OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-binutils/] [binutils-2.19.1/] [gold/] [sparc.cc] - Rev 6

Compare with Previous | Blame | View Log

// sparc.cc -- sparc target support for gold.
 
// Copyright 2008 Free Software Foundation, Inc.
// Written by David S. Miller <davem@davemloft.net>.
 
// This file is part of gold.
 
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
 
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
 
#include "gold.h"
 
#include <cstdlib>
#include <cstdio>
#include <cstring>
 
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "sparc.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
 
namespace
{
 
using namespace gold;
 
template<int size, bool big_endian>
class Output_data_plt_sparc;
 
template<int size, bool big_endian>
class Target_sparc : public Sized_target<size, big_endian>
{
 public:
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
 
  Target_sparc()
    : Sized_target<size, big_endian>(&sparc_info),
      got_(NULL), plt_(NULL), rela_dyn_(NULL),
      copy_relocs_(elfcpp::R_SPARC_COPY), dynbss_(NULL),
      got_mod_index_offset_(-1U), tls_get_addr_sym_(NULL)
  {
  }
 
  // Scan the relocations to look for symbol adjustments.
  void
  scan_relocs(const General_options& options,
	      Symbol_table* symtab,
	      Layout* layout,
	      Sized_relobj<size, big_endian>* object,
	      unsigned int data_shndx,
	      unsigned int sh_type,
	      const unsigned char* prelocs,
	      size_t reloc_count,
	      Output_section* output_section,
	      bool needs_special_offset_handling,
	      size_t local_symbol_count,
	      const unsigned char* plocal_symbols);
  // Finalize the sections.
  void
  do_finalize_sections(Layout*);
 
  // Return the value to use for a dynamic which requires special
  // treatment.
  uint64_t
  do_dynsym_value(const Symbol*) const;
 
  // Relocate a section.
  void
  relocate_section(const Relocate_info<size, big_endian>*,
		   unsigned int sh_type,
		   const unsigned char* prelocs,
		   size_t reloc_count,
		   Output_section* output_section,
		   bool needs_special_offset_handling,
		   unsigned char* view,
		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
		   section_size_type view_size);
 
  // Scan the relocs during a relocatable link.
  void
  scan_relocatable_relocs(const General_options& options,
			  Symbol_table* symtab,
			  Layout* layout,
			  Sized_relobj<size, big_endian>* object,
			  unsigned int data_shndx,
			  unsigned int sh_type,
			  const unsigned char* prelocs,
			  size_t reloc_count,
			  Output_section* output_section,
			  bool needs_special_offset_handling,
			  size_t local_symbol_count,
			  const unsigned char* plocal_symbols,
			  Relocatable_relocs*);
 
  // Relocate a section during a relocatable link.
  void
  relocate_for_relocatable(const Relocate_info<size, big_endian>*,
			   unsigned int sh_type,
			   const unsigned char* prelocs,
			   size_t reloc_count,
			   Output_section* output_section,
			   off_t offset_in_output_section,
			   const Relocatable_relocs*,
			   unsigned char* view,
			   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
			   section_size_type view_size,
			   unsigned char* reloc_view,
			   section_size_type reloc_view_size);
  // Return whether SYM is defined by the ABI.
  bool
  do_is_defined_by_abi(Symbol* sym) const
  {
    // XXX Really need to support this better...
    if (sym->type() == elfcpp::STT_SPARC_REGISTER)
      return 1;
 
    return strcmp(sym->name(), "___tls_get_addr") == 0;
  }
 
  // Return the size of the GOT section.
  section_size_type
  got_size()
  {
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
  }
 
 private:
 
  // The class which scans relocations.
  class Scan
  {
  public:
    Scan()
      : issued_non_pic_error_(false)
    { }
 
    inline void
    local(const General_options& options, Symbol_table* symtab,
	  Layout* layout, Target_sparc* target,
	  Sized_relobj<size, big_endian>* object,
	  unsigned int data_shndx,
	  Output_section* output_section,
	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
	  const elfcpp::Sym<size, big_endian>& lsym);
 
    inline void
    global(const General_options& options, Symbol_table* symtab,
	   Layout* layout, Target_sparc* target,
	   Sized_relobj<size, big_endian>* object,
	   unsigned int data_shndx,
	   Output_section* output_section,
	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
	   Symbol* gsym);
 
  private:
    static void
    unsupported_reloc_local(Sized_relobj<size, big_endian>*,
			    unsigned int r_type);
 
    static void
    unsupported_reloc_global(Sized_relobj<size, big_endian>*,
			     unsigned int r_type, Symbol*);
 
    static void
    generate_tls_call(Symbol_table* symtab, Layout* layout,
		      Target_sparc* target);
 
    void
    check_non_pic(Relobj*, unsigned int r_type);
 
    // Whether we have issued an error about a non-PIC compilation.
    bool issued_non_pic_error_;
  };
 
  // The class which implements relocation.
  class Relocate
  {
   public:
    Relocate()
      : ignore_gd_add_(false)
    { }
 
    ~Relocate()
    {
      if (this->ignore_gd_add_)
	{
	  // FIXME: This needs to specify the location somehow.
	  gold_error(_("missing expected TLS relocation"));
	}
    }
 
    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    inline bool
    relocate(const Relocate_info<size, big_endian>*, Target_sparc*,
	     size_t relnum, const elfcpp::Rela<size, big_endian>&,
	     unsigned int r_type, const Sized_symbol<size>*,
	     const Symbol_value<size>*,
	     unsigned char*,
	     typename elfcpp::Elf_types<size>::Elf_Addr,
	     section_size_type);
 
   private:
    // Do a TLS relocation.
    inline void
    relocate_tls(const Relocate_info<size, big_endian>*, Target_sparc* target,
                 size_t relnum, const elfcpp::Rela<size, big_endian>&,
		 unsigned int r_type, const Sized_symbol<size>*,
		 const Symbol_value<size>*,
		 unsigned char*,
		 typename elfcpp::Elf_types<size>::Elf_Addr,
		 section_size_type);
 
    // Ignore the next relocation which should be R_SPARC_TLS_GD_ADD
    bool ignore_gd_add_;
  };
 
  // A class which returns the size required for a relocation type,
  // used while scanning relocs during a relocatable link.
  class Relocatable_size_for_reloc
  {
   public:
    unsigned int
    get_size_for_reloc(unsigned int, Relobj*);
  };
 
  // Get the GOT section, creating it if necessary.
  Output_data_got<size, big_endian>*
  got_section(Symbol_table*, Layout*);
 
  // Create a PLT entry for a global symbol.
  void
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
 
  // Create a GOT entry for the TLS module index.
  unsigned int
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
		      Sized_relobj<size, big_endian>* object);
 
  // Return the gsym for "__tls_get_addr".  Cache if not already
  // cached.
  Symbol*
  tls_get_addr_sym(Symbol_table* symtab)
  {
    if (!this->tls_get_addr_sym_)
      this->tls_get_addr_sym_ = symtab->lookup("__tls_get_addr", NULL);
    gold_assert(this->tls_get_addr_sym_);
    return this->tls_get_addr_sym_;
  }
 
  // Get the PLT section.
  const Output_data_plt_sparc<size, big_endian>*
  plt_section() const
  {
    gold_assert(this->plt_ != NULL);
    return this->plt_;
  }
 
  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  rela_dyn_section(Layout*);
 
  // Return true if the symbol may need a COPY relocation.
  // References from an executable object to non-function symbols
  // defined in a dynamic object may need a COPY relocation.
  bool
  may_need_copy_reloc(Symbol* gsym)
  {
    return (!parameters->options().shared()
            && gsym->is_from_dynobj()
            && gsym->type() != elfcpp::STT_FUNC);
  }
 
  // Copy a relocation against a global symbol.
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
             Sized_relobj<size, big_endian>* object,
	     unsigned int shndx, Output_section* output_section,
	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
  {
    this->copy_relocs_.copy_reloc(symtab, layout,
				  symtab->get_sized_symbol<size>(sym),
				  object, shndx, output_section,
				  reloc, this->rela_dyn_section(layout));
  }
 
  // Information about this specific target which we pass to the
  // general Target structure.
  static Target::Target_info sparc_info;
 
  // The types of GOT entries needed for this platform.
  enum Got_type
  {
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
  };
 
  // The GOT section.
  Output_data_got<size, big_endian>* got_;
  // The PLT section.
  Output_data_plt_sparc<size, big_endian>* plt_;
  // The dynamic reloc section.
  Reloc_section* rela_dyn_;
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
  // Space for variables copied with a COPY reloc.
  Output_data_space* dynbss_;
  // Offset of the GOT entry for the TLS module index;
  unsigned int got_mod_index_offset_;
  // Cached pointer to __tls_get_addr symbol
  Symbol* tls_get_addr_sym_;
};
 
template<>
Target::Target_info Target_sparc<32, true>::sparc_info =
{
  32,			// size
  true,			// is_big_endian
  elfcpp::EM_SPARC,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  false,		// has_code_fill
  true,			// is_default_stack_executable
  '\0',			// wrap_char
  "/usr/lib/ld.so.1",	// dynamic_linker
  0x00010000,		// default_text_segment_address
  64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
  8 * 1024		// common_pagesize (overridable by -z common-page-size)
};
 
template<>
Target::Target_info Target_sparc<64, true>::sparc_info =
{
  64,			// size
  true,			// is_big_endian
  elfcpp::EM_SPARCV9,	// machine_code
  false,		// has_make_symbol
  false,		// has_resolve
  false,		// has_code_fill
  true,			// is_default_stack_executable
  '\0',			// wrap_char
  "/usr/lib/sparcv9/ld.so.1",	// dynamic_linker
  0x100000,		// default_text_segment_address
  64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
  8 * 1024		// common_pagesize (overridable by -z common-page-size)
};
 
// We have to take care here, even when operating in little-endian
// mode, sparc instructions are still big endian.
template<int size, bool big_endian>
class Sparc_relocate_functions
{
private:
  // Do a simple relocation with the addend in the relocation.
  template<int valsize>
  static inline void
  rela(unsigned char* view,
       unsigned int right_shift,
       typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
       typename elfcpp::Swap<size, big_endian>::Valtype value,
       typename elfcpp::Swap<size, big_endian>::Valtype addend)
  {
    typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
    Valtype reloc = ((value + addend) >> right_shift);
 
    val &= ~dst_mask;
    reloc &= dst_mask;
 
    elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
  }
 
  // Do a simple relocation using a symbol value with the addend in
  // the relocation.
  template<int valsize>
  static inline void
  rela(unsigned char* view,
       unsigned int right_shift,
       typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Swap<valsize, big_endian>::Valtype addend)
  {
    typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
    Valtype reloc = (psymval->value(object, addend) >> right_shift);
 
    val &= ~dst_mask;
    reloc &= dst_mask;
 
    elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
  }
 
  // Do a simple relocation using a symbol value with the addend in
  // the relocation, unaligned.
  template<int valsize>
  static inline void
  rela_ua(unsigned char* view,
	  unsigned int right_shift, elfcpp::Elf_Xword dst_mask,
	  const Sized_relobj<size, big_endian>* object,
	  const Symbol_value<size>* psymval,
	  typename elfcpp::Swap<size, big_endian>::Valtype addend)
  {
    typedef typename elfcpp::Swap_unaligned<valsize,
	    big_endian>::Valtype Valtype;
    unsigned char* wv = view;
    Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
    Valtype reloc = (psymval->value(object, addend) >> right_shift);
 
    val &= ~dst_mask;
    reloc &= dst_mask;
 
    elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, val | reloc);
  }
 
  // Do a simple PC relative relocation with a Symbol_value with the
  // addend in the relocation.
  template<int valsize>
  static inline void
  pcrela(unsigned char* view,
	 unsigned int right_shift,
	 typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
	 const Sized_relobj<size, big_endian>* object,
	 const Symbol_value<size>* psymval,
	 typename elfcpp::Swap<size, big_endian>::Valtype addend,
	 typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
    Valtype reloc = ((psymval->value(object, addend) - address)
		     >> right_shift);
 
    val &= ~dst_mask;
    reloc &= dst_mask;
 
    elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
  }
 
  template<int valsize>
  static inline void
  pcrela_unaligned(unsigned char* view,
		   const Sized_relobj<size, big_endian>* object,
		   const Symbol_value<size>* psymval,
		   typename elfcpp::Swap<size, big_endian>::Valtype addend,
		   typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    typedef typename elfcpp::Swap_unaligned<valsize,
	    big_endian>::Valtype Valtype;
    unsigned char* wv = view;
    Valtype reloc = (psymval->value(object, addend) - address);
 
    elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, reloc);
  }
 
  typedef Sparc_relocate_functions<size, big_endian> This;
  typedef Sparc_relocate_functions<size, true> This_insn;
 
public:
  // R_SPARC_WDISP30: (Symbol + Addend - Address) >> 2
  static inline void
  wdisp30(unsigned char* view,
	   const Sized_relobj<size, big_endian>* object,
	   const Symbol_value<size>* psymval,
	   typename elfcpp::Elf_types<size>::Elf_Addr addend,
	   typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 2, 0x3fffffff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_WDISP22: (Symbol + Addend - Address) >> 2
  static inline void
  wdisp22(unsigned char* view,
	   const Sized_relobj<size, big_endian>* object,
	   const Symbol_value<size>* psymval,
	   typename elfcpp::Elf_types<size>::Elf_Addr addend,
	   typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 2, 0x003fffff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_WDISP19: (Symbol + Addend - Address) >> 2
  static inline void
  wdisp19(unsigned char* view,
	  const Sized_relobj<size, big_endian>* object,
	  const Symbol_value<size>* psymval,
	  typename elfcpp::Elf_types<size>::Elf_Addr addend,
	  typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 2, 0x0007ffff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_WDISP16: (Symbol + Addend - Address) >> 2
  static inline void
  wdisp16(unsigned char* view,
	  const Sized_relobj<size, big_endian>* object,
	  const Symbol_value<size>* psymval,
	  typename elfcpp::Elf_types<size>::Elf_Addr addend,
	  typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = ((psymval->value(object, addend) - address)
		     >> 2);
 
    // The relocation value is split between the low 14 bits,
    // and bits 20-21.
    val &= ~((0x3 << 20) | 0x3fff);
    reloc = (((reloc & 0xc000) << (20 - 14))
	     | (reloc & 0x3ffff));
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
 
  // R_SPARC_PC22: (Symbol + Addend - Address) >> 10
  static inline void
  pc22(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend,
       typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 10, 0x003fffff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_PC10: (Symbol + Addend - Address) & 0x3ff
  static inline void
  pc10(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend,
       typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 0, 0x000003ff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_HI22: (Symbol + Addend) >> 10
  static inline void
  hi22(unsigned char* view,
       typename elfcpp::Elf_types<size>::Elf_Addr value,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 10, 0x003fffff, value, addend);
  }
 
  // R_SPARC_HI22: (Symbol + Addend) >> 10
  static inline void
  hi22(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 10, 0x003fffff, object, psymval, addend);
  }
 
  // R_SPARC_PCPLT22: (Symbol + Addend - Address) >> 10
  static inline void
  pcplt22(unsigned char* view,
	  const Sized_relobj<size, big_endian>* object,
	  const Symbol_value<size>* psymval,
	  typename elfcpp::Elf_types<size>::Elf_Addr addend,
	  typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 10, 0x003fffff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_LO10: (Symbol + Addend) & 0x3ff
  static inline void
  lo10(unsigned char* view,
       typename elfcpp::Elf_types<size>::Elf_Addr value,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x000003ff, value, addend);
  }
 
  // R_SPARC_LO10: (Symbol + Addend) & 0x3ff
  static inline void
  lo10(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend);
  }
 
  // R_SPARC_LO10: (Symbol + Addend) & 0x3ff
  static inline void
  lo10(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend,
       typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 0, 0x000003ff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_OLO10: ((Symbol + Addend) & 0x3ff) + Addend2
  static inline void
  olo10(unsigned char* view,
	const Sized_relobj<size, big_endian>* object,
	const Symbol_value<size>* psymval,
	typename elfcpp::Elf_types<size>::Elf_Addr addend,
	typename elfcpp::Elf_types<size>::Elf_Addr addend2)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = psymval->value(object, addend);
 
    val &= ~0x1fff;
    reloc &= 0x3ff;
    reloc += addend2;
    reloc &= 0x1fff;
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
 
  // R_SPARC_22: (Symbol + Addend)
  static inline void
  rela32_22(unsigned char* view,
	    const Sized_relobj<size, big_endian>* object,
	    const Symbol_value<size>* psymval,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x003fffff, object, psymval, addend);
  }
 
  // R_SPARC_13: (Symbol + Addend)
  static inline void
  rela32_13(unsigned char* view,
	    typename elfcpp::Elf_types<size>::Elf_Addr value,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x00001fff, value, addend);
  }
 
  // R_SPARC_13: (Symbol + Addend)
  static inline void
  rela32_13(unsigned char* view,
	    const Sized_relobj<size, big_endian>* object,
	    const Symbol_value<size>* psymval,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x00001fff, object, psymval, addend);
  }
 
  // R_SPARC_UA16: (Symbol + Addend)
  static inline void
  ua16(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This::template rela_ua<16>(view, 0, 0xffff, object, psymval, addend);
  }
 
  // R_SPARC_UA32: (Symbol + Addend)
  static inline void
  ua32(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This::template rela_ua<32>(view, 0, 0xffffffff, object, psymval, addend);
  }
 
  // R_SPARC_UA64: (Symbol + Addend)
  static inline void
  ua64(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This::template rela_ua<64>(view, 0, ~(elfcpp::Elf_Xword) 0,
			       object, psymval, addend);
  }
 
  // R_SPARC_DISP8: (Symbol + Addend - Address)
  static inline void
  disp8(unsigned char* view,
	const Sized_relobj<size, big_endian>* object,
	const Symbol_value<size>* psymval,
	typename elfcpp::Elf_types<size>::Elf_Addr addend,
	typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This::template pcrela_unaligned<8>(view, object, psymval,
				       addend, address);
  }
 
  // R_SPARC_DISP16: (Symbol + Addend - Address)
  static inline void
  disp16(unsigned char* view,
	 const Sized_relobj<size, big_endian>* object,
	 const Symbol_value<size>* psymval,
	 typename elfcpp::Elf_types<size>::Elf_Addr addend,
	 typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This::template pcrela_unaligned<16>(view, object, psymval,
					addend, address);
  }
 
  // R_SPARC_DISP32: (Symbol + Addend - Address)
  static inline void
  disp32(unsigned char* view,
	 const Sized_relobj<size, big_endian>* object,
	 const Symbol_value<size>* psymval,
	 typename elfcpp::Elf_types<size>::Elf_Addr addend,
	 typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This::template pcrela_unaligned<32>(view, object, psymval,
					addend, address);
  }
 
  // R_SPARC_DISP64: (Symbol + Addend - Address)
  static inline void
  disp64(unsigned char* view,
	 const Sized_relobj<size, big_endian>* object,
	 const Symbol_value<size>* psymval,
	 elfcpp::Elf_Xword addend,
	 typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This::template pcrela_unaligned<64>(view, object, psymval,
					addend, address);
  }
 
  // R_SPARC_H44: (Symbol + Addend) >> 22
  static inline void
  h44(unsigned char* view,
      const Sized_relobj<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr  addend)
  {
    This_insn::template rela<32>(view, 22, 0x003fffff, object, psymval, addend);
  }
 
  // R_SPARC_M44: ((Symbol + Addend) >> 12) & 0x3ff
  static inline void
  m44(unsigned char* view,
      const Sized_relobj<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr  addend)
  {
    This_insn::template rela<32>(view, 12, 0x000003ff, object, psymval, addend);
  }
 
  // R_SPARC_L44: (Symbol + Addend) & 0xfff
  static inline void
  l44(unsigned char* view,
      const Sized_relobj<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      typename elfcpp::Elf_types<size>::Elf_Addr  addend)
  {
    This_insn::template rela<32>(view, 0, 0x00000fff, object, psymval, addend);
  }
 
  // R_SPARC_HH22: (Symbol + Addend) >> 42
  static inline void
  hh22(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 42, 0x003fffff, object, psymval, addend);
  }
 
  // R_SPARC_PC_HH22: (Symbol + Addend - Address) >> 42
  static inline void
  pc_hh22(unsigned char* view,
	  const Sized_relobj<size, big_endian>* object,
	  const Symbol_value<size>* psymval,
	  typename elfcpp::Elf_types<size>::Elf_Addr addend,
	  typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 42, 0x003fffff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_HM10: ((Symbol + Addend) >> 32) & 0x3ff
  static inline void
  hm10(unsigned char* view,
       const Sized_relobj<size, big_endian>* object,
       const Symbol_value<size>* psymval,
       typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 32, 0x000003ff, object, psymval, addend);
  }
 
  // R_SPARC_PC_HM10: ((Symbol + Addend - Address) >> 32) & 0x3ff
  static inline void
  pc_hm10(unsigned char* view,
	  const Sized_relobj<size, big_endian>* object,
	  const Symbol_value<size>* psymval,
	  typename elfcpp::Elf_types<size>::Elf_Addr addend,
	  typename elfcpp::Elf_types<size>::Elf_Addr address)
  {
    This_insn::template pcrela<32>(view, 32, 0x000003ff, object,
				   psymval, addend, address);
  }
 
  // R_SPARC_11: (Symbol + Addend)
  static inline void
  rela32_11(unsigned char* view,
	    const Sized_relobj<size, big_endian>* object,
	    const Symbol_value<size>* psymval,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x000007ff, object, psymval, addend);
  }
 
  // R_SPARC_10: (Symbol + Addend)
  static inline void
  rela32_10(unsigned char* view,
	    const Sized_relobj<size, big_endian>* object,
	    const Symbol_value<size>* psymval,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend);
  }
 
  // R_SPARC_7: (Symbol + Addend)
  static inline void
  rela32_7(unsigned char* view,
	   const Sized_relobj<size, big_endian>* object,
	   const Symbol_value<size>* psymval,
	   typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x0000007f, object, psymval, addend);
  }
 
  // R_SPARC_6: (Symbol + Addend)
  static inline void
  rela32_6(unsigned char* view,
	   const Sized_relobj<size, big_endian>* object,
	   const Symbol_value<size>* psymval,
	   typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x0000003f, object, psymval, addend);
  }
 
  // R_SPARC_5: (Symbol + Addend)
  static inline void
  rela32_5(unsigned char* view,
	   const Sized_relobj<size, big_endian>* object,
	   const Symbol_value<size>* psymval,
	   typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::template rela<32>(view, 0, 0x0000001f, object, psymval, addend);
  }
 
  // R_SPARC_TLS_LDO_HIX22: @dtpoff(Symbol + Addend) >> 10
  static inline void
  ldo_hix22(unsigned char* view,
	    typename elfcpp::Elf_types<size>::Elf_Addr value,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    This_insn::hi22(view, value, addend);
  }
 
