OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [ada/] [s-taprop-mingw.adb] - Rev 12

Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
--                                                                          --
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
--                                                                          --
--                                  B o d y                                 --
--                                                                          --
--         Copyright (C) 1992-2005, Free Software Foundation, Inc.          --
--                                                                          --
-- GNARL is free software; you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNARL; see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- GNARL was developed by the GNARL team at Florida State University.       --
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
--                                                                          --
------------------------------------------------------------------------------
 
--  This is a NT (native) version of this package
 
--  This package contains all the GNULL primitives that interface directly
--  with the underlying OS.
 
pragma Polling (Off);
--  Turn off polling, we do not want ATC polling to take place during
--  tasking operations. It causes infinite loops and other problems.
 
with System.Tasking.Debug;
--  used for Known_Tasks
 
with System.OS_Primitives;
--  used for Delay_Modes
 
with Interfaces.C;
--  used for int
--           size_t
 
with Interfaces.C.Strings;
--  used for Null_Ptr
 
with System.OS_Interface;
--  used for various type, constant, and operations
 
with System.Parameters;
--  used for Size_Type
 
with System.Task_Info;
--  used for Unspecified_Task_Info
 
with Unchecked_Deallocation;
 
package body System.Task_Primitives.Operations is
 
   use System.Tasking.Debug;
   use System.Tasking;
   use Interfaces.C;
   use Interfaces.C.Strings;
   use System.OS_Interface;
   use System.Parameters;
   use System.OS_Primitives;
 
   pragma Link_With ("-Xlinker --stack=0x800000,0x1000");
   --  Change the stack size (8 MB) for tasking programs on Windows. This
   --  permit to have more than 30 tasks running at the same time. Note that
   --  we set the stack size for non tasking programs on System unit.
 
   ----------------
   -- Local Data --
   ----------------
 
   Environment_Task_Id : Task_Id;
   --  A variable to hold Task_Id for the environment task
 
   Single_RTS_Lock : aliased RTS_Lock;
   --  This is a lock to allow only one thread of control in the RTS at
   --  a time; it is used to execute in mutual exclusion from all other tasks.
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
 
   Time_Slice_Val : Integer;
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
 
   Dispatching_Policy : Character;
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
 
   Foreign_Task_Elaborated : aliased Boolean := True;
   --  Used to identified fake tasks (i.e., non-Ada Threads)
 
   ------------------------------------
   -- The thread local storage index --
   ------------------------------------
 
   TlsIndex : DWORD;
   pragma Export (Ada, TlsIndex);
   --  To ensure that this variable won't be local to this package, since
   --  in some cases, inlining forces this variable to be global anyway.
 
   --------------------
   -- Local Packages --
   --------------------
 
   package Specific is
 
      function Is_Valid_Task return Boolean;
      pragma Inline (Is_Valid_Task);
      --  Does executing thread have a TCB?
 
      procedure Set (Self_Id : Task_Id);
      pragma Inline (Set);
      --  Set the self id for the current task.
 
   end Specific;
 
   package body Specific is
 
      function Is_Valid_Task return Boolean is
      begin
         return TlsGetValue (TlsIndex) /= System.Null_Address;
      end Is_Valid_Task;
 
      procedure Set (Self_Id : Task_Id) is
         Succeeded : BOOL;
      begin
         Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
         pragma Assert (Succeeded = True);
      end Set;
 
   end Specific;
 
   ---------------------------------
   -- Support for foreign threads --
   ---------------------------------
 
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
   --  Allocate and Initialize a new ATCB for the current Thread.
 
   function Register_Foreign_Thread
     (Thread : Thread_Id) return Task_Id is separate;
 
   ----------------------------------
   -- Condition Variable Functions --
   ----------------------------------
 
   procedure Initialize_Cond (Cond : access Condition_Variable);
   --  Initialize given condition variable Cond
 
   procedure Finalize_Cond (Cond : access Condition_Variable);
   --  Finalize given condition variable Cond.
 
   procedure Cond_Signal (Cond : access Condition_Variable);
   --  Signal condition variable Cond
 
   procedure Cond_Wait
     (Cond : access Condition_Variable;
      L    : access RTS_Lock);
   --  Wait on conditional variable Cond, using lock L
 
   procedure Cond_Timed_Wait
     (Cond      : access Condition_Variable;
      L         : access RTS_Lock;
      Rel_Time  : Duration;
      Timed_Out : out Boolean;
      Status    : out Integer);
   --  Do timed wait on condition variable Cond using lock L. The duration
   --  of the timed wait is given by Rel_Time. When the condition is
   --  signalled, Timed_Out shows whether or not a time out occurred.
   --  Status is only valid if Timed_Out is False, in which case it
   --  shows whether Cond_Timed_Wait completed successfully.
 
