URL
https://opencores.org/ocsvn/s80186/s80186/trunk
Subversion Repositories s80186
[/] [s80186/] [trunk/] [rtl/] [microcode/] [Microcode.sv.templ] - Rev 2
Compare with Previous | Blame | View Log
// Copyright Jamie Iles, 2017
//
// This file is part of s80x86.
//
// s80x86 is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// s80x86 is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with s80x86. If not, see <http://www.gnu.org/licenses/>.
// vi: ft=systemverilog
`ifndef MICROCODE_ROM_PATH
`define MICROCODE_ROM_PATH "."
`endif
module Microcode(input logic clk,
input logic reset,
input logic nmi_pulse,
input logic intr,
output logic inta,
output logic irq_to_mdr,
output logic start_interrupt,
output logic do_escape_fault,
input logic stall,
input logic divide_error,
input logic rm_is_reg,
input logic [2:0] modrm_reg,
input logic int_enabled,
input logic zf,
input logic tf,
output logic [15:0] microcode_immediate,
output logic [8:0] update_flags,
output logic use_microcode_immediate,
output logic segment_override,
output logic [7:0] opcode,
input logic jump_taken,
input logic rb_zero,
output logic lock,
output logic multibit_shift,
output logic is_hlt,
output logic next_microinstruction,
// Microinstruction fields.
<%#exported_fields%>
output logic <%type%><%name%>,
<%/exported_fields%>
output logic width,
output logic reg_wr_en,
// Fifo Read Port.
output logic fifo_rd_en,
input logic [7:0] fifo_rd_data,
input logic fifo_empty,
input logic fifo_resetting,
output logic loop_next,
input logic loop_done,
// Debug
output logic debug_stopped,
input logic debug_seize,
input logic [7:0] debug_addr,
input logic debug_run);
localparam num_instructions = <%num_instructions%>;
localparam addr_bits = <%addr_bits%>;
localparam reset_address = <%addr_bits%>'h129;
localparam nmi_address = <%addr_bits%>'h12a;
localparam irq_address = <%addr_bits%>'h12b;
localparam single_step_address = <%addr_bits%>'h12c;
localparam divide_error_address = <%addr_bits%>'h101;
localparam next_instruction_address = <%addr_bits%>'h100;
localparam debug_wait_address = <%addr_bits%>'h102;
localparam do_int_address = <%addr_bits%>'h12d;
typedef struct packed {
<%#fields%>
logic <%type%><%name%>;
<%/fields%>
} microcode_instruction;
microcode_instruction mem[num_instructions] /* synthesis ram_init_file = "microcode.mif" */;
microcode_instruction current;
reg [addr_bits-1:0] addr;
wire [addr_bits-1:0] next_addr;
assign segment_override = current.prefix_type == PrefixType_SEGMENT_OVERRIDE;
assign use_microcode_immediate = |current.immediate;
always_comb begin
case (current.immediate)
<%#immediates%>
<%idx%>: microcode_immediate = 16'h<%val%>;
<%/immediates%>
default: microcode_immediate = 16'h0;
endcase
end
always_comb begin
case (current.update_flags)
<%#flags%>
<%idx%>: update_flags = 9'h<%val%>;
<%/flags%>
default: update_flags = 9'h0;
endcase
end
<%#exported_fields%>
assign <%name%> = current.<%name%>;
<%/exported_fields%>
assign fifo_rd_en = !stall && next_addr == {{addr_bits-8{1'b0}}, fifo_rd_data};
reg [1:0] rep_prefix_type;
wire has_rep_prefix = (rep_prefix_type == PrefixType_REPE ||
rep_prefix_type == PrefixType_REPNE);
reg rep_complete;
assign debug_stopped = addr == debug_wait_address;
assign multibit_shift = opcode == 8'hd2 ||
opcode == 8'hd3 ||
opcode == 8'hc0 ||
opcode == 8'hc1;
assign do_escape_fault = opcode[7:3] == 5'b11011 && next_addr == do_int_address;
reg nmi_pending;
reg ext_int_inhibit;
wire take_nmi = (nmi_pending | nmi_pulse) & !ext_int_inhibit;
wire take_irq = intr & int_enabled & !ext_int_inhibit;
wire do_single_step = current.next_instruction & !ext_int_inhibit &
(trap_flag_set | (start_instruction & tf)) &
current.next != debug_wait_address;
assign start_interrupt = next_addr == nmi_address ||
next_addr == irq_address;
assign irq_to_mdr = next_addr == irq_address;
reg trap_flag_set;
assign is_hlt = opcode == 8'hf4;
reg seized;
wire seizing = debug_seize & ~seized;
reg start_instruction;
assign loop_next = !stall && current.jump_type == JumpType_LOOP_DONE;
assign reg_wr_en = current.rd_sel_source != RDSelSource_NONE & ~segment_wr_en;
assign next_microinstruction = addr != next_addr;
always_comb begin
case (current.width)
WidthType_W8: width = 1'b1;
WidthType_W16: width = 1'b0;
WidthType_WAUTO: width = ~opcode[0];
default: width = 1'b0;
endcase
end
always_ff @(posedge clk)
inta <= next_addr == irq_address && addr != irq_address;
