OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [gcc/] [ada/] [sem_type.adb] - Rev 20

Go to most recent revision | Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ T Y P E                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2005, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
 
with Atree;    use Atree;
with Alloc;
with Debug;    use Debug;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Nlists;   use Nlists;
with Errout;   use Errout;
with Lib;      use Lib;
with Opt;      use Opt;
with Output;   use Output;
with Sem;      use Sem;
with Sem_Ch6;  use Sem_Ch6;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Util; use Sem_Util;
with Stand;    use Stand;
with Sinfo;    use Sinfo;
with Snames;   use Snames;
with Table;
with Uintp;    use Uintp;
 
package body Sem_Type is
 
   ---------------------
   -- Data Structures --
   ---------------------
 
   --  The following data structures establish a mapping between nodes and
   --  their interpretations. An overloaded node has an entry in Interp_Map,
   --  which in turn contains a pointer into the All_Interp array. The
   --  interpretations of a given node are contiguous in All_Interp. Each
   --  set of interpretations is terminated with the marker No_Interp.
   --  In order to speed up the retrieval of the interpretations of an
   --  overloaded node, the Interp_Map table is accessed by means of a simple
   --  hashing scheme, and the entries in Interp_Map are chained. The heads
   --  of clash lists are stored in array Headers.
 
   --              Headers        Interp_Map          All_Interp
 
   --                 _            +-----+             +--------+
   --                |_|           |_____|         --->|interp1 |
   --                |_|---------->|node |         |   |interp2 |
   --                |_|           |index|---------|   |nointerp|
   --                |_|           |next |             |        |
   --                              |-----|             |        |
   --                              +-----+             +--------+
 
   --  This scheme does not currently reclaim interpretations. In principle,
   --  after a unit is compiled, all overloadings have been resolved, and the
   --  candidate interpretations should be deleted. This should be easier
   --  now than with the previous scheme???
 
   package All_Interp is new Table.Table (
     Table_Component_Type => Interp,
     Table_Index_Type     => Int,
     Table_Low_Bound      => 0,
     Table_Initial        => Alloc.All_Interp_Initial,
     Table_Increment      => Alloc.All_Interp_Increment,
     Table_Name           => "All_Interp");
 
   type Interp_Ref is record
      Node  : Node_Id;
      Index : Interp_Index;
      Next  : Int;
   end record;
 
   Header_Size : constant Int := 2 ** 12;
   No_Entry    : constant Int := -1;
   Headers     : array (0 .. Header_Size) of Int := (others => No_Entry);
 
   package Interp_Map is new Table.Table (
     Table_Component_Type => Interp_Ref,
     Table_Index_Type     => Int,
     Table_Low_Bound      => 0,
     Table_Initial        => Alloc.Interp_Map_Initial,
     Table_Increment      => Alloc.Interp_Map_Increment,
     Table_Name           => "Interp_Map");
 
   function Hash (N : Node_Id) return Int;
   --  A trivial hashing function for nodes, used to insert an overloaded
   --  node into the Interp_Map table.
 
   -------------------------------------
   -- Handling of Overload Resolution --
   -------------------------------------
 
   --  Overload resolution uses two passes over the syntax tree of a complete
   --  context. In the first, bottom-up pass, the types of actuals in calls
   --  are used to resolve possibly overloaded subprogram and operator names.
   --  In the second top-down pass, the type of the context (for example the
   --  condition in a while statement) is used to resolve a possibly ambiguous
   --  call, and the unique subprogram name in turn imposes a specific context
   --  on each of its actuals.
 
   --  Most expressions are in fact unambiguous, and the bottom-up pass is
   --  sufficient  to resolve most everything. To simplify the common case,
   --  names and expressions carry a flag Is_Overloaded to indicate whether
   --  they have more than one interpretation. If the flag is off, then each
   --  name has already a unique meaning and type, and the bottom-up pass is
   --  sufficient (and much simpler).
 
   --------------------------
   -- Operator Overloading --
   --------------------------
 
   --  The visibility of operators is handled differently from that of
   --  other entities. We do not introduce explicit versions of primitive
   --  operators for each type definition. As a result, there is only one
   --  entity corresponding to predefined addition on all numeric types, etc.
   --  The back-end resolves predefined operators according to their type.
   --  The visibility of primitive operations then reduces to the visibility
   --  of the resulting type:  (a + b) is a legal interpretation of some
   --  primitive operator + if the type of the result (which must also be
   --  the type of a and b) is directly visible (i.e. either immediately
   --  visible or use-visible.)
 
