wr_reg_id[3:0]] <= wr_gpreg_vl; `else regset[wr_reg_id] <= wr_gpreg_vl; `endif // // Write back to the condition codes/flags register ... // When shall we write to our flags register? alu_wF already // includes the set condition ... assign wr_flags_ce = ((alu_wF)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal); assign w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag, udiv_err_flag, ubus_err_flag, trap, ill_err_u, ubreak, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; assign w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag, idiv_err_flag, ibus_err_flag, trap, ill_err_i, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags }; // What value to write? always @(posedge i_clk) // If explicitly writing the register itself if ((wr_reg_ce)&&(wr_write_ucc)) flags <= wr_gpreg_vl[3:0]; // Otherwise if we're setting the flags from an ALU operation else if ((wr_flags_ce)&&(alu_gie)) flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags : alu_flags); always @(posedge i_clk) if ((wr_reg_ce)&&(wr_write_scc)) iflags <= wr_gpreg_vl[3:0]; else if ((wr_flags_ce)&&(~alu_gie)) iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags : alu_flags); // The 'break' enable bit. This bit can only be set from supervisor // mode. It control what the CPU does upon encountering a break // instruction. // // The goal, upon encountering a break is that the CPU should stop and // not execute the break instruction, choosing instead to enter into // either interrupt mode or halt first. // if ((break_en) AND (break_instruction)) // user mode or not // HALT CPU // else if (break_instruction) // only in user mode // set an interrupt flag, set the user break bit, // go to supervisor mode, allow supervisor to step the CPU. // Upon a CPU halt, any break condition will be reset. The // external debugger will then need to deal with whatever // condition has taken place. initial break_en = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_halt)) break_en <= 1'b0; else if ((wr_reg_ce)&&(wr_write_scc)) break_en <= wr_spreg_vl[`CPU_BREAK_BIT]; `ifdef OPT_PIPELINED reg r_break_pending; initial r_break_pending = 1'b0; always @(posedge i_clk) if ((clear_pipeline)||(~op_valid)) r_break_pending <= 1'b0; else if (op_break) r_break_pending <= (~alu_busy)&&(~div_busy)&&(~fpu_busy)&&(~mem_busy)&&(!wr_reg_ce); else r_break_pending <= 1'b0; assign break_pending = r_break_pending; `else assign break_pending = op_break; `endif assign o_break = ((break_en)||(~op_gie))&&(break_pending) &&(~clear_pipeline) ||((~alu_gie)&&(bus_err)) ||((~alu_gie)&&(div_error)) ||((~alu_gie)&&(fpu_error)) ||((~alu_gie)&&(alu_illegal)&&(!clear_pipeline)); // The sleep register. Setting the sleep register causes the CPU to // sleep until the next interrupt. Setting the sleep register within // interrupt mode causes the processor to halt until a reset. This is // a panic/fault halt. The trick is that you cannot be allowed to // set the sleep bit and switch to supervisor mode in the same // instruction: users are not allowed to halt the CPU. initial sleep = 1'b0; `ifdef OPT_NO_USERMODE reg r_sleep_is_halt; initial r_sleep_is_halt = 1'b0; always @(posedge i_clk) if (i_rst) r_sleep_is_halt <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc) &&(wr_spreg_vl[`CPU_SLEEP_BIT]) &&(~wr_spreg_vl[`CPU_GIE_BIT])) r_sleep_is_halt <= 1'b1; // Trying to switch to user mode, either via a WAIT or an RTU // instruction will