  // R_SPARC_TLS_LDO_LOX10: @dtpoff(Symbol + Addend) & 0x3ff
  static inline void
  ldo_lox10(unsigned char* view,
	    typename elfcpp::Elf_types<size>::Elf_Addr value,
	    typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = (value + addend);
 
    val &= ~0x1fff;
    reloc &= 0x3ff;
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
 
  // R_SPARC_TLS_LE_HIX22: (@tpoff(Symbol + Addend) ^ 0xffffffffffffffff) >> 10
  static inline void
  hix22(unsigned char* view,
	typename elfcpp::Elf_types<size>::Elf_Addr value,
	typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = (value + addend);
 
    val &= ~0x3fffff;
 
    reloc ^= ~(Valtype)0;
    reloc >>= 10;
 
    reloc &= 0x3fffff;
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
 
  // R_SPARC_HIX22: ((Symbol + Addend) ^ 0xffffffffffffffff) >> 10
  static inline void
  hix22(unsigned char* view,
	const Sized_relobj<size, big_endian>* object,
	const Symbol_value<size>* psymval,
	typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = psymval->value(object, addend);
 
    val &= ~0x3fffff;
 
    reloc ^= ~(Valtype)0;
    reloc >>= 10;
 
    reloc &= 0x3fffff;
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
 
 
  // R_SPARC_TLS_LE_LOX10: (@tpoff(Symbol + Addend) & 0x3ff) | 0x1c00
  static inline void
  lox10(unsigned char* view,
	typename elfcpp::Elf_types<size>::Elf_Addr value,
	typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = (value + addend);
 
    val &= ~0x1fff;
    reloc &= 0x3ff;
    reloc |= 0x1c00;
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
 
  // R_SPARC_LOX10: ((Symbol + Addend) & 0x3ff) | 0x1c00
  static inline void
  lox10(unsigned char* view,
	const Sized_relobj<size, big_endian>* object,
	const Symbol_value<size>* psymval,
	typename elfcpp::Elf_types<size>::Elf_Addr addend)
  {
    typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, true>::readval(wv);
    Valtype reloc = psymval->value(object, addend);
 
    val &= ~0x1fff;
    reloc &= 0x3ff;
    reloc |= 0x1c00;
 
    elfcpp::Swap<32, true>::writeval(wv, val | reloc);
  }
};
 
// Get the GOT section, creating it if necessary.
 
template<int size, bool big_endian>
Output_data_got<size, big_endian>*
Target_sparc<size, big_endian>::got_section(Symbol_table* symtab,
					    Layout* layout)
{
  if (this->got_ == NULL)
    {
      gold_assert(symtab != NULL && layout != NULL);
 
      this->got_ = new Output_data_got<size, big_endian>();
 
      Output_section* os;
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
					   (elfcpp::SHF_ALLOC
					    | elfcpp::SHF_WRITE),
					   this->got_);
      os->set_is_relro();
 
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
				    this->got_,
				    0, 0, elfcpp::STT_OBJECT,
				    elfcpp::STB_LOCAL,
				    elfcpp::STV_HIDDEN, 0,
				    false, false);
    }
 
  return this->got_;
}
 
// Get the dynamic reloc section, creating it if necessary.
 
template<int size, bool big_endian>
typename Target_sparc<size, big_endian>::Reloc_section*
Target_sparc<size, big_endian>::rela_dyn_section(Layout* layout)
{
  if (this->rela_dyn_ == NULL)
    {
      gold_assert(layout != NULL);
      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
				      elfcpp::SHF_ALLOC, this->rela_dyn_);
    }
  return this->rela_dyn_;
}
 
// A class to handle the PLT data.
 
template<int size, bool big_endian>
class Output_data_plt_sparc : public Output_section_data
{
 public:
  typedef Output_data_reloc<elfcpp::SHT_RELA, true,
			    size, big_endian> Reloc_section;
 
  Output_data_plt_sparc(Layout*);
 
  // Add an entry to the PLT.
  void add_entry(Symbol* gsym);
 
  // Return the .rela.plt section data.
  const Reloc_section* rel_plt() const
  {
    return this->rel_;
  }
 
 protected:
  void do_adjust_output_section(Output_section* os);
 
  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** PLT")); }
 
 private:
  // The size of an entry in the PLT.
  static const int base_plt_entry_size = (size == 32 ? 12 : 32);
 
  static const unsigned int plt_entries_per_block = 160;
  static const unsigned int plt_insn_chunk_size = 24;
  static const unsigned int plt_pointer_chunk_size = 8;
  static const unsigned int plt_block_size =
    (plt_entries_per_block
     * (plt_insn_chunk_size + plt_pointer_chunk_size));
 
  // Set the final size.
  void
  set_final_data_size()
  {
    unsigned int full_count = this->count_ + 4;
    unsigned int extra = (size == 32 ? 4 : 0);
 
    if (size == 32 || full_count < 32768)
      this->set_data_size((full_count * base_plt_entry_size) + extra);
    else
      {
	unsigned int ext_cnt = full_count - 32768;
 
	this->set_data_size((32768 * base_plt_entry_size)
			    + (ext_cnt
			       * (plt_insn_chunk_size
				  + plt_pointer_chunk_size)));
      }
  }
 
  // Write out the PLT data.
  void
  do_write(Output_file*);
 
  // The reloc section.
  Reloc_section* rel_;
  // The number of PLT entries.
  unsigned int count_;
};
 
// Define the constants as required by C++ standard.
 
template<int size, bool big_endian>
const int Output_data_plt_sparc<size, big_endian>::base_plt_entry_size;
 
template<int size, bool big_endian>
const unsigned int
Output_data_plt_sparc<size, big_endian>::plt_entries_per_block;
 
template<int size, bool big_endian>
const unsigned int Output_data_plt_sparc<size, big_endian>::plt_insn_chunk_size;
 
template<int size, bool big_endian>
const unsigned int
Output_data_plt_sparc<size, big_endian>::plt_pointer_chunk_size;
 
template<int size, bool big_endian>
const unsigned int Output_data_plt_sparc<size, big_endian>::plt_block_size;
 
// Create the PLT section.  The ordinary .got section is an argument,
// since we need to refer to the start.
 
template<int size, bool big_endian>
Output_data_plt_sparc<size, big_endian>::Output_data_plt_sparc(Layout* layout)
  : Output_section_data(size == 32 ? 4 : 8), count_(0)
{
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
				  elfcpp::SHF_ALLOC, this->rel_);
}
 
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::do_adjust_output_section(Output_section* os)
{
  os->set_entsize(0);
}
 
// Add an entry to the PLT.
 
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::add_entry(Symbol* gsym)
{
  gold_assert(!gsym->has_plt_offset());
 
  unsigned int index = this->count_ + 4;
  section_offset_type plt_offset;
 
  if (size == 32 || index < 32768)
    plt_offset = index * base_plt_entry_size;
  else
    {
	unsigned int ext_index = index - 32768;
 
	plt_offset = (32768 * base_plt_entry_size)
	  + ((ext_index / plt_entries_per_block)
	     * plt_block_size)
	  + ((ext_index % plt_entries_per_block)
	     * plt_insn_chunk_size);
    }
 
  gsym->set_plt_offset(plt_offset);
 
  ++this->count_;
 
  // Every PLT entry needs a reloc.
  gsym->set_needs_dynsym_entry();
  this->rel_->add_global(gsym, elfcpp::R_SPARC_JMP_SLOT, this,
			 plt_offset, 0);
 
  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
}
 
static const unsigned int sparc_nop = 0x01000000;
static const unsigned int sparc_sethi_g1 = 0x03000000;
static const unsigned int sparc_branch_always = 0x30800000;
static const unsigned int sparc_branch_always_pt = 0x30680000;
static const unsigned int sparc_mov = 0x80100000;
static const unsigned int sparc_mov_g0_o0 = 0x90100000;
static const unsigned int sparc_mov_o7_g5 = 0x8a10000f;
static const unsigned int sparc_call_plus_8 = 0x40000002;
static const unsigned int sparc_ldx_o7_imm_g1 = 0xc25be000;
static const unsigned int sparc_jmpl_o7_g1_g1 = 0x83c3c001;
static const unsigned int sparc_mov_g5_o7 = 0x9e100005;
 
// Write out the PLT.
 
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  unsigned char* pov = oview;
 
  memset(pov, 0, base_plt_entry_size * 4);
  pov += base_plt_entry_size * 4;
 
  unsigned int plt_offset = base_plt_entry_size * 4;
  const unsigned int count = this->count_;
 
  if (size == 64)
    {
      unsigned int limit;
 
      limit = (count > 32768 ? 32768 : count);
 
      for (unsigned int i = 0; i < limit; ++i)
	{
	  elfcpp::Swap<32, true>::writeval(pov + 0x00,
					   sparc_sethi_g1 + plt_offset);
	  elfcpp::Swap<32, true>::writeval(pov + 0x04,
					   sparc_branch_always_pt +
					   (((base_plt_entry_size -
					      (plt_offset + 4)) >> 2) &
					    0x7ffff));
	  elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop);
	  elfcpp::Swap<32, true>::writeval(pov + 0x0c, sparc_nop);
	  elfcpp::Swap<32, true>::writeval(pov + 0x10, sparc_nop);
	  elfcpp::Swap<32, true>::writeval(pov + 0x14, sparc_nop);
	  elfcpp::Swap<32, true>::writeval(pov + 0x18, sparc_nop);
	  elfcpp::Swap<32, true>::writeval(pov + 0x1c, sparc_nop);
 
	  pov += base_plt_entry_size;
	  plt_offset += base_plt_entry_size;
	}
 
      if (count > 32768)
	{
	  unsigned int ext_cnt = count - 32768;
	  unsigned int blks = ext_cnt / plt_entries_per_block;
 
	  for (unsigned int i = 0; i < blks; ++i)
	    {
	      unsigned int data_off = (plt_entries_per_block
				       * plt_insn_chunk_size) - 4;
 
	      for (unsigned int j = 0; j < plt_entries_per_block; ++j)
		{
		  elfcpp::Swap<32, true>::writeval(pov + 0x00,
						   sparc_mov_o7_g5);
		  elfcpp::Swap<32, true>::writeval(pov + 0x04,
						   sparc_call_plus_8);
		  elfcpp::Swap<32, true>::writeval(pov + 0x08,
						   sparc_nop);
		  elfcpp::Swap<32, true>::writeval(pov + 0x0c,
						   sparc_ldx_o7_imm_g1 +
						   (data_off & 0x1fff));
		  elfcpp::Swap<32, true>::writeval(pov + 0x10,
						   sparc_jmpl_o7_g1_g1);
		  elfcpp::Swap<32, true>::writeval(pov + 0x14,
						   sparc_mov_g5_o7);
 
		  elfcpp::Swap<64, big_endian>::writeval(
				pov + 0x4 + data_off,
				(elfcpp::Elf_Xword) (oview - (pov + 0x04)));
 
		  pov += plt_insn_chunk_size;
		  data_off -= 16;
		}
	    }
 
	  unsigned int sub_blk_cnt = ext_cnt % plt_entries_per_block;
	  for (unsigned int i = 0; i < sub_blk_cnt; ++i)
	    {
	      unsigned int data_off = (sub_blk_cnt
				       * plt_insn_chunk_size) - 4;
 
	      for (unsigned int j = 0; j < plt_entries_per_block; ++j)
		{
		  elfcpp::Swap<32, true>::writeval(pov + 0x00,
						   sparc_mov_o7_g5);
		  elfcpp::Swap<32, true>::writeval(pov + 0x04,
						   sparc_call_plus_8);
		  elfcpp::Swap<32, true>::writeval(pov + 0x08,
						   sparc_nop);
		  elfcpp::Swap<32, true>::writeval(pov + 0x0c,
						   sparc_ldx_o7_imm_g1 +
						   (data_off & 0x1fff));
		  elfcpp::Swap<32, true>::writeval(pov + 0x10,
						   sparc_jmpl_o7_g1_g1);
		  elfcpp::Swap<32, true>::writeval(pov + 0x14,
						   sparc_mov_g5_o7);
 