   ---------------------
   -- Initialize_Cond --
   ---------------------
 
   procedure Initialize_Cond (Cond : access Condition_Variable) is
      hEvent : HANDLE;
 
   begin
      hEvent := CreateEvent (null, True, False, Null_Ptr);
      pragma Assert (hEvent /= 0);
      Cond.all := Condition_Variable (hEvent);
   end Initialize_Cond;
 
   -------------------
   -- Finalize_Cond --
   -------------------
 
   --  No such problem here, DosCloseEventSem has been derived.
   --  What does such refer to in above comment???
 
   procedure Finalize_Cond (Cond : access Condition_Variable) is
      Result : BOOL;
   begin
      Result := CloseHandle (HANDLE (Cond.all));
      pragma Assert (Result = True);
   end Finalize_Cond;
 
   -----------------
   -- Cond_Signal --
   -----------------
 
   procedure Cond_Signal (Cond : access Condition_Variable) is
      Result : BOOL;
   begin
      Result := SetEvent (HANDLE (Cond.all));
      pragma Assert (Result = True);
   end Cond_Signal;
 
   ---------------
   -- Cond_Wait --
   ---------------
 
   --  Pre-assertion: Cond is posted
   --                 L is locked.
 
   --  Post-assertion: Cond is posted
   --                  L is locked.
 
   procedure Cond_Wait
     (Cond : access Condition_Variable;
      L    : access RTS_Lock)
   is
      Result      : DWORD;
      Result_Bool : BOOL;
 
   begin
      --  Must reset Cond BEFORE L is unlocked.
 
      Result_Bool := ResetEvent (HANDLE (Cond.all));
      pragma Assert (Result_Bool = True);
      Unlock (L);
 
      --  No problem if we are interrupted here: if the condition is signaled,
      --  WaitForSingleObject will simply not block
 
      Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
      pragma Assert (Result = 0);
 
      Write_Lock (L);
   end Cond_Wait;
 
   ---------------------
   -- Cond_Timed_Wait --
   ---------------------
 
   --  Pre-assertion: Cond is posted
   --                 L is locked.
 
   --  Post-assertion: Cond is posted
   --                  L is locked.
 
   procedure Cond_Timed_Wait
     (Cond      : access Condition_Variable;
      L         : access RTS_Lock;
      Rel_Time  : Duration;
      Timed_Out : out Boolean;
      Status    : out Integer)
   is
      Time_Out_Max : constant DWORD := 16#FFFF0000#;
      --  NT 4 cannot handle timeout values that are too large,
      --  e.g. DWORD'Last - 1
 
      Time_Out     : DWORD;
      Result       : BOOL;
      Wait_Result  : DWORD;
 
   begin
      --  Must reset Cond BEFORE L is unlocked.
 
      Result := ResetEvent (HANDLE (Cond.all));
      pragma Assert (Result = True);
      Unlock (L);
 
      --  No problem if we are interrupted here: if the condition is signaled,
      --  WaitForSingleObject will simply not block
 
      if Rel_Time <= 0.0 then
         Timed_Out := True;
         Wait_Result := 0;
 
      else
         if Rel_Time >= Duration (Time_Out_Max) / 1000 then
            Time_Out := Time_Out_Max;
         else
            Time_Out := DWORD (Rel_Time * 1000);
         end if;
 
         Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
 
         if Wait_Result = WAIT_TIMEOUT then
            Timed_Out := True;
            Wait_Result := 0;
         else
            Timed_Out := False;
         end if;
      end if;
 
      Write_Lock (L);
 
      --  Ensure post-condition
 
      if Timed_Out then
         Result := SetEvent (HANDLE (Cond.all));
         pragma Assert (Result = True);
      end if;
 
      Status := Integer (Wait_Result);
   end Cond_Timed_Wait;
 
   ------------------
   -- Stack_Guard  --
   ------------------
 
   --  The underlying thread system sets a guard page at the
   --  bottom of a thread stack, so nothing is needed.
   --  ??? Check the comment above
 