cause the CPU to sleep until an interrupt, in // the NO-USERMODE build. always @(posedge i_clk) if ((i_rst)||((i_interrupt)&&(!r_sleep_is_halt))) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc) &&(wr_spreg_vl[`CPU_GIE_BIT])) sleep <= 1'b1; `else always @(posedge i_clk) if ((i_rst)||(w_switch_to_interrupt)) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie)) // In supervisor mode, we have no protections. The // supervisor can set the sleep bit however he wants. // Well ... not quite. Switching to user mode and // sleep mode shouold only be possible if the interrupt // flag isn't set. // Thus: if (i_interrupt)&&(wr_spreg_vl[GIE]) // don't set the sleep bit // otherwise however it would o.w. be set sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT]) &&((~i_interrupt)||(~wr_spreg_vl[`CPU_GIE_BIT])); else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT])) // In user mode, however, you can only set the sleep // mode while remaining in user mode. You can't switch // to sleep mode *and* supervisor mode at the same // time, lest you halt the CPU. sleep <= wr_spreg_vl[`CPU_SLEEP_BIT]; `endif always @(posedge i_clk) if (i_rst) step <= 1'b0; else if ((wr_reg_ce)&&(~alu_gie)&&(wr_write_ucc)) step <= wr_spreg_vl[`CPU_STEP_BIT]; // The GIE register. Only interrupts can disable the interrupt register `ifdef OPT_NO_USERMODE assign w_switch_to_interrupt = 1'b0; assign w_release_from_interrupt = 1'b0; `else assign w_switch_to_interrupt = (gie)&&( // On interrupt (obviously) ((i_interrupt)&&(~alu_phase)&&(~bus_lock)) // If we are stepping the CPU ||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(~alu_phase)&&(~bus_lock)) // If we encounter a break instruction, if the break // enable isn't set. ||((master_ce)&&(break_pending)&&(~break_en)) // On an illegal instruction ||((alu_illegal)&&(!clear_pipeline)) // On division by zero. If the divide isn't // implemented, div_valid and div_error will be short // circuited and that logic will be bypassed ||(div_error) // Same thing on a floating point error. Note that // fpu_error must *never* be set unless fpu_valid is // also set as well, else this will fail. ||(fpu_error) // ||(bus_err) // If we write to the CC register ||((wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ); assign w_release_from_interrupt = (~gie)&&(~i_interrupt) // Then if we write the sCC register &&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_write_scc)) ); `endif `ifdef OPT_NO_USERMODE assign gie = 1'b0; `else reg r_gie; initial r_gie = 1'b0; always @(posedge i_clk) if (i_rst) r_gie <= 1'b0; else if (w_switch_to_interrupt) r_gie <= 1'b0; else if (w_release_from_interrupt) r_gie <= 1'b1; assign gie = r_gie; `endif `ifdef OPT_NO_USERMODE assign trap = 1'b0; assign ubreak = 1'b0; `else reg r_trap; initial r_trap = 1'b0; always @(posedge i_clk) if ((i_rst)||(w_release_from_interrupt)) r_trap <= 1'b0; else if ((alu_gie)&&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT]) &&(wr_write_ucc)) // &&(wr_reg_id[4]) implied r_trap <= 1'b1; else if ((wr_reg_ce)&&(wr_write_ucc)&&(~alu_gie)) r_trap <= (r_trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]); reg r_ubreak; initial r_ubreak = 1'b0; always @(posedge i_clk) if ((i_rst)||(w_release_from_interrupt)) r_ubreak <= 1'b0; else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt)) r_ubreak <= 1'b1; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) r_ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]); assign