		  elfcpp::Swap<64, big_endian>::writeval(
				pov + 0x4 + data_off,
				(elfcpp::Elf_Xword) (oview - (pov + 0x04)));
 
		  pov += plt_insn_chunk_size;
		  data_off -= 16;
		}
	    }
	}
    }
  else
    {
      for (unsigned int i = 0; i < count; ++i)
	{
	  elfcpp::Swap<32, true>::writeval(pov + 0x00,
					   sparc_sethi_g1 + plt_offset);
	  elfcpp::Swap<32, true>::writeval(pov + 0x04,
					   sparc_branch_always +
					   (((- (plt_offset + 4)) >> 2) &
					    0x003fffff));
	  elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop);
 
	  pov += base_plt_entry_size;
	  plt_offset += base_plt_entry_size;
	}
 
      elfcpp::Swap<32, true>::writeval(pov, sparc_nop);
      pov += 4;
    }
 
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
 
  of->write_output_view(offset, oview_size, oview);
}
 
// Create a PLT entry for a global symbol.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
					       Layout* layout,
					       Symbol* gsym)
{
  if (gsym->has_plt_offset())
    return;
 
  if (this->plt_ == NULL)
    {
      // Create the GOT sections first.
      this->got_section(symtab, layout);
 
      this->plt_ = new Output_data_plt_sparc<size, big_endian>(layout);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
				      (elfcpp::SHF_ALLOC
				       | elfcpp::SHF_EXECINSTR
				       | elfcpp::SHF_WRITE),
				      this->plt_);
 
      // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
      symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
				    this->plt_,
				    0, 0, elfcpp::STT_OBJECT,
				    elfcpp::STB_LOCAL,
				    elfcpp::STV_HIDDEN, 0,
				    false, false);
    }
 
  this->plt_->add_entry(gsym);
}
 
// Create a GOT entry for the TLS module index.
 
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::got_mod_index_entry(Symbol_table* symtab,
						    Layout* layout,
						    Sized_relobj<size, big_endian>* object)
{
  if (this->got_mod_index_offset_ == -1U)
    {
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
      Output_data_got<size, big_endian>* got;
      unsigned int got_offset;
 
      got = this->got_section(symtab, layout);
      got_offset = got->add_constant(0);
      rela_dyn->add_local(object, 0,
			  (size == 64 ?
			   elfcpp::R_SPARC_TLS_DTPMOD64 :
			   elfcpp::R_SPARC_TLS_DTPMOD32), got,
			  got_offset, 0);
      got->add_constant(0);
      this->got_mod_index_offset_ = got_offset;
    }
  return this->got_mod_index_offset_;
}
 
// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.
 
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type)
{
  // If we are generating a shared library, then we can't do anything
  // in the linker.
  if (parameters->options().shared())
    return tls::TLSOPT_NONE;
 
  switch (r_type)
    {
    case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
    case elfcpp::R_SPARC_TLS_GD_LO10:
    case elfcpp::R_SPARC_TLS_GD_ADD:
    case elfcpp::R_SPARC_TLS_GD_CALL:
      // These are General-Dynamic which permits fully general TLS
      // access.  Since we know that we are generating an executable,
      // we can convert this to Initial-Exec.  If we also know that
      // this is a local symbol, we can further switch to Local-Exec.
      if (is_final)
	return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_IE;
 
    case elfcpp::R_SPARC_TLS_LDM_HI22:	// Local-dynamic
    case elfcpp::R_SPARC_TLS_LDM_LO10:
    case elfcpp::R_SPARC_TLS_LDM_ADD:
    case elfcpp::R_SPARC_TLS_LDM_CALL:
      // This is Local-Dynamic, which refers to a local symbol in the
      // dynamic TLS block.  Since we know that we generating an
      // executable, we can switch to Local-Exec.
      return tls::TLSOPT_TO_LE;
 
    case elfcpp::R_SPARC_TLS_LDO_HIX22:	// Alternate local-dynamic
    case elfcpp::R_SPARC_TLS_LDO_LOX10:
    case elfcpp::R_SPARC_TLS_LDO_ADD:
      // Another type of Local-Dynamic relocation.
      return tls::TLSOPT_TO_LE;
 
    case elfcpp::R_SPARC_TLS_IE_HI22:	// Initial-exec
    case elfcpp::R_SPARC_TLS_IE_LO10:
    case elfcpp::R_SPARC_TLS_IE_LD:
    case elfcpp::R_SPARC_TLS_IE_LDX:
      // These are Initial-Exec relocs which get the thread offset
      // from the GOT.  If we know that we are linking against the
      // local symbol, we can switch to Local-Exec, which links the
      // thread offset into the instruction.
      if (is_final)
	return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_NONE;
 
    case elfcpp::R_SPARC_TLS_LE_HIX22:	// Local-exec
    case elfcpp::R_SPARC_TLS_LE_LOX10:
      // When we already have Local-Exec, there is nothing further we
      // can do.
      return tls::TLSOPT_NONE;
 
    default:
      gold_unreachable();
    }
}
 
// Generate a PLT entry slot for a call to __tls_get_addr
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::generate_tls_call(Symbol_table* symtab,
							Layout* layout,
							Target_sparc<size, big_endian>* target)
{
  Symbol* gsym = target->tls_get_addr_sym(symtab);
 
  target->make_plt_entry(symtab, layout, gsym);
}
 
// Report an unsupported relocation against a local symbol.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::unsupported_reloc_local(
			Sized_relobj<size, big_endian>* object,
			unsigned int r_type)
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
	     object->name().c_str(), r_type);
}
 
// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
{
  gold_assert(r_type != elfcpp::R_SPARC_NONE);
 
  if (size == 64)
    {
      switch (r_type)
	{
	  // These are the relocation types supported by glibc for sparc 64-bit.
	case elfcpp::R_SPARC_RELATIVE:
	case elfcpp::R_SPARC_COPY:
	case elfcpp::R_SPARC_64:
	case elfcpp::R_SPARC_GLOB_DAT:
	case elfcpp::R_SPARC_JMP_SLOT:
	case elfcpp::R_SPARC_TLS_DTPMOD64:
	case elfcpp::R_SPARC_TLS_DTPOFF64:
	case elfcpp::R_SPARC_TLS_TPOFF64:
	case elfcpp::R_SPARC_TLS_LE_HIX22:
	case elfcpp::R_SPARC_TLS_LE_LOX10:
	case elfcpp::R_SPARC_8:
	case elfcpp::R_SPARC_16:
	case elfcpp::R_SPARC_DISP8:
	case elfcpp::R_SPARC_DISP16:
	case elfcpp::R_SPARC_DISP32:
	case elfcpp::R_SPARC_WDISP30:
	case elfcpp::R_SPARC_LO10:
	case elfcpp::R_SPARC_HI22:
	case elfcpp::R_SPARC_OLO10:
	case elfcpp::R_SPARC_H44:
	case elfcpp::R_SPARC_M44:
	case elfcpp::R_SPARC_L44:
	case elfcpp::R_SPARC_HH22:
	case elfcpp::R_SPARC_HM10:
	case elfcpp::R_SPARC_LM22:
	case elfcpp::R_SPARC_UA16:
	case elfcpp::R_SPARC_UA32:
	case elfcpp::R_SPARC_UA64:
	  return;
 
	default:
	  break;
	}
    }
  else
    {
      switch (r_type)
	{
	  // These are the relocation types supported by glibc for sparc 32-bit.
	case elfcpp::R_SPARC_RELATIVE:
	case elfcpp::R_SPARC_COPY:
	case elfcpp::R_SPARC_GLOB_DAT:
	case elfcpp::R_SPARC_32:
	case elfcpp::R_SPARC_JMP_SLOT:
	case elfcpp::R_SPARC_TLS_DTPMOD32:
	case elfcpp::R_SPARC_TLS_DTPOFF32:
	case elfcpp::R_SPARC_TLS_TPOFF32:
	case elfcpp::R_SPARC_TLS_LE_HIX22:
	case elfcpp::R_SPARC_TLS_LE_LOX10:
	case elfcpp::R_SPARC_8:
	case elfcpp::R_SPARC_16:
	case elfcpp::R_SPARC_DISP8:
	case elfcpp::R_SPARC_DISP16:
	case elfcpp::R_SPARC_DISP32:
	case elfcpp::R_SPARC_LO10:
	case elfcpp::R_SPARC_WDISP30:
	case elfcpp::R_SPARC_HI22:
	case elfcpp::R_SPARC_UA16:
	case elfcpp::R_SPARC_UA32:
	  return;
 
	default:
	  break;
	}
    }
 
  // This prevents us from issuing more than one error per reloc
  // section.  But we can still wind up issuing more than one
  // error per object file.
  if (this->issued_non_pic_error_)
    return;
  object->error(_("requires unsupported dynamic reloc; "
		  "recompile with -fPIC"));
  this->issued_non_pic_error_ = true;
  return;
}
 
// Scan a relocation for a local symbol.
 
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Scan::local(
			const General_options&,
			Symbol_table* symtab,
			Layout* layout,
			Target_sparc<size, big_endian>* target,
			Sized_relobj<size, big_endian>* object,
			unsigned int data_shndx,
			Output_section* output_section,
			const elfcpp::Rela<size, big_endian>& reloc,
			unsigned int r_type,
			const elfcpp::Sym<size, big_endian>& lsym)
{
  unsigned int orig_r_type = r_type;
 
  r_type &= 0xff;
  switch (r_type)
    {
    case elfcpp::R_SPARC_NONE:
    case elfcpp::R_SPARC_REGISTER:
    case elfcpp::R_SPARC_GNU_VTINHERIT:
    case elfcpp::R_SPARC_GNU_VTENTRY:
      break;
 
    case elfcpp::R_SPARC_64:
    case elfcpp::R_SPARC_32:
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for
      // this location. The relocation applied at link time will
      // apply the link-time value, so we flag the location with
      // an R_SPARC_RELATIVE relocation so the dynamic loader can
      // relocate it easily.
      if (parameters->options().output_is_position_independent())
        {
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
          rela_dyn->add_local_relative(object, r_sym, elfcpp::R_SPARC_RELATIVE,
				       output_section, data_shndx,
				       reloc.get_r_offset(),
				       reloc.get_r_addend());
        }
      break;
 
    case elfcpp::R_SPARC_HIX22:
    case elfcpp::R_SPARC_LOX10:
    case elfcpp::R_SPARC_H44:
    case elfcpp::R_SPARC_M44:
    case elfcpp::R_SPARC_L44:
    case elfcpp::R_SPARC_HH22:
    case elfcpp::R_SPARC_HM10:
    case elfcpp::R_SPARC_LM22:
    case elfcpp::R_SPARC_UA64:
    case elfcpp::R_SPARC_UA32:
    case elfcpp::R_SPARC_UA16:
    case elfcpp::R_SPARC_HI22:
    case elfcpp::R_SPARC_LO10:
    case elfcpp::R_SPARC_OLO10:
    case elfcpp::R_SPARC_16:
    case elfcpp::R_SPARC_11:
    case elfcpp::R_SPARC_10:
    case elfcpp::R_SPARC_8:
    case elfcpp::R_SPARC_7:
    case elfcpp::R_SPARC_6:
    case elfcpp::R_SPARC_5:
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for
      // this location.
      if (parameters->options().output_is_position_independent())
        {
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
 
	  check_non_pic(object, r_type);
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
            {
              unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
              rela_dyn->add_local(object, r_sym, orig_r_type, output_section,
				  data_shndx, reloc.get_r_offset(),
				  reloc.get_r_addend());
            }
          else
            {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
              gold_assert(lsym.get_st_value() == 0);
              rela_dyn->add_local_relative(object, r_sym, orig_r_type,
					   output_section, data_shndx,
					   reloc.get_r_offset(),
					   reloc.get_r_addend());
            }
        }
      break;
 
    case elfcpp::R_SPARC_WDISP30:
    case elfcpp::R_SPARC_WDISP22:
    case elfcpp::R_SPARC_WDISP19:
    case elfcpp::R_SPARC_WDISP16:
    case elfcpp::R_SPARC_DISP8:
    case elfcpp::R_SPARC_DISP16:
    case elfcpp::R_SPARC_DISP32:
    case elfcpp::R_SPARC_DISP64:
    case elfcpp::R_SPARC_PC10:
    case elfcpp::R_SPARC_PC22:
      break;
 
    case elfcpp::R_SPARC_GOT10:
    case elfcpp::R_SPARC_GOT13:
    case elfcpp::R_SPARC_GOT22:
      {
        // The symbol requires a GOT entry.
        Output_data_got<size, big_endian>* got;
        unsigned int r_sym;
 
	got = target->got_section(symtab, layout);
	r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
 