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
      pragma Warnings (Off, T);
      pragma Warnings (Off, On);
 
   begin
      null;
   end Stack_Guard;
 
   --------------------
   -- Get_Thread_Id  --
   --------------------
 
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
   begin
      return T.Common.LL.Thread;
   end Get_Thread_Id;
 
   ----------
   -- Self --
   ----------
 
   function Self return Task_Id is
      Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
   begin
      if Self_Id = null then
         return Register_Foreign_Thread (GetCurrentThread);
      else
         return Self_Id;
      end if;
   end Self;
 
   ---------------------
   -- Initialize_Lock --
   ---------------------
 
   --  Note: mutexes and cond_variables needed per-task basis are
   --  initialized in Intialize_TCB and the Storage_Error is handled.
   --  Other mutexes (such as RTS_Lock, Memory_Lock...) used in
   --  the RTS is initialized before any status change of RTS.
   --  Therefore raising Storage_Error in the following routines
   --  should be able to be handled safely.
 
   procedure Initialize_Lock
     (Prio : System.Any_Priority;
      L    : access Lock)
   is
   begin
      InitializeCriticalSection (L.Mutex'Access);
      L.Owner_Priority := 0;
      L.Priority := Prio;
   end Initialize_Lock;
 
   procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
      pragma Unreferenced (Level);
   begin
      InitializeCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
   end Initialize_Lock;
 
   -------------------
   -- Finalize_Lock --
   -------------------
 
   procedure Finalize_Lock (L : access Lock) is
   begin
      DeleteCriticalSection (L.Mutex'Access);
   end Finalize_Lock;
 
   procedure Finalize_Lock (L : access RTS_Lock) is
   begin
      DeleteCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
   end Finalize_Lock;
 
   ----------------
   -- Write_Lock --
   ----------------
 
   procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
   begin
      L.Owner_Priority := Get_Priority (Self);
 
      if L.Priority < L.Owner_Priority then
         Ceiling_Violation := True;
         return;
      end if;
 
      EnterCriticalSection (L.Mutex'Access);
 
      Ceiling_Violation := False;
   end Write_Lock;
 
   procedure Write_Lock
     (L           : access RTS_Lock;
      Global_Lock : Boolean := False)
   is
   begin
      if not Single_Lock or else Global_Lock then
         EnterCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
      end if;
   end Write_Lock;
 
   procedure Write_Lock (T : Task_Id) is
   begin
      if not Single_Lock then
         EnterCriticalSection
           (CRITICAL_SECTION (T.Common.LL.L)'Unrestricted_Access);
      end if;
   end Write_Lock;
 
   ---------------
   -- Read_Lock --
   ---------------
 
   procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
   begin
      Write_Lock (L, Ceiling_Violation);
   end Read_Lock;
 
   ------------
   -- Unlock --
   ------------
 
   procedure Unlock (L : access Lock) is
   begin
      LeaveCriticalSection (L.Mutex'Access);
   end Unlock;
 
   procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
   begin
      if not Single_Lock or else Global_Lock then
         LeaveCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
      end if;
   end Unlock;
 
   procedure Unlock (T : Task_Id) is
   begin
      if not Single_Lock then
         LeaveCriticalSection
           (CRITICAL_SECTION (T.Common.LL.L)'Unrestricted_Access);
      end if;
   end Unlock;
 
   -----------
   -- Sleep --
   -----------
 
   procedure Sleep
     (Self_ID : Task_Id;
      Reason  : System.Tasking.Task_States)
   is
      pragma Unreferenced (Reason);
 
   begin
      pragma Assert (Self_ID = Self);
 
      if Single_Lock then
         Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
      else
         Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
      end if;
 
      if Self_ID.Deferral_Level = 0
        and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
      then
         Unlock (Self_ID);
         raise Standard'Abort_Signal;
      end if;
   end Sleep;
 
   -----------------
   -- Timed_Sleep --
   -----------------
 
   --  This is for use within the run-time system, so abort is
   --  assumed to be already deferred, and the caller should be
   --  holding its own ATCB lock.
 