trap = r_trap; assign ubreak = r_ubreak; `endif `ifdef OPT_ILLEGAL_INSTRUCTION initial ill_err_i = 1'b0; always @(posedge i_clk) if (i_rst) ill_err_i <= 1'b0; // Only the debug interface can clear this bit else if ((dbgv)&&(wr_write_scc)) ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]); else if ((alu_illegal)&&(~alu_gie)&&(!clear_pipeline)) ill_err_i <= 1'b1; `ifdef OPT_NO_USERMODE assign ill_err_u = 1'b0; `else reg r_ill_err_u; initial r_ill_err_u = 1'b0; always @(posedge i_clk) // The bit is automatically cleared on release from interrupt // or reset if ((i_rst)||(w_release_from_interrupt)) r_ill_err_u <= 1'b0; // If the supervisor (or debugger) writes to this register, // clearing the bit, then clear it else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) r_ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT])); else if ((alu_illegal)&&(alu_gie)&&(!clear_pipeline)) r_ill_err_u <= 1'b1; assign ill_err_u = r_ill_err_u; `endif `else assign ill_err_u = 1'b0; assign ill_err_i = 1'b0; `endif // Supervisor/interrupt bus error flag -- this will crash the CPU if // ever set. initial ibus_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) ibus_err_flag <= 1'b0; else if ((dbgv)&&(wr_write_scc)) ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]); else if ((bus_err)&&(~alu_gie)) ibus_err_flag <= 1'b1; // User bus error flag -- if ever set, it will cause an interrupt to // supervisor mode. `ifdef OPT_NO_USERMODE assign ubus_err_flag = 1'b0; `else reg r_ubus_err_flag; initial r_ubus_err_flag = 1'b0; always @(posedge i_clk) if ((i_rst)||(w_release_from_interrupt)) r_ubus_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) r_ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]); else if ((bus_err)&&(alu_gie)) r_ubus_err_flag <= 1'b1; assign ubus_err_flag = r_ubus_err_flag; `endif generate if (IMPLEMENT_DIVIDE != 0) begin reg r_idiv_err_flag, r_udiv_err_flag; // Supervisor/interrupt divide (by zero) error flag -- this will // crash the CPU if ever set. This bit is thus available for us // to be able to tell if/why the CPU crashed. initial r_idiv_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_idiv_err_flag <= 1'b0; else if ((dbgv)&&(wr_write_scc)) r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]); else if ((div_error)&&(~alu_gie)) r_idiv_err_flag <= 1'b1; assign idiv_err_flag = r_idiv_err_flag; `ifdef OPT_NO_USERMODE assign udiv_err_flag = 1'b0; `else // User divide (by zero) error flag -- if ever set, it will // cause a sudden switch interrupt to supervisor mode. initial r_udiv_err_flag = 1'b0; always @(posedge i_clk) if ((i_rst)||(w_release_from_interrupt)) r_udiv_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) &&(wr_write_ucc)) r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]); else if ((div_error)&&(alu_gie)) r_udiv_err_flag <= 1'b1; assign udiv_err_flag = r_udiv_err_flag; `endif end else begin assign idiv_err_flag = 1'b0; assign udiv_err_flag = 1'b0; end endgenerate generate if (IMPLEMENT_FPU !