	// If we are generating a shared object, we need to add a
	// dynamic relocation for this symbol's GOT entry.
	if (parameters->options().output_is_position_independent())
	  {
	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
	      {
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		unsigned int off;
 
		off = got->add_constant(0);
		object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
		rela_dyn->add_local_relative(object, r_sym,
					     elfcpp::R_SPARC_RELATIVE,
					     got, off, 0);
	      }
	  }
	else
	  got->add_local(object, r_sym, GOT_TYPE_STANDARD);
      }
      break;
 
      // These are initial TLS relocs, which are expected when
      // linking.
    case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
    case elfcpp::R_SPARC_TLS_GD_LO10:
    case elfcpp::R_SPARC_TLS_GD_ADD:
    case elfcpp::R_SPARC_TLS_GD_CALL:
    case elfcpp::R_SPARC_TLS_LDM_HI22 :	// Local-dynamic
    case elfcpp::R_SPARC_TLS_LDM_LO10:
    case elfcpp::R_SPARC_TLS_LDM_ADD:
    case elfcpp::R_SPARC_TLS_LDM_CALL:
    case elfcpp::R_SPARC_TLS_LDO_HIX22:	// Alternate local-dynamic
    case elfcpp::R_SPARC_TLS_LDO_LOX10:
    case elfcpp::R_SPARC_TLS_LDO_ADD:
    case elfcpp::R_SPARC_TLS_IE_HI22:	// Initial-exec
    case elfcpp::R_SPARC_TLS_IE_LO10:
    case elfcpp::R_SPARC_TLS_IE_LD:
    case elfcpp::R_SPARC_TLS_IE_LDX:
    case elfcpp::R_SPARC_TLS_LE_HIX22:	// Local-exec
    case elfcpp::R_SPARC_TLS_LE_LOX10:
      {
	bool output_is_shared = parameters->options().shared();
	const tls::Tls_optimization optimized_type
            = optimize_tls_reloc(!output_is_shared, r_type);
	switch (r_type)
	  {
	  case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
	  case elfcpp::R_SPARC_TLS_GD_LO10:
	  case elfcpp::R_SPARC_TLS_GD_ADD:
	  case elfcpp::R_SPARC_TLS_GD_CALL:
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
	        // Create a pair of GOT entries for the module index and
	        // dtv-relative offset.
                Output_data_got<size, big_endian>* got
                    = target->got_section(symtab, layout);
                unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
		unsigned int shndx = lsym.get_st_shndx();
		bool is_ordinary;
		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
		if (!is_ordinary)
		  object->error(_("local symbol %u has bad shndx %u"),
				r_sym, shndx);
		else
		  got->add_local_pair_with_rela(object, r_sym, 
						lsym.get_st_shndx(),
						GOT_TYPE_TLS_PAIR,
						target->rela_dyn_section(layout),
						(size == 64
						 ? elfcpp::R_SPARC_TLS_DTPMOD64
						 : elfcpp::R_SPARC_TLS_DTPMOD32),
						 0);
		if (r_type == elfcpp::R_SPARC_TLS_GD_CALL)
		  generate_tls_call(symtab, layout, target);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;
 
	  case elfcpp::R_SPARC_TLS_LDM_HI22 :	// Local-dynamic
	  case elfcpp::R_SPARC_TLS_LDM_LO10:
	  case elfcpp::R_SPARC_TLS_LDM_ADD:
	  case elfcpp::R_SPARC_TLS_LDM_CALL:
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the module index.
		target->got_mod_index_entry(symtab, layout, object);
 
		if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL)
		  generate_tls_call(symtab, layout, target);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;
 
	  case elfcpp::R_SPARC_TLS_LDO_HIX22:	// Alternate local-dynamic
	  case elfcpp::R_SPARC_TLS_LDO_LOX10:
	  case elfcpp::R_SPARC_TLS_LDO_ADD:
	    break;
 
	  case elfcpp::R_SPARC_TLS_IE_HI22:	// Initial-exec
	  case elfcpp::R_SPARC_TLS_IE_LO10:
	  case elfcpp::R_SPARC_TLS_IE_LD:
	  case elfcpp::R_SPARC_TLS_IE_LDX:
	    layout->set_has_static_tls();
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the tp-relative offset.
		Output_data_got<size, big_endian>* got
		  = target->got_section(symtab, layout);
		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
 
		if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_OFFSET))
		  {
		    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		    unsigned int off = got->add_constant(0);
 
		    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET,
						 off);
		    rela_dyn->add_local_relative(object, r_sym,
						 (size == 64 ?
						  elfcpp::R_SPARC_TLS_TPOFF64 :
						  elfcpp::R_SPARC_TLS_TPOFF32),
						 got, off, 0);
		  }
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_local(object, r_type);
	    break;
 
	  case elfcpp::R_SPARC_TLS_LE_HIX22:	// Local-exec
	  case elfcpp::R_SPARC_TLS_LE_LOX10:
	    layout->set_has_static_tls();
	    if (output_is_shared)
	      {
	        // We need to create a dynamic relocation.
                gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_local_relative(object, r_sym, r_type,
					     output_section, data_shndx,
					     reloc.get_r_offset(), 0);
	      }
	    break;
	  }
      }
      break;
 
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
    case elfcpp::R_SPARC_COPY:
    case elfcpp::R_SPARC_GLOB_DAT:
    case elfcpp::R_SPARC_JMP_SLOT:
    case elfcpp::R_SPARC_RELATIVE:
    case elfcpp::R_SPARC_TLS_DTPMOD64:
    case elfcpp::R_SPARC_TLS_DTPMOD32:
    case elfcpp::R_SPARC_TLS_DTPOFF64:
    case elfcpp::R_SPARC_TLS_DTPOFF32:
    case elfcpp::R_SPARC_TLS_TPOFF64:
    case elfcpp::R_SPARC_TLS_TPOFF32:
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      break;
 
    default:
      unsupported_reloc_local(object, r_type);
      break;
    }
}
 
// Report an unsupported relocation against a global symbol.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::unsupported_reloc_global(
			Sized_relobj<size, big_endian>* object,
			unsigned int r_type,
			Symbol* gsym)
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
 
// Scan a relocation for a global symbol.
 
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Scan::global(
				const General_options&,
				Symbol_table* symtab,
				Layout* layout,
				Target_sparc<size, big_endian>* target,
				Sized_relobj<size, big_endian>* object,
				unsigned int data_shndx,
				Output_section* output_section,
				const elfcpp::Rela<size, big_endian>& reloc,
				unsigned int r_type,
				Symbol* gsym)
{
  unsigned int orig_r_type = r_type;
 
  r_type &= 0xff;
  switch (r_type)
    {
    case elfcpp::R_SPARC_NONE:
    case elfcpp::R_SPARC_REGISTER:
    case elfcpp::R_SPARC_GNU_VTINHERIT:
    case elfcpp::R_SPARC_GNU_VTENTRY:
      break;
 
    case elfcpp::R_SPARC_PLT64:
    case elfcpp::R_SPARC_PLT32:
    case elfcpp::R_SPARC_HIPLT22:
    case elfcpp::R_SPARC_LOPLT10:
    case elfcpp::R_SPARC_PCPLT32:
    case elfcpp::R_SPARC_PCPLT22:
    case elfcpp::R_SPARC_PCPLT10:
    case elfcpp::R_SPARC_WPLT30:
      // If the symbol is fully resolved, this is just a PC32 reloc.
      // Otherwise we need a PLT entry.
      if (gsym->final_value_is_known())
	break;
      // If building a shared library, we can also skip the PLT entry
      // if the symbol is defined in the output file and is protected
      // or hidden.
      if (gsym->is_defined()
          && !gsym->is_from_dynobj()
          && !gsym->is_preemptible())
	break;
      target->make_plt_entry(symtab, layout, gsym);
      break;
 
    case elfcpp::R_SPARC_DISP8:
    case elfcpp::R_SPARC_DISP16:
    case elfcpp::R_SPARC_DISP32:
    case elfcpp::R_SPARC_DISP64:
    case elfcpp::R_SPARC_PC_HH22:
    case elfcpp::R_SPARC_PC_HM10:
    case elfcpp::R_SPARC_PC_LM22:
    case elfcpp::R_SPARC_PC10:
    case elfcpp::R_SPARC_PC22:
    case elfcpp::R_SPARC_WDISP30:
    case elfcpp::R_SPARC_WDISP22:
    case elfcpp::R_SPARC_WDISP19:
    case elfcpp::R_SPARC_WDISP16:
      {
	if (gsym->needs_plt_entry())
	  target->make_plt_entry(symtab, layout, gsym);
	// Make a dynamic relocation if necessary.
	int flags = Symbol::NON_PIC_REF;
	if (gsym->type() == elfcpp::STT_FUNC)
	  flags |= Symbol::FUNCTION_CALL;
	if (gsym->needs_dynamic_reloc(flags))
	  {
	    if (target->may_need_copy_reloc(gsym))
	      {
		target->copy_reloc(symtab, layout, object,
				   data_shndx, output_section, gsym,
				   reloc);
	      }
	    else
	      {
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		check_non_pic(object, r_type);
		rela_dyn->add_global(gsym, orig_r_type, output_section, object,
				     data_shndx, reloc.get_r_offset(),
				     reloc.get_r_addend());
	      }
	  }
      }
      break;
 