   procedure Timed_Sleep
     (Self_ID  : Task_Id;
      Time     : Duration;
      Mode     : ST.Delay_Modes;
      Reason   : System.Tasking.Task_States;
      Timedout : out Boolean;
      Yielded  : out Boolean)
   is
      pragma Unreferenced (Reason);
      Check_Time : Duration := Monotonic_Clock;
      Rel_Time   : Duration;
      Abs_Time   : Duration;
      Result     : Integer;
 
      Local_Timedout : Boolean;
 
   begin
      Timedout := True;
      Yielded  := False;
 
      if Mode = Relative then
         Rel_Time := Time;
         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
      else
         Rel_Time := Time - Check_Time;
         Abs_Time := Time;
      end if;
 
      if Rel_Time > 0.0 then
         loop
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
              or else Self_ID.Pending_Priority_Change;
 
            if Single_Lock then
               Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
                 Single_RTS_Lock'Access, Rel_Time, Local_Timedout, Result);
            else
               Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
                 Self_ID.Common.LL.L'Access, Rel_Time, Local_Timedout, Result);
            end if;
 
            Check_Time := Monotonic_Clock;
            exit when Abs_Time <= Check_Time;
 
            if not Local_Timedout then
 
               --  Somebody may have called Wakeup for us
 
               Timedout := False;
               exit;
            end if;
 
            Rel_Time := Abs_Time - Check_Time;
         end loop;
      end if;
   end Timed_Sleep;
 
   -----------------
   -- Timed_Delay --
   -----------------
 
   procedure Timed_Delay
     (Self_ID  : Task_Id;
      Time     : Duration;
      Mode     : ST.Delay_Modes)
   is
      Check_Time : Duration := Monotonic_Clock;
      Rel_Time   : Duration;
      Abs_Time   : Duration;
      Result     : Integer;
      Timedout   : Boolean;
 
   begin
      if Single_Lock then
         Lock_RTS;
      end if;
 
      Write_Lock (Self_ID);
 
      if Mode = Relative then
         Rel_Time := Time;
         Abs_Time := Time + Check_Time;
      else
         Rel_Time := Time - Check_Time;
         Abs_Time := Time;
      end if;
 
      if Rel_Time > 0.0 then
         Self_ID.Common.State := Delay_Sleep;
 
         loop
            if Self_ID.Pending_Priority_Change then
               Self_ID.Pending_Priority_Change := False;
               Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
               Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
            end if;
 
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
 
            if Single_Lock then
               Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
                 Single_RTS_Lock'Access, Rel_Time, Timedout, Result);
            else
               Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
                 Self_ID.Common.LL.L'Access, Rel_Time, Timedout, Result);
            end if;
 
            Check_Time := Monotonic_Clock;
            exit when Abs_Time <= Check_Time;
 
            Rel_Time := Abs_Time - Check_Time;
         end loop;
 
         Self_ID.Common.State := Runnable;
      end if;
 
      Unlock (Self_ID);
 
      if Single_Lock then
         Unlock_RTS;
      end if;
 
      Yield;
   end Timed_Delay;
 
   ------------
   -- Wakeup --
   ------------
 
   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
      pragma Unreferenced (Reason);
   begin
      Cond_Signal (T.Common.LL.CV'Access);
   end Wakeup;
 
   -----------
   -- Yield --
   -----------
 
   procedure Yield (Do_Yield : Boolean := True) is
   begin
      if Do_Yield then
         Sleep (0);
      end if;
   end Yield;
 
   ------------------
   -- Set_Priority --
   ------------------
 
   type Prio_Array_Type is array (System.Any_Priority) of Integer;
   pragma Atomic_Components (Prio_Array_Type);
 
   Prio_Array : Prio_Array_Type;
   --  Global array containing the id of the currently running task for
   --  each priority.
   --
   --  Note: we assume that we are on a single processor with run-til-blocked
   --  scheduling.
 
   procedure Set_Priority
     (T                   : Task_Id;
      Prio                : System.Any_Priority;
      Loss_Of_Inheritance : Boolean := False)
   is
      Res        : BOOL;
      Array_Item : Integer;
 
   begin
      Res := SetThreadPriority
        (T.Common.LL.Thread, Interfaces.C.int (Underlying_Priorities (Prio)));
      pragma Assert (Res = True);
 
      if Dispatching_Policy = 'F' then
 
         --  Annex D requirement [RM D.2.2 par. 9]:
         --    If the task drops its priority due to the loss of inherited
         --    priority, it is added at the head of the ready queue for its
         --    new active priority.
 