=0) begin // Supervisor/interrupt floating point error flag -- this will // crash the CPU if ever set. reg r_ifpu_err_flag, r_ufpu_err_flag; initial r_ifpu_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_ifpu_err_flag <= 1'b0; else if ((dbgv)&&(wr_write_scc)) r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]); else if ((fpu_error)&&(fpu_valid)&&(~alu_gie)) r_ifpu_err_flag <= 1'b1; // User floating point error flag -- if ever set, it will cause // a sudden switch interrupt to supervisor mode. initial r_ufpu_err_flag = 1'b0; always @(posedge i_clk) if ((i_rst)&&(w_release_from_interrupt)) r_ufpu_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) &&(wr_write_ucc)) r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]); else if ((fpu_error)&&(alu_gie)&&(fpu_valid)) r_ufpu_err_flag <= 1'b1; assign ifpu_err_flag = r_ifpu_err_flag; assign ufpu_err_flag = r_ufpu_err_flag; end else begin assign ifpu_err_flag = 1'b0; assign ufpu_err_flag = 1'b0; end endgenerate `ifdef OPT_CIS reg r_ihalt_phase; initial r_ihalt_phase = 0; always @(posedge i_clk) if (i_rst) r_ihalt_phase <= 1'b0; else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline)) r_ihalt_phase <= alu_phase; assign ihalt_phase = r_ihalt_phase; `ifdef OPT_NO_USERMODE assign uhalt_phase = 1'b0; `else reg r_uhalt_phase; initial r_uhalt_phase = 0; always @(posedge i_clk) if ((i_rst)||(w_release_from_interrupt)) r_uhalt_phase <= 1'b0; else if ((alu_gie)&&(alu_pc_valid)) r_uhalt_phase <= alu_phase; else if ((~alu_gie)&&(wr_reg_ce)&&(wr_write_ucc)) r_uhalt_phase <= wr_spreg_vl[`CPU_PHASE_BIT]; assign uhalt_phase = r_uhalt_phase; `endif `else assign ihalt_phase = 1'b0; assign uhalt_phase = 1'b0; `endif // // Write backs to the PC register, and general increments of it // We support two: upc and ipc. If the instruction is normal, // we increment upc, if interrupt level we increment ipc. If // the instruction writes the PC, we write whichever PC is appropriate. // // Do we need to all our partial results from the pipeline? // What happens when the pipeline has gie and ~gie instructions within // it? Do we clear both? What if a gie instruction tries to clear // a non-gie instruction? `ifdef OPT_NO_USERMODE assign upc = {(AW+2){1'b0}}; `else reg [(AW+1):0] r_upc; always @(posedge i_clk) if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc)) r_upc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; else if ((alu_gie)&& (((alu_pc_valid)&&(~clear_pipeline)&&(!alu_illegal)) ||(mem_pc_valid))) r_upc <= { alu_pc, 2'b00 }; assign upc = r_upc; `endif always @(posedge i_clk) if (i_rst) ipc <= { RESET_BUS_ADDRESS, 2'b00 }; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc)) ipc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; else if ((!alu_gie)&&(!alu_phase)&& (((alu_pc_valid)&&(~clear_pipeline)&&(!alu_illegal)) ||(mem_pc_valid))) ipc <= { alu_pc, 2'b00 }; always @(posedge i_clk) if (i_rst) pf_pc <= { RESET_BUS_ADDRESS, 2'b00 }; else if ((w_switch_to_interrupt)||((~gie)&&(w_clear_icache))) pf_pc <= { ipc[(AW+1):2], 2'b00 }; else if ((w_release_from_interrupt)||((gie)&&(w_clear_icache))) pf_pc <= { upc[(AW+1):2], 2'b00 }; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) pf_pc <= { wr_spreg_vl[(AW+1):2], 2'b00 }; `ifdef OPT_PIPELINED else if ((dcd_early_branch)&&(~clear_pipeline)) pf_pc <= { dcd_branch_pc + 1'b1, 2'b00 }; else if ((new_pc)||((!pf_stalled)&&(pf_valid))) pf_pc <= { pf_pc[(AW+1):2] + {{(AW-1){1'b0}},1'b1}, 2'b00 }; `else else if ((alu_gie==gie)&&( ((alu_pc_valid)&&(~clear_pipeline)) ||(mem_pc_valid))) pf_pc <= { alu_pc[(AW-1):0], 2'b00 }; `endif `ifdef OPT_PIPELINED reg r_clear_icache; initial r_clear_icache = 1'b1; always @(posedge i_clk) if ((i_rst)||(i_clear_pf_cache)) r_clear_icache <= 1'b1; else if ((wr_reg_ce)&&(wr_write_scc)) r_clear_icache <= wr_spreg_vl[`CPU_CLRCACHE_BIT]; else