    case elfcpp::R_SPARC_UA64:
    case elfcpp::R_SPARC_64:
    case elfcpp::R_SPARC_HIX22:
    case elfcpp::R_SPARC_LOX10:
    case elfcpp::R_SPARC_H44:
    case elfcpp::R_SPARC_M44:
    case elfcpp::R_SPARC_L44:
    case elfcpp::R_SPARC_HH22:
    case elfcpp::R_SPARC_HM10:
    case elfcpp::R_SPARC_LM22:
    case elfcpp::R_SPARC_HI22:
    case elfcpp::R_SPARC_LO10:
    case elfcpp::R_SPARC_OLO10:
    case elfcpp::R_SPARC_UA32:
    case elfcpp::R_SPARC_32:
    case elfcpp::R_SPARC_UA16:
    case elfcpp::R_SPARC_16:
    case elfcpp::R_SPARC_11:
    case elfcpp::R_SPARC_10:
    case elfcpp::R_SPARC_8:
    case elfcpp::R_SPARC_7:
    case elfcpp::R_SPARC_6:
    case elfcpp::R_SPARC_5:
      {
        // Make a PLT entry if necessary.
        if (gsym->needs_plt_entry())
          {
            target->make_plt_entry(symtab, layout, gsym);
            // Since this is not a PC-relative relocation, we may be
            // taking the address of a function. In that case we need to
            // set the entry in the dynamic symbol table to the address of
            // the PLT entry.
            if (gsym->is_from_dynobj() && !parameters->options().shared())
              gsym->set_needs_dynsym_value();
          }
        // Make a dynamic relocation if necessary.
        if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
          {
            if (target->may_need_copy_reloc(gsym))
              {
	        target->copy_reloc(symtab, layout, object,
	                           data_shndx, output_section, gsym, reloc);
              }
            else if ((r_type == elfcpp::R_SPARC_32
		      || r_type == elfcpp::R_SPARC_64)
                     && gsym->can_use_relative_reloc(false))
              {
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE,
					      output_section, object,
					      data_shndx, reloc.get_r_offset(),
					      reloc.get_r_addend());
              }
            else
              {
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
 
		check_non_pic(object, r_type);
		if (gsym->is_from_dynobj()
		    || gsym->is_undefined()
		    || gsym->is_preemptible())
		  rela_dyn->add_global(gsym, orig_r_type, output_section,
				       object, data_shndx,
				       reloc.get_r_offset(),
				       reloc.get_r_addend());
		else
		  rela_dyn->add_global_relative(gsym, orig_r_type,
						output_section, object,
						data_shndx,
						reloc.get_r_offset(),
						reloc.get_r_addend());
              }
          }
      }
      break;
 
    case elfcpp::R_SPARC_GOT10:
    case elfcpp::R_SPARC_GOT13:
    case elfcpp::R_SPARC_GOT22:
      {
        // The symbol requires a GOT entry.
        Output_data_got<size, big_endian>* got;
 
	got = target->got_section(symtab, layout);
        if (gsym->final_value_is_known())
          got->add_global(gsym, GOT_TYPE_STANDARD);
        else
          {
            // If this symbol is not fully resolved, we need to add a
            // dynamic relocation for it.
            Reloc_section* rela_dyn = target->rela_dyn_section(layout);
            if (gsym->is_from_dynobj()
                || gsym->is_undefined()
                || gsym->is_preemptible())
              got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
                                        elfcpp::R_SPARC_GLOB_DAT);
            else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
              {
		unsigned int off = got->add_constant(0);
 
		gsym->set_got_offset(GOT_TYPE_STANDARD, off);
		rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE,
					      got, off, 0);
	      }
          }
      }
      break;
 
      // These are initial tls relocs, which are expected when
      // linking.
    case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
    case elfcpp::R_SPARC_TLS_GD_LO10:
    case elfcpp::R_SPARC_TLS_GD_ADD:
    case elfcpp::R_SPARC_TLS_GD_CALL:
    case elfcpp::R_SPARC_TLS_LDM_HI22:	// Local-dynamic
    case elfcpp::R_SPARC_TLS_LDM_LO10:
    case elfcpp::R_SPARC_TLS_LDM_ADD:
    case elfcpp::R_SPARC_TLS_LDM_CALL:
    case elfcpp::R_SPARC_TLS_LDO_HIX22:	// Alternate local-dynamic
    case elfcpp::R_SPARC_TLS_LDO_LOX10:
    case elfcpp::R_SPARC_TLS_LDO_ADD:
    case elfcpp::R_SPARC_TLS_LE_HIX22:
    case elfcpp::R_SPARC_TLS_LE_LOX10:
    case elfcpp::R_SPARC_TLS_IE_HI22:	// Initial-exec
    case elfcpp::R_SPARC_TLS_IE_LO10:
    case elfcpp::R_SPARC_TLS_IE_LD:
    case elfcpp::R_SPARC_TLS_IE_LDX:
      {
	const bool is_final = gsym->final_value_is_known();
	const tls::Tls_optimization optimized_type
            = optimize_tls_reloc(is_final, r_type);
	switch (r_type)
	  {
	  case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
	  case elfcpp::R_SPARC_TLS_GD_LO10:
	  case elfcpp::R_SPARC_TLS_GD_ADD:
	  case elfcpp::R_SPARC_TLS_GD_CALL:
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                Output_data_got<size, big_endian>* got
                    = target->got_section(symtab, layout);
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
                                               target->rela_dyn_section(layout),
					       (size == 64 ?
						elfcpp::R_SPARC_TLS_DTPMOD64 :
						elfcpp::R_SPARC_TLS_DTPMOD32),
					       (size == 64 ?
						elfcpp::R_SPARC_TLS_DTPOFF64 :
						elfcpp::R_SPARC_TLS_DTPOFF32));
 
		// Emit R_SPARC_WPLT30 against "__tls_get_addr"
		if (r_type == elfcpp::R_SPARC_TLS_GD_CALL)
		  generate_tls_call(symtab, layout, target);
	      }
	    else if (optimized_type == tls::TLSOPT_TO_IE)
	      {
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<size, big_endian>* got
                    = target->got_section(symtab, layout);
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                                          target->rela_dyn_section(layout),
					  (size == 64 ?
					   elfcpp::R_SPARC_TLS_TPOFF64 :
					   elfcpp::R_SPARC_TLS_TPOFF32));
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;
 
	  case elfcpp::R_SPARC_TLS_LDM_HI22:	// Local-dynamic
	  case elfcpp::R_SPARC_TLS_LDM_LO10:
	  case elfcpp::R_SPARC_TLS_LDM_ADD:
	  case elfcpp::R_SPARC_TLS_LDM_CALL:
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the module index.
		target->got_mod_index_entry(symtab, layout, object);
 
		if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL)
		  generate_tls_call(symtab, layout, target);
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;
 
	  case elfcpp::R_SPARC_TLS_LDO_HIX22:	// Alternate local-dynamic
	  case elfcpp::R_SPARC_TLS_LDO_LOX10:
	  case elfcpp::R_SPARC_TLS_LDO_ADD:
	    break;
 
	  case elfcpp::R_SPARC_TLS_LE_HIX22:
	  case elfcpp::R_SPARC_TLS_LE_LOX10:
	    layout->set_has_static_tls();
	    if (parameters->options().shared())
	      {
		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
		rela_dyn->add_global_relative(gsym, orig_r_type,
					      output_section, object,
					      data_shndx, reloc.get_r_offset(),
					      0);
	      }
	    break;
 
	  case elfcpp::R_SPARC_TLS_IE_HI22:	// Initial-exec
	  case elfcpp::R_SPARC_TLS_IE_LO10:
	  case elfcpp::R_SPARC_TLS_IE_LD:
	  case elfcpp::R_SPARC_TLS_IE_LDX:
	    layout->set_has_static_tls();
	    if (optimized_type == tls::TLSOPT_NONE)
	      {
		// Create a GOT entry for the tp-relative offset.
		Output_data_got<size, big_endian>* got
		  = target->got_section(symtab, layout);
		got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
					  target->rela_dyn_section(layout),
					  (size == 64 ?
					   elfcpp::R_SPARC_TLS_TPOFF64 :
					   elfcpp::R_SPARC_TLS_TPOFF32));
	      }
	    else if (optimized_type != tls::TLSOPT_TO_LE)
	      unsupported_reloc_global(object, r_type, gsym);
	    break;
	  }
      }
      break;
 
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
    case elfcpp::R_SPARC_COPY:
    case elfcpp::R_SPARC_GLOB_DAT:
    case elfcpp::R_SPARC_JMP_SLOT:
    case elfcpp::R_SPARC_RELATIVE:
    case elfcpp::R_SPARC_TLS_DTPMOD64:
    case elfcpp::R_SPARC_TLS_DTPMOD32:
    case elfcpp::R_SPARC_TLS_DTPOFF64:
    case elfcpp::R_SPARC_TLS_DTPOFF32:
    case elfcpp::R_SPARC_TLS_TPOFF64:
    case elfcpp::R_SPARC_TLS_TPOFF32:
      gold_error(_("%s: unexpected reloc %u in object file"),
		 object->name().c_str(), r_type);
      break;
 
    default:
      unsupported_reloc_global(object, r_type, gsym);
      break;
    }
}
 
// Scan relocations for a section.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::scan_relocs(
			const General_options& options,
			Symbol_table* symtab,
			Layout* layout,
			Sized_relobj<size, big_endian>* object,
			unsigned int data_shndx,
			unsigned int sh_type,
			const unsigned char* prelocs,
			size_t reloc_count,
			Output_section* output_section,
			bool needs_special_offset_handling,
			size_t local_symbol_count,
			const unsigned char* plocal_symbols)
{
  typedef Target_sparc<size, big_endian> Sparc;
  typedef typename Target_sparc<size, big_endian>::Scan Scan;
 
  if (sh_type == elfcpp::SHT_REL)
    {
      gold_error(_("%s: unsupported REL reloc section"),
		 object->name().c_str());
      return;
    }
 
  gold::scan_relocs<size, big_endian, Sparc, elfcpp::SHT_RELA, Scan>(
    options,
    symtab,
    layout,
    this,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols);
}
 
// Finalize the sections.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::do_finalize_sections(Layout* layout)
{
  // Fill in some more dynamic tags.
  Output_data_dynamic* const odyn = layout->dynamic_data();
  if (odyn != NULL)
    {
      if (this->plt_ != NULL)
	{
	  const Output_data* od = this->plt_->rel_plt();
	  odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
	  odyn->add_section_address(elfcpp::DT_JMPREL, od);
	  odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
 
	  odyn->add_section_address(elfcpp::DT_PLTGOT, this->plt_);
	}
 
      if (this->rela_dyn_ != NULL)
	{
	  const Output_data* od = this->rela_dyn_;
	  odyn->add_section_address(elfcpp::DT_RELA, od);
	  odyn->add_section_size(elfcpp::DT_RELASZ, od);
	  odyn->add_constant(elfcpp::DT_RELAENT,
			     elfcpp::Elf_sizes<size>::rela_size);
	}
 
      if (!parameters->options().shared())
	{
	  // The value of the DT_DEBUG tag is filled in by the dynamic
	  // linker at run time, and used by the debugger.
	  odyn->add_constant(elfcpp::DT_DEBUG, 0);
	}
    }
 
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit(this->rela_dyn_section(layout));
}
 
// Perform a relocation.
 
template<int size, bool big_endian>
inline bool
Target_sparc<size, big_endian>::Relocate::relocate(
			const Relocate_info<size, big_endian>* relinfo,
			Target_sparc* target,
			size_t relnum,
			const elfcpp::Rela<size, big_endian>& rela,
			unsigned int r_type,
			const Sized_symbol<size>* gsym,
			const Symbol_value<size>* psymval,
			unsigned char* view,
			typename elfcpp::Elf_types<size>::Elf_Addr address,
			section_size_type view_size)
{
  r_type &= 0xff;
 
  if (this->ignore_gd_add_)
    {
      if (r_type != elfcpp::R_SPARC_TLS_GD_ADD)
	gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			       _("missing expected TLS relocation"));
      else
	{
	  this->ignore_gd_add_ = false;
	  return false;
	}
    }
 
  typedef Sparc_relocate_functions<size, big_endian> Reloc;
 