         if Loss_Of_Inheritance
           and then Prio < T.Common.Current_Priority
         then
            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
            Prio_Array (T.Common.Base_Priority) := Array_Item;
 
            loop
               --  Let some processes a chance to arrive
 
               Yield;
 
               --  Then wait for our turn to proceed
 
               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
                 or else Prio_Array (T.Common.Base_Priority) = 1;
            end loop;
 
            Prio_Array (T.Common.Base_Priority) :=
              Prio_Array (T.Common.Base_Priority) - 1;
         end if;
      end if;
 
      T.Common.Current_Priority := Prio;
   end Set_Priority;
 
   ------------------
   -- Get_Priority --
   ------------------
 
   function Get_Priority (T : Task_Id) return System.Any_Priority is
   begin
      return T.Common.Current_Priority;
   end Get_Priority;
 
   ----------------
   -- Enter_Task --
   ----------------
 
   --  There were two paths were we needed to call Enter_Task :
   --  1) from System.Task_Primitives.Operations.Initialize
   --  2) from System.Tasking.Stages.Task_Wrapper
   --
   --  The thread initialisation has to be done only for the first case.
   --
   --  This is because the GetCurrentThread NT call does not return the
   --  real thread handler but only a "pseudo" one. It is not possible to
   --  release the thread handle and free the system ressources from this
   --  "pseudo" handle. So we really want to keep the real thread handle
   --  set in System.Task_Primitives.Operations.Create_Task during the
   --  thread creation.
 
   procedure Enter_Task (Self_ID : Task_Id) is
      procedure Init_Float;
      pragma Import (C, Init_Float, "__gnat_init_float");
      --  Properly initializes the FPU for x86 systems.
 
   begin
      Specific.Set (Self_ID);
      Init_Float;
 
      Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
 
      Lock_RTS;
 
      for J in Known_Tasks'Range loop
         if Known_Tasks (J) = null then
            Known_Tasks (J) := Self_ID;
            Self_ID.Known_Tasks_Index := J;
            exit;
         end if;
      end loop;
 
      Unlock_RTS;
   end Enter_Task;
 
   --------------
   -- New_ATCB --
   --------------
 
   function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
   begin
      return new Ada_Task_Control_Block (Entry_Num);
   end New_ATCB;
 
   -------------------
   -- Is_Valid_Task --
   -------------------
 
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
 
   -----------------------------
   -- Register_Foreign_Thread --
   -----------------------------
 
   function Register_Foreign_Thread return Task_Id is
   begin
      if Is_Valid_Task then
         return Self;
      else
         return Register_Foreign_Thread (GetCurrentThread);
      end if;
   end Register_Foreign_Thread;
 
   --------------------
   -- Initialize_TCB --
   --------------------
 
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
   begin
      --  Initialize thread ID to 0, this is needed to detect threads that
      --  are not yet activated.
 
      Self_ID.Common.LL.Thread := 0;
 
      Initialize_Cond (Self_ID.Common.LL.CV'Access);
 
      if not Single_Lock then
         Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
      end if;
 
      Succeeded := True;
   end Initialize_TCB;
 
   -----------------
   -- Create_Task --
   -----------------
 
   procedure Create_Task
     (T          : Task_Id;
      Wrapper    : System.Address;
      Stack_Size : System.Parameters.Size_Type;
      Priority   : System.Any_Priority;
      Succeeded  : out Boolean)
   is
      pragma Unreferenced (Stack_Size);
 
      Initial_Stack_Size : constant := 1024;
      --  We set the initial stack size to 1024. On Windows there is no way to
      --  fix a task stack size. Only the initial stack size can be set, the
      --  operating system will raise the task stack size if needed.
 
      hTask          : HANDLE;
      TaskId         : aliased DWORD;
      pTaskParameter : System.OS_Interface.PVOID;
      Result         : DWORD;
      Entry_Point    : PTHREAD_START_ROUTINE;
 
   begin
      pTaskParameter := To_Address (T);
 
      Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
 
      hTask := CreateThread
         (null,
          Initial_Stack_Size,
          Entry_Point,
          pTaskParameter,
          DWORD (Create_Suspended),
          TaskId'Unchecked_Access);
 
      --  Step 1: Create the thread in blocked mode
 
      if hTask = 0 then
         raise Storage_Error;
      end if;
 
      --  Step 2: set its TCB
 
      T.Common.LL.Thread := hTask;
 
      --  Step 3: set its priority (child has inherited priority from parent)
 
      Set_Priority (T, Priority);
 
      if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
         --  Here we need Annex E semantics so we disable the NT priority
         --  boost. A priority boost is temporarily given by the system to a
         --  thread when it is taken out of a wait state.
 