r_clear_icache <= 1'b0; assign w_clear_icache = r_clear_icache; `else assign w_clear_icache = i_clear_pf_cache; `endif initial new_pc = 1'b1; always @(posedge i_clk) if ((i_rst)||(w_clear_icache)) new_pc <= 1'b1; else if (w_switch_to_interrupt) new_pc <= 1'b1; else if (w_release_from_interrupt) new_pc <= 1'b1; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) new_pc <= 1'b1; else new_pc <= 1'b0; // // The debug interface wire [31:0] w_debug_pc; `ifdef OPT_NO_USERMODE assign w_debug_pc[(AW+1):0] = { ipc, 2'b00 }; `else assign w_debug_pc[(AW+1):0] = { (i_dbg_reg[4]) ? { upc[(AW+1):2], uhalt_phase, 1'b0 } : { ipc[(AW+1):2], ihalt_phase, 1'b0 } }; `endif generate if (AW<30) assign w_debug_pc[31:(AW+2)] = 0; endgenerate always @(posedge i_clk) begin `ifdef OPT_NO_USERMODE o_dbg_reg <= regset[i_dbg_reg[3:0]]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= w_debug_pc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= w_iflags; o_dbg_reg[15] <= 1'b0; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end `else o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= w_debug_pc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; o_dbg_reg[15] <= 1'b0; o_dbg_reg[31:23] <= w_cpu_info; o_dbg_reg[`CPU_GIE_BIT] <= gie; end `endif end always @(posedge i_clk) o_dbg_cc <= { o_break, bus_err, gie, sleep }; `ifdef OPT_PIPELINED always @(posedge i_clk) r_halted <= (i_halt)&&( // To be halted, any long lasting instruction must // be completed. (~pf_cyc)&&(~mem_busy)&&(~alu_busy) &&(~div_busy)&&(~fpu_busy) // Operations must either be valid, or illegal &&((op_valid)||(i_rst)||(dcd_illegal)) // Decode stage must be either valid, in reset, or ill &&((dcd_valid)||(i_rst)||(pf_illegal))); `else always @(posedge i_clk) r_halted <= (i_halt)&&((op_valid)||(i_rst)); `endif assign o_dbg_stall = ~r_halted; // // // Produce accounting outputs: Account for any CPU stalls, so we can // later evaluate how well we are doing. // // assign o_op_stall = (master_ce)&&(op_stall); assign o_pf_stall = (master_ce)&&(~pf_valid); assign o_i_count = (alu_pc_valid)&&(~clear_pipeline); `ifdef DEBUG_SCOPE always @(posedge i_clk) o_debug <= { /* o_break, i_wb_err, pf_pc[1:0], flags, pf_valid, dcd_valid, op_valid, alu_valid, mem_valid, op_ce, alu_ce, mem_ce, // master_ce, op_valid_alu, op_valid_mem, // alu_stall, mem_busy, op_pipe, mem_pipe_stalled, mem_we, // ((op_valid_alu)&&(alu_stall)) // ||((op_valid_mem)&&(~op_pipe)&&(mem_busy)) // ||((op_valid_mem)&&( op_pipe)&&(mem_pipe_stalled))); // op_Av[23:20], op_Av[3:0], gie, sleep, wr_reg_ce, wr_gpreg_vl[4:0] */ /* i_rst, master_ce, (new_pc), ((dcd_early_branch)&&(dcd_valid)), pf_valid, pf_illegal, op_ce, dcd_ce, dcd_valid, dcd_stalled, pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err, pf_pc[7:0], pf_addr[7:0] */ i_wb_err, gie, alu_illegal, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)), mem_busy, (mem_busy)?{ (o_wb_gbl_stb|o_wb_lcl_stb), o_wb_we, o_wb_addr[8:0] } : { pf_instruction[31:21] }, pf_valid, (pf_valid) ? alu_pc[14:0] :{ pf_cyc, pf_stb, pf_pc[14:2] } /* i_wb_err, gie, new_pc, dcd_early_branch, // 4 pf_valid, pf_cyc, pf_stb, pf_instruction_pc[0], // 4 pf_instruction[30:27], // 4 dcd_gie, mem_busy, o_wb_gbl_cyc, o_wb_gbl_stb, // 4 dcd_valid, ((dcd_early_branch)&&(~clear_pipeline)) // 15 ? dcd_branch_pc[14:0]:pf_pc[14:0] */ }; `endif endmodule
Go to most recent revision | Compare with Previous | Blame | View Log