  // Pick the value to use for symbols defined in shared objects.
  Symbol_value<size> symval;
  if (gsym != NULL
      && gsym->use_plt_offset(r_type == elfcpp::R_SPARC_DISP8
			      || r_type == elfcpp::R_SPARC_DISP16
			      || r_type == elfcpp::R_SPARC_DISP32
			      || r_type == elfcpp::R_SPARC_DISP64
			      || r_type == elfcpp::R_SPARC_PC_HH22
			      || r_type == elfcpp::R_SPARC_PC_HM10
			      || r_type == elfcpp::R_SPARC_PC_LM22
			      || r_type == elfcpp::R_SPARC_PC10
			      || r_type == elfcpp::R_SPARC_PC22
			      || r_type == elfcpp::R_SPARC_WDISP30
			      || r_type == elfcpp::R_SPARC_WDISP22
			      || r_type == elfcpp::R_SPARC_WDISP19
			      || r_type == elfcpp::R_SPARC_WDISP16))
    {
      elfcpp::Elf_Xword value;
 
      value = target->plt_section()->address() + gsym->plt_offset();
 
      symval.set_output_value(value);
 
      psymval = &symval;
    }
 
  const Sized_relobj<size, big_endian>* object = relinfo->object;
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
 
  // Get the GOT offset if needed.  Unlike i386 and x86_64, our GOT
  // pointer points to the beginning, not the end, of the table.
  // So we just use the plain offset.
  bool have_got_offset = false;
  unsigned int got_offset = 0;
  switch (r_type)
    {
    case elfcpp::R_SPARC_GOT10:
    case elfcpp::R_SPARC_GOT13:
    case elfcpp::R_SPARC_GOT22:
      if (gsym != NULL)
        {
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
        }
      else
        {
          unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
        }
      have_got_offset = true;
      break;
 
    default:
      break;
    }
 
  switch (r_type)
    {
    case elfcpp::R_SPARC_NONE:
    case elfcpp::R_SPARC_REGISTER:
    case elfcpp::R_SPARC_GNU_VTINHERIT:
    case elfcpp::R_SPARC_GNU_VTENTRY:
      break;
 
    case elfcpp::R_SPARC_8:
      Relocate_functions<size, big_endian>::rela8(view, object,
						  psymval, addend);
      break;
 
    case elfcpp::R_SPARC_16:
      Relocate_functions<size, big_endian>::rela16(view, object,
						   psymval, addend);
      break;
 
    case elfcpp::R_SPARC_32:
      if (!parameters->options().output_is_position_independent())
	      Relocate_functions<size, big_endian>::rela32(view, object,
							   psymval, addend);
      break;
 
    case elfcpp::R_SPARC_DISP8:
      Reloc::disp8(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_DISP16:
      Reloc::disp16(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_DISP32:
      Reloc::disp32(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_DISP64:
      Reloc::disp64(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_WDISP30:
    case elfcpp::R_SPARC_WPLT30:
      Reloc::wdisp30(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_WDISP22:
      Reloc::wdisp22(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_WDISP19:
      Reloc::wdisp19(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_WDISP16:
      Reloc::wdisp16(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_HI22:
      Reloc::hi22(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_22:
      Reloc::rela32_22(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_13:
      Reloc::rela32_13(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_LO10:
      Reloc::lo10(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_GOT10:
      Reloc::lo10(view, got_offset, addend);
      break;
 
    case elfcpp::R_SPARC_GOT13:
      Reloc::rela32_13(view, got_offset, addend);
      break;
 
    case elfcpp::R_SPARC_GOT22:
      Reloc::hi22(view, got_offset, addend);
      break;
 
    case elfcpp::R_SPARC_PC10:
      Reloc::pc10(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_PC22:
      Reloc::pc22(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_TLS_DTPOFF32:
    case elfcpp::R_SPARC_UA32:
      Reloc::ua32(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_PLT64:
      Relocate_functions<size, big_endian>::rela64(view, object,
						   psymval, addend);
      break;
 
    case elfcpp::R_SPARC_PLT32:
      Relocate_functions<size, big_endian>::rela32(view, object,
						   psymval, addend);
      break;
 
    case elfcpp::R_SPARC_HIPLT22:
      Reloc::hi22(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_LOPLT10:
      Reloc::lo10(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_PCPLT32:
      Reloc::disp32(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_PCPLT22:
      Reloc::pcplt22(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_PCPLT10:
      Reloc::lo10(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_64:
      if (!parameters->options().output_is_position_independent())
	      Relocate_functions<size, big_endian>::rela64(view, object,
							   psymval, addend);
      break;
 
    case elfcpp::R_SPARC_OLO10:
      {
	unsigned int addend2 = rela.get_r_info() & 0xffffffff;
	addend2 = ((addend2 >> 8) ^ 0x800000) - 0x800000;
	Reloc::olo10(view, object, psymval, addend, addend2);
      }
      break;
 
    case elfcpp::R_SPARC_HH22:
      Reloc::hh22(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_PC_HH22:
      Reloc::pc_hh22(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_HM10:
      Reloc::hm10(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_PC_HM10:
      Reloc::pc_hm10(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_LM22:
      Reloc::hi22(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_PC_LM22:
      Reloc::pcplt22(view, object, psymval, addend, address);
      break;
 
    case elfcpp::R_SPARC_11:
      Reloc::rela32_11(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_10:
      Reloc::rela32_10(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_7:
      Reloc::rela32_7(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_6:
      Reloc::rela32_6(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_5:
      Reloc::rela32_5(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_HIX22:
      Reloc::hix22(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_LOX10:
      Reloc::lox10(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_H44:
      Reloc::h44(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_M44:
      Reloc::m44(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_L44:
      Reloc::l44(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_TLS_DTPOFF64:
    case elfcpp::R_SPARC_UA64:
      Reloc::ua64(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_UA16:
      Reloc::ua16(view, object, psymval, addend);
      break;
 
    case elfcpp::R_SPARC_TLS_GD_HI22:
    case elfcpp::R_SPARC_TLS_GD_LO10:
    case elfcpp::R_SPARC_TLS_GD_ADD:
    case elfcpp::R_SPARC_TLS_GD_CALL:
    case elfcpp::R_SPARC_TLS_LDM_HI22:
    case elfcpp::R_SPARC_TLS_LDM_LO10:
    case elfcpp::R_SPARC_TLS_LDM_ADD:
    case elfcpp::R_SPARC_TLS_LDM_CALL:
    case elfcpp::R_SPARC_TLS_LDO_HIX22:
    case elfcpp::R_SPARC_TLS_LDO_LOX10:
    case elfcpp::R_SPARC_TLS_LDO_ADD:
    case elfcpp::R_SPARC_TLS_IE_HI22:
    case elfcpp::R_SPARC_TLS_IE_LO10:
    case elfcpp::R_SPARC_TLS_IE_LD:
    case elfcpp::R_SPARC_TLS_IE_LDX:
    case elfcpp::R_SPARC_TLS_LE_HIX22:
    case elfcpp::R_SPARC_TLS_LE_LOX10:
      this->relocate_tls(relinfo, target, relnum, rela,
			 r_type, gsym, psymval, view,
			 address, view_size);
      break;
 
    case elfcpp::R_SPARC_COPY:
    case elfcpp::R_SPARC_GLOB_DAT:
    case elfcpp::R_SPARC_JMP_SLOT:
    case elfcpp::R_SPARC_RELATIVE:
      // These are outstanding tls relocs, which are unexpected when
      // linking.
    case elfcpp::R_SPARC_TLS_DTPMOD64:
    case elfcpp::R_SPARC_TLS_DTPMOD32:
    case elfcpp::R_SPARC_TLS_TPOFF64:
    case elfcpp::R_SPARC_TLS_TPOFF32:
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unexpected reloc %u in object file"),
			     r_type);
      break;
 
    default:
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"),
			     r_type);
      break;
    }
 
  return true;
}
 
// Perform a TLS relocation.
 
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Relocate::relocate_tls(
			const Relocate_info<size, big_endian>* relinfo,
			Target_sparc<size, big_endian>* target,
			size_t relnum,
			const elfcpp::Rela<size, big_endian>& rela,
			unsigned int r_type,
			const Sized_symbol<size>* gsym,
			const Symbol_value<size>* psymval,
			unsigned char* view,
			typename elfcpp::Elf_types<size>::Elf_Addr address,
			section_size_type)
{
  Output_segment* tls_segment = relinfo->layout->tls_segment();
  typedef Sparc_relocate_functions<size, big_endian> Reloc;
  const Sized_relobj<size, big_endian>* object = relinfo->object;
  typedef typename elfcpp::Swap<32, true>::Valtype Insntype;
 
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(object, 0);
 
  const bool is_final =
    (gsym == NULL
     ? !parameters->options().output_is_position_independent()
     : gsym->final_value_is_known());
  const tls::Tls_optimization optimized_type
      = optimize_tls_reloc(is_final, r_type);
 
  switch (r_type)
    {
    case elfcpp::R_SPARC_TLS_GD_HI22:
    case elfcpp::R_SPARC_TLS_GD_LO10:
    case elfcpp::R_SPARC_TLS_GD_ADD:
    case elfcpp::R_SPARC_TLS_GD_CALL:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  Insntype* wv = reinterpret_cast<Insntype*>(view);
	  Insntype val;
 
	  value -= tls_segment->memsz();
 
	  switch (r_type)
	    {
	    case elfcpp::R_SPARC_TLS_GD_HI22:
	      // TLS_GD_HI22 --> TLS_LE_HIX22
	      Reloc::hix22(view, value, addend);
	      break;
 
	    case elfcpp::R_SPARC_TLS_GD_LO10:
	      // TLS_GD_LO10 --> TLS_LE_LOX10
	      Reloc::lox10(view, value, addend);
	      break;
 
	    case elfcpp::R_SPARC_TLS_GD_ADD:
	      // add %reg1, %reg2, %reg3 --> mov %g7, %reg2, %reg3
	      val = elfcpp::Swap<32, true>::readval(wv);
	      val = (val & ~0x7c000) | 0x1c000;
	      elfcpp::Swap<32, true>::writeval(wv, val);
	      break;
	    case elfcpp::R_SPARC_TLS_GD_CALL:
	      // call __tls_get_addr --> nop
	      elfcpp::Swap<32, true>::writeval(wv, sparc_nop);
	      break;
	    }
	  break;
	}
      else
        {
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
                                   ? GOT_TYPE_TLS_OFFSET
                                   : GOT_TYPE_TLS_PAIR);
          if (gsym != NULL)
            {
              gold_assert(gsym->has_got_offset(got_type));
              value = gsym->got_offset(got_type);
            }
          else
            {
              unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              value = object->local_got_offset(r_sym, got_type);
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
	    {
	      Insntype* wv = reinterpret_cast<Insntype*>(view);
	      Insntype val;
 
	      switch (r_type)
		{
		case elfcpp::R_SPARC_TLS_GD_HI22:
		  // TLS_GD_HI22 --> TLS_IE_HI22
		  Reloc::hi22(view, value, addend);
		  break;
 
		case elfcpp::R_SPARC_TLS_GD_LO10:
		  // TLS_GD_LO10 --> TLS_IE_LO10
		  Reloc::lo10(view, value, addend);
		  break;
 
		case elfcpp::R_SPARC_TLS_GD_ADD:
		  // add %reg1, %reg2, %reg3 --> ld [%reg1 + %reg2], %reg3
		  val = elfcpp::Swap<32, true>::readval(wv);
 
		  if (size == 64)
		    val |= 0xc0580000;
		  else
		    val |= 0xc0000000;
 
		  elfcpp::Swap<32, true>::writeval(wv, val);
		  break;
 
		case elfcpp::R_SPARC_TLS_GD_CALL:
		  // The compiler can put the TLS_GD_ADD instruction
		  // into the delay slot of the call.  If so, we need
		  // to transpose the two instructions so that the
		  // the new sequence works properly.
		  //
		  // The test we use is if the instruction in the
		  // delay slot is an add with destination register
		  // equal to %o0
		  val = elfcpp::Swap<32, true>::readval(wv + 1);
		  if ((val & 0x81f80000) == 0x80000000
		      && ((val >> 25) & 0x1f) == 0x8)
		    {
		      if (size == 64)
			val |= 0xc0580000;
		      else
			val |= 0xc0000000;
 