         SetThreadPriorityBoost (hTask, DisablePriorityBoost => True);
      end if;
 
      --  Step 4: Now, start it for good:
 
      Result := ResumeThread (hTask);
      pragma Assert (Result = 1);
 
      Succeeded := Result = 1;
   end Create_Task;
 
   ------------------
   -- Finalize_TCB --
   ------------------
 
   procedure Finalize_TCB (T : Task_Id) is
      Self_ID   : Task_Id := T;
      Result    : DWORD;
      Succeeded : BOOL;
      Is_Self   : constant Boolean := T = Self;
 
      procedure Free is new
        Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
 
   begin
      if not Single_Lock then
         Finalize_Lock (T.Common.LL.L'Access);
      end if;
 
      Finalize_Cond (T.Common.LL.CV'Access);
 
      if T.Known_Tasks_Index /= -1 then
         Known_Tasks (T.Known_Tasks_Index) := null;
      end if;
 
      if Self_ID.Common.LL.Thread /= 0 then
 
         --  This task has been activated. Wait for the thread to terminate
         --  then close it. this is needed to release system ressources.
 
         Result := WaitForSingleObject (T.Common.LL.Thread, Wait_Infinite);
         pragma Assert (Result /= WAIT_FAILED);
         Succeeded := CloseHandle (T.Common.LL.Thread);
         pragma Assert (Succeeded = True);
      end if;
 
      Free (Self_ID);
 
      if Is_Self then
         Specific.Set (null);
      end if;
   end Finalize_TCB;
 
   ---------------
   -- Exit_Task --
   ---------------
 
   procedure Exit_Task is
   begin
      Specific.Set (null);
   end Exit_Task;
 
   ----------------
   -- Abort_Task --
   ----------------
 
   procedure Abort_Task (T : Task_Id) is
      pragma Unreferenced (T);
   begin
      null;
   end Abort_Task;
 
   ----------------------
   -- Environment_Task --
   ----------------------
 
   function Environment_Task return Task_Id is
   begin
      return Environment_Task_Id;
   end Environment_Task;
 
   --------------
   -- Lock_RTS --
   --------------
 
   procedure Lock_RTS is
   begin
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
   end Lock_RTS;
 
   ----------------
   -- Unlock_RTS --
   ----------------
 
   procedure Unlock_RTS is
   begin
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
   end Unlock_RTS;
 
   ----------------
   -- Initialize --
   ----------------
 
   procedure Initialize (Environment_Task : Task_Id) is
      Discard : BOOL;
      pragma Unreferenced (Discard);
 
   begin
      Environment_Task_Id := Environment_Task;
      OS_Primitives.Initialize;
 
      if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
 
         --  Here we need Annex D semantics, switch the current process to the
         --  High_Priority_Class.
 
         Discard :=
           OS_Interface.SetPriorityClass
             (GetCurrentProcess, High_Priority_Class);
 
         --  ??? In theory it should be possible to use the priority class
         --  Realtime_Prioriry_Class but we suspect a bug in the NT scheduler
         --  which prevents (in some obscure cases) a thread to get on top of
         --  the running queue by another thread of lower priority. For
         --  example cxd8002 ACATS test freeze.
      end if;
 
      TlsIndex := TlsAlloc;
 
      --  Initialize the lock used to synchronize chain of all ATCBs.
 
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
 
      Environment_Task.Common.LL.Thread := GetCurrentThread;
      Enter_Task (Environment_Task);
   end Initialize;
 
   ---------------------
   -- Monotonic_Clock --
   ---------------------
 
   function Monotonic_Clock return Duration
     renames System.OS_Primitives.Monotonic_Clock;
 
   -------------------
   -- RT_Resolution --
   -------------------
 
   function RT_Resolution return Duration is
   begin
      return 0.000_001; --  1 micro-second
   end RT_Resolution;
 
   ----------------
   -- Initialize --
   ----------------
 
   procedure Initialize (S : in out Suspension_Object) is
   begin
      --  Initialize internal state. It is always initialized to False (ARM
      --  D.10 par. 6).
 