always_ff @(posedge clk or posedge reset)
if (reset)
start_instruction <= 1'b0;
else
start_instruction <= fifo_rd_en;
always_ff @(posedge clk or posedge reset)
if (reset)
trap_flag_set <= 1'b0;
else if (next_addr == single_step_address)
trap_flag_set <= 1'b0;
else if (start_instruction)
trap_flag_set <= tf;
always_ff @(posedge clk or posedge reset)
if (reset)
ext_int_inhibit <= 1'b0;
else if (current.ext_int_inhibit && current.next != debug_wait_address)
ext_int_inhibit <= 1'b1;
else if (fifo_rd_en && !stall)
ext_int_inhibit <= 1'b0;
`ifdef verilator
initial $readmemb({{`MICROCODE_ROM_PATH, "/microcode.bin"}}, mem);
`endif
always_comb begin
case (rep_prefix_type)
PrefixType_REPE: rep_complete = ~zf;
PrefixType_REPNE: rep_complete = zf;
default: rep_complete = 1'b0;
endcase
end
always_ff @(posedge clk or posedge reset)
if (reset)
nmi_pending <= 1'b0;
else if (next_addr == nmi_address)
nmi_pending <= 1'b0;
else if (nmi_pulse)
nmi_pending <= 1'b1;
always_ff @(posedge clk or posedge reset)
if (reset)
opcode <= 8'b0;
else if (fifo_rd_en)
opcode <= fifo_rd_data;
always_ff @(posedge clk or posedge reset)
if (reset)
rep_prefix_type <= 2'b0;
else if (next_instruction)
rep_prefix_type <= 2'b0;
else if (current.prefix_type == PrefixType_REPNE ||
current.prefix_type == PrefixType_REPE)
rep_prefix_type <= current.prefix_type;
always_ff @(posedge clk or posedge reset)
if (reset)
seized <= 1'b0;
else if (debug_stopped)
seized <= 1'b1;
else if (!debug_seize)
seized <= 1'b0;
always_comb begin
if (reset)
next_addr = reset_address;
else if (stall)
next_addr = addr;
else if (debug_stopped && debug_run)
next_addr = {{addr_bits - 9{1'b0}}, 1'b1, debug_addr};
else if (current.ext_int_yield && seizing)
next_addr = debug_wait_address;
else if (current.ext_int_yield && take_nmi)
next_addr = nmi_address;
else if (current.ext_int_yield && take_irq)
next_addr = irq_address;
else if (current.jump_type == JumpType_JUMP_TAKEN)
next_addr = jump_taken ? current.next : addr + 1'b1;
else if (current.jump_type == JumpType_ZERO)
next_addr = zf ? current.next : addr + 1'b1;
else if (current.jump_type == JumpType_HAS_NO_REP_PREFIX)
next_addr = ~has_rep_prefix ? current.next : addr + 1'b1;
else if (current.jump_type == JumpType_REP_NOT_COMPLETE)
next_addr = !rep_complete ? current.next : addr + 1'b1;
else if (current.jump_type == JumpType_DISPATCH_REG)
next_addr = current.next + {{addr_bits-3{1'b0}}, modrm_reg};
else if (current.jump_type == JumpType_RM_REG_MEM)
next_addr = current.next + {{addr_bits-1{1'b0}}, ~rm_is_reg};
else if (current.jump_type == JumpType_OPCODE)
next_addr = !fifo_empty ? {{addr_bits-8{1'b0}}, fifo_rd_data} : addr;
else if (current.jump_type == JumpType_RB_ZERO)
next_addr = rb_zero ? current.next : addr + 1'b1;
else if (current.jump_type == JumpType_LOOP_DONE)
next_addr = loop_done ? current.next : addr + 1'b1;
else if (divide_error)
next_addr = divide_error_address;
else if (current.next_instruction && take_nmi)
next_addr = nmi_address;
else if (current.next_instruction && take_irq)
next_addr = irq_address;
else if (current.next_instruction && do_single_step)
next_addr = single_step_address;
else if (current.next_instruction && debug_seize)
next_addr = debug_wait_address;
else if (current.next_instruction)
next_addr = !fifo_empty && !fifo_resetting ?
{{addr_bits-8{1'b0}}, fifo_rd_data} : next_instruction_address;
else
next_addr = current.next;
end
always @(posedge clk)
addr <= next_addr;
always @(posedge clk)
current <= mem[next_addr];
always_ff @(posedge clk or posedge reset)
if (reset)
lock <= 1'b0;
else if (!stall && current.next_instruction)
lock <= 1'b0;
else if (opcode == 8'hf0)
lock <= 1'b1;
`ifdef verilator
export "DPI-C" function get_microcode_address;
function [addr_bits-1:0] get_microcode_address;
get_microcode_address = addr;
endfunction
export "DPI-C" function get_ext_int_yield;
function logic get_ext_int_yield;
get_ext_int_yield = current.ext_int_yield;
endfunction
int microcode_coverage[num_instructions];
always_ff @(posedge clk)
microcode_coverage[addr] <= microcode_coverage[addr] + 1;
export "DPI-C" function get_microcode_num_instructions;
function int get_microcode_num_instructions;
get_microcode_num_instructions = num_instructions;
endfunction
export "DPI-C" function get_microcode_coverage_bin;
function int get_microcode_coverage_bin;
input int bin;
get_microcode_coverage_bin = microcode_coverage[bin];
endfunction
`endif
endmodule