		      elfcpp::Swap<32, true>::writeval(wv, val);
 
		      wv += 1;
		      this->ignore_gd_add_ = true;
		    }
 
		  // call __tls_get_addr --> add %g7, %o0, %o0
		  elfcpp::Swap<32, true>::writeval(wv, 0x9001c008);
		  break;
		}
              break;
	    }
          else if (optimized_type == tls::TLSOPT_NONE)
            {
	      switch (r_type)
		{
		case elfcpp::R_SPARC_TLS_GD_HI22:
		  Reloc::hi22(view, value, addend);
		  break;
		case elfcpp::R_SPARC_TLS_GD_LO10:
		  Reloc::lo10(view, value, addend);
		  break;
		case elfcpp::R_SPARC_TLS_GD_ADD:
		  break;
		case elfcpp::R_SPARC_TLS_GD_CALL:
		  {
		    Symbol_value<size> symval;
		    elfcpp::Elf_Xword value;
		    Symbol* tsym;
 
		    tsym = target->tls_get_addr_sym_;
		    gold_assert(tsym);
		    value = (target->plt_section()->address() +
			     tsym->plt_offset());
		    symval.set_output_value(value);
		    Reloc::wdisp30(view, object, &symval, addend, address);
		  }
		  break;
		}
	      break;
            }
        }
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"),
			     r_type);
      break;
 
    case elfcpp::R_SPARC_TLS_LDM_HI22:
    case elfcpp::R_SPARC_TLS_LDM_LO10:
    case elfcpp::R_SPARC_TLS_LDM_ADD:
    case elfcpp::R_SPARC_TLS_LDM_CALL:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  Insntype* wv = reinterpret_cast<Insntype*>(view);
 
	  switch (r_type)
	    {
	    case elfcpp::R_SPARC_TLS_LDM_HI22:
	    case elfcpp::R_SPARC_TLS_LDM_LO10:
	    case elfcpp::R_SPARC_TLS_LDM_ADD:
	      elfcpp::Swap<32, true>::writeval(wv, sparc_nop);
	      break;
 
	    case elfcpp::R_SPARC_TLS_LDM_CALL:
	      elfcpp::Swap<32, true>::writeval(wv, sparc_mov_g0_o0);
	      break;
	    }
	  break;
	}
      else if (optimized_type == tls::TLSOPT_NONE)
        {
          // Relocate the field with the offset of the GOT entry for
          // the module index.
          unsigned int got_offset;
 
	  got_offset = target->got_mod_index_entry(NULL, NULL, NULL);
	  switch (r_type)
	    {
	    case elfcpp::R_SPARC_TLS_LDM_HI22:
	      Reloc::hi22(view, got_offset, addend);
	      break;
	    case elfcpp::R_SPARC_TLS_LDM_LO10:
	      Reloc::lo10(view, got_offset, addend);
	      break;
	    case elfcpp::R_SPARC_TLS_LDM_ADD:
	      break;
	    case elfcpp::R_SPARC_TLS_LDM_CALL:
	      {
		Symbol_value<size> symval;
		elfcpp::Elf_Xword value;
		Symbol* tsym;
 
		tsym = target->tls_get_addr_sym_;
		gold_assert(tsym);
		value = (target->plt_section()->address() +
			 tsym->plt_offset());
		symval.set_output_value(value);
		Reloc::wdisp30(view, object, &symval, addend, address);
	      }
	      break;
	    }
          break;
        }
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"),
			     r_type);
      break;
 
      // These relocs can appear in debugging sections, in which case
      // we won't see the TLS_LDM relocs.  The local_dynamic_type
      // field tells us this.
    case elfcpp::R_SPARC_TLS_LDO_HIX22:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  value -= tls_segment->memsz();
	  Reloc::hix22(view, value, addend);
	}
      else
	Reloc::ldo_hix22(view, value, addend);
      break;
    case elfcpp::R_SPARC_TLS_LDO_LOX10:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  value -= tls_segment->memsz();
	  Reloc::lox10(view, value, addend);
	}
      else
	Reloc::ldo_lox10(view, value, addend);
      break;
    case elfcpp::R_SPARC_TLS_LDO_ADD:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  Insntype* wv = reinterpret_cast<Insntype*>(view);
	  Insntype val;
 
	  // add %reg1, %reg2, %reg3 --> add %g7, %reg2, %reg3
	  val = elfcpp::Swap<32, true>::readval(wv);
	  val = (val & ~0x7c000) | 0x1c000;
	  elfcpp::Swap<32, true>::writeval(wv, val);
	}
      break;
 
      // When optimizing IE --> LE, the only relocation that is handled
      // differently is R_SPARC_TLS_IE_LD, it is rewritten from
      // 'ld{,x} [rs1 + rs2], rd' into 'mov rs2, rd' or simply a NOP is
      // rs2 and rd are the same.
    case elfcpp::R_SPARC_TLS_IE_LD:
    case elfcpp::R_SPARC_TLS_IE_LDX:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  Insntype* wv = reinterpret_cast<Insntype*>(view);
	  Insntype val = elfcpp::Swap<32, true>::readval(wv);
	  Insntype rs2 = val & 0x1f;
	  Insntype rd = (val >> 25) & 0x1f;
 
	  if (rs2 == rd)
	    val = sparc_nop;
	  else
	    val = sparc_mov | (val & 0x3e00001f);
 
	  elfcpp::Swap<32, true>::writeval(wv, val);
	}
      break;
 
    case elfcpp::R_SPARC_TLS_IE_HI22:
    case elfcpp::R_SPARC_TLS_IE_LO10:
      if (optimized_type == tls::TLSOPT_TO_LE)
	{
	  value -= tls_segment->memsz();
	  switch (r_type)
	    {
	    case elfcpp::R_SPARC_TLS_IE_HI22:
	      // IE_HI22 --> LE_HIX22
	      Reloc::hix22(view, value, addend);
	      break;
	    case elfcpp::R_SPARC_TLS_IE_LO10:
	      // IE_LO10 --> LE_LOX10
	      Reloc::lox10(view, value, addend);
	      break;
	    }
	  break;
	}
      else if (optimized_type == tls::TLSOPT_NONE)
	{
	  // Relocate the field with the offset of the GOT entry for
	  // the tp-relative offset of the symbol.
	  if (gsym != NULL)
	    {
	      gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
	      value = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
	    }
	  else
	    {
	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
	      gold_assert(object->local_has_got_offset(r_sym,
						       GOT_TYPE_TLS_OFFSET));
	      value = object->local_got_offset(r_sym,
					       GOT_TYPE_TLS_OFFSET);
	    }
	  switch (r_type)
	    {
	    case elfcpp::R_SPARC_TLS_IE_HI22:
	      Reloc::hi22(view, value, addend);
	      break;
	    case elfcpp::R_SPARC_TLS_IE_LO10:
	      Reloc::lo10(view, value, addend);
	      break;
	    }
	  break;
	}
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
			     _("unsupported reloc %u"),
			     r_type);
      break;
 
    case elfcpp::R_SPARC_TLS_LE_HIX22:
      // If we're creating a shared library, a dynamic relocation will
      // have been created for this location, so do not apply it now.
      if (!parameters->options().shared())
	{
	  value -= tls_segment->memsz();
	  Reloc::hix22(view, value, addend);
	}
      break;
 
    case elfcpp::R_SPARC_TLS_LE_LOX10:
      // If we're creating a shared library, a dynamic relocation will
      // have been created for this location, so do not apply it now.
      if (!parameters->options().shared())
	{
	  value -= tls_segment->memsz();
	  Reloc::lox10(view, value, addend);
	}
      break;
    }
}
 
// Relocate section data.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::relocate_section(
			const Relocate_info<size, big_endian>* relinfo,
			unsigned int sh_type,
			const unsigned char* prelocs,
			size_t reloc_count,
			Output_section* output_section,
			bool needs_special_offset_handling,
			unsigned char* view,
			typename elfcpp::Elf_types<size>::Elf_Addr address,
			section_size_type view_size)
{
  typedef Target_sparc<size, big_endian> Sparc;
  typedef typename Target_sparc<size, big_endian>::Relocate Sparc_relocate;
 
  gold_assert(sh_type == elfcpp::SHT_RELA);
 
  gold::relocate_section<size, big_endian, Sparc, elfcpp::SHT_RELA,
    Sparc_relocate>(
    relinfo,
    this,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    view,
    address,
    view_size);
}
 
// Return the size of a relocation while scanning during a relocatable
// link.
 
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
    unsigned int,
    Relobj*)
{
  // We are always SHT_RELA, so we should never get here.
  gold_unreachable();
  return 0;
}
 
// Scan the relocs during a relocatable link.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::scan_relocatable_relocs(
			const General_options& options,
			Symbol_table* symtab,
			Layout* layout,
			Sized_relobj<size, big_endian>* object,
			unsigned int data_shndx,
			unsigned int sh_type,
			const unsigned char* prelocs,
			size_t reloc_count,
			Output_section* output_section,
			bool needs_special_offset_handling,
			size_t local_symbol_count,
			const unsigned char* plocal_symbols,
			Relocatable_relocs* rr)
{
  gold_assert(sh_type == elfcpp::SHT_RELA);
 
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
 
  gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
      Scan_relocatable_relocs>(
    options,
    symtab,
    layout,
    object,
    data_shndx,
    prelocs,
    reloc_count,
    output_section,
    needs_special_offset_handling,
    local_symbol_count,
    plocal_symbols,
    rr);
}
 
// Relocate a section during a relocatable link.
 
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::relocate_for_relocatable(
    const Relocate_info<size, big_endian>* relinfo,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    off_t offset_in_output_section,
    const Relocatable_relocs* rr,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
{
  gold_assert(sh_type == elfcpp::SHT_RELA);
 
  gold::relocate_for_relocatable<size, big_endian, elfcpp::SHT_RELA>(
    relinfo,
    prelocs,
    reloc_count,
    output_section,
    offset_in_output_section,
    rr,
    view,
    view_address,
    view_size,
    reloc_view,
    reloc_view_size);
}
 
// Return the value to use for a dynamic which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
 
template<int size, bool big_endian>
uint64_t
Target_sparc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_section()->address() + gsym->plt_offset();
}
 
// The selector for sparc object files.
 
template<int size, bool big_endian>
class Target_selector_sparc : public Target_selector
{
public:
  Target_selector_sparc()
    : Target_selector(elfcpp::EM_NONE, size, big_endian,
		      (size == 64 ? "elf64-sparc" : "elf32-sparc"))
  { }
 
  Target* instantiated_target_;
 
  Target* do_recognize(int machine, int, int)
  {
    switch (size)
      {
      case 64:
	if (machine != elfcpp::EM_SPARCV9)
	  return NULL;
	break;
 
      case 32:
	if (machine != elfcpp::EM_SPARC
	    && machine != elfcpp::EM_SPARC32PLUS)
	  return NULL;
	break;
 
      default:
	return NULL;
      }
 
    return do_instantiate_target();
  }
 
  Target* do_instantiate_target()
  {
    if (this->instantiated_target_ == NULL)
      this->instantiated_target_ = new Target_sparc<size, big_endian>();
    return this->instantiated_target_;
  }
};
 
Target_selector_sparc<32, true> target_selector_sparc32;
Target_selector_sparc<64, true> target_selector_sparc64;
 
} // End anonymous namespace.
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.