      S.State := False;
      S.Waiting := False;
 
      --  Initialize internal mutex
 
      InitializeCriticalSection (S.L'Access);
 
      --  Initialize internal condition variable
 
      S.CV := CreateEvent (null, True, False, Null_Ptr);
      pragma Assert (S.CV /= 0);
   end Initialize;
 
   --------------
   -- Finalize --
   --------------
 
   procedure Finalize (S : in out Suspension_Object) is
      Result : BOOL;
   begin
      --  Destroy internal mutex
 
      DeleteCriticalSection (S.L'Access);
 
      --  Destroy internal condition variable
 
      Result := CloseHandle (S.CV);
      pragma Assert (Result = True);
   end Finalize;
 
   -------------------
   -- Current_State --
   -------------------
 
   function Current_State (S : Suspension_Object) return Boolean is
   begin
      --  We do not want to use lock on this read operation. State is marked
      --  as Atomic so that we ensure that the value retrieved is correct.
 
      return S.State;
   end Current_State;
 
   ---------------
   -- Set_False --
   ---------------
 
   procedure Set_False (S : in out Suspension_Object) is
   begin
      EnterCriticalSection (S.L'Access);
 
      S.State := False;
 
      LeaveCriticalSection (S.L'Access);
   end Set_False;
 
   --------------
   -- Set_True --
   --------------
 
   procedure Set_True (S : in out Suspension_Object) is
      Result : BOOL;
   begin
      EnterCriticalSection (S.L'Access);
 
      --  If there is already a task waiting on this suspension object then
      --  we resume it, leaving the state of the suspension object to False,
      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
      --  the state to True.
 
      if S.Waiting then
         S.Waiting := False;
         S.State := False;
 
         Result := SetEvent (S.CV);
         pragma Assert (Result = True);
      else
         S.State := True;
      end if;
 
      LeaveCriticalSection (S.L'Access);
   end Set_True;
 
   ------------------------
   -- Suspend_Until_True --
   ------------------------
 
   procedure Suspend_Until_True (S : in out Suspension_Object) is
      Result      : DWORD;
      Result_Bool : BOOL;
   begin
      EnterCriticalSection (S.L'Access);
 
      if S.Waiting then
         --  Program_Error must be raised upon calling Suspend_Until_True
         --  if another task is already waiting on that suspension object
         --  (ARM D.10 par. 10).
 
         LeaveCriticalSection (S.L'Access);
 
         raise Program_Error;
      else
         --  Suspend the task if the state is False. Otherwise, the task
         --  continues its execution, and the state of the suspension object
         --  is set to False (ARM D.10 par. 9).
 
         if S.State then
            S.State := False;
 
            LeaveCriticalSection (S.L'Access);
         else
            S.Waiting := True;
 
            --  Must reset CV BEFORE L is unlocked.
 
            Result_Bool := ResetEvent (S.CV);
            pragma Assert (Result_Bool = True);
 
            LeaveCriticalSection (S.L'Access);
 
            Result := WaitForSingleObject (S.CV, Wait_Infinite);
            pragma Assert (Result = 0);
         end if;
      end if;
   end Suspend_Until_True;
 
   ----------------
   -- Check_Exit --
   ----------------
 
   --  Dummy versions.  The only currently working versions is for solaris
   --  (native).
 
   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
      pragma Unreferenced (Self_ID);
   begin
      return True;
   end Check_Exit;
 
   --------------------
   -- Check_No_Locks --
   --------------------
 
   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
      pragma Unreferenced (Self_ID);
   begin
      return True;
   end Check_No_Locks;
 
   ------------------
   -- Suspend_Task --
   ------------------
 
   function Suspend_Task
     (T           : ST.Task_Id;
      Thread_Self : Thread_Id) return Boolean
   is
   begin
      if T.Common.LL.Thread /= Thread_Self then
         return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
      else
         return True;
      end if;
   end Suspend_Task;
 
   -----------------
   -- Resume_Task --
   -----------------
 
   function Resume_Task
     (T           : ST.Task_Id;
      Thread_Self : Thread_Id) return Boolean
   is
   begin
      if T.Common.LL.Thread /= Thread_Self then
         return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
      else
         return True;
      end if;
   end Resume_Task;
 
end System.Task_Primitives.Operations;
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.