   --  User-defined operators are treated like other functions, but the
   --  visibility of these user-defined operations must be special-cased
   --  to determine whether they hide or are hidden by predefined operators.
   --  The form P."+" (x, y) requires additional handling.
 
   --  Concatenation is treated more conventionally: for every one-dimensional
   --  array type we introduce a explicit concatenation operator. This is
   --  necessary to handle the case of (element & element => array) which
   --  cannot be handled conveniently if there is no explicit instance of
   --  resulting type of the operation.
 
   -----------------------
   -- Local Subprograms --
   -----------------------
 
   procedure All_Overloads;
   pragma Warnings (Off, All_Overloads);
   --  Debugging procedure: list full contents of Overloads table
 
   procedure New_Interps (N : Node_Id);
   --  Initialize collection of interpretations for the given node, which is
   --  either an overloaded entity, or an operation whose arguments have
   --  multiple interpretations. Interpretations can be added to only one
   --  node at a time.
 
   function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
   --  If T1 and T2 are compatible, return  the one that is not
   --  universal or is not a "class" type (any_character,  etc).
 
   --------------------
   -- Add_One_Interp --
   --------------------
 
   procedure Add_One_Interp
     (N         : Node_Id;
      E         : Entity_Id;
      T         : Entity_Id;
      Opnd_Type : Entity_Id := Empty)
   is
      Vis_Type : Entity_Id;
 
      procedure Add_Entry (Name :  Entity_Id; Typ : Entity_Id);
      --  Add one interpretation to node. Node is already known to be
      --  overloaded. Add new interpretation if not hidden by previous
      --  one, and remove previous one if hidden by new one.
 
      function Is_Universal_Operation (Op : Entity_Id) return Boolean;
      --  True if the entity is a predefined operator and the operands have
      --  a universal Interpretation.
 
      ---------------
      -- Add_Entry --
      ---------------
 
      procedure Add_Entry (Name :  Entity_Id; Typ : Entity_Id) is
         Index : Interp_Index;
         It    : Interp;
 
      begin
         Get_First_Interp (N, Index, It);
         while Present (It.Nam) loop
 
            --  A user-defined subprogram hides another declared at an outer
            --  level, or one that is use-visible. So return if previous
            --  definition hides new one (which is either in an outer
            --  scope, or use-visible). Note that for functions use-visible
            --  is the same as potentially use-visible. If new one hides
            --  previous one, replace entry in table of interpretations.
            --  If this is a universal operation, retain the operator in case
            --  preference rule applies.
 
            if (((Ekind (Name) = E_Function or else Ekind (Name) = E_Procedure)
                 and then Ekind (Name) = Ekind (It.Nam))
                or else (Ekind (Name) = E_Operator
              and then Ekind (It.Nam) = E_Function))
 
              and then Is_Immediately_Visible (It.Nam)
              and then Type_Conformant (Name, It.Nam)
              and then Base_Type (It.Typ) = Base_Type (T)
            then
               if Is_Universal_Operation (Name) then
                  exit;
 
               --  If node is an operator symbol, we have no actuals with
               --  which to check hiding, and this is done in full in the
               --  caller (Analyze_Subprogram_Renaming) so we include the
               --  predefined operator in any case.
 
               elsif Nkind (N) = N_Operator_Symbol
                 or else (Nkind (N) = N_Expanded_Name
                            and then
                          Nkind (Selector_Name (N)) = N_Operator_Symbol)
               then
                  exit;
 
               elsif not In_Open_Scopes (Scope (Name))
                 or else Scope_Depth (Scope (Name)) <=
                         Scope_Depth (Scope (It.Nam))
               then
                  --  If ambiguity within instance, and entity is not an
                  --  implicit operation, save for later disambiguation.
 
                  if Scope (Name) = Scope (It.Nam)
                    and then not Is_Inherited_Operation (Name)
                    and then In_Instance
                  then
                     exit;
                  else
                     return;
                  end if;
 
               else
                  All_Interp.Table (Index).Nam := Name;
                  return;
               end if;
 
            --  Avoid making duplicate entries in overloads
 
            elsif Name = It.Nam
              and then Base_Type (It.Typ) = Base_Type (T)
            then
               return;
 
            --  Otherwise keep going
 
            else
               Get_Next_Interp (Index, It);
            end if;
 
         end loop;
 
         --  On exit, enter new interpretation. The context, or a preference
         --  rule, will resolve the ambiguity on the second pass.
 
         All_Interp.Table (All_Interp.Last) := (Name, Typ);
         All_Interp.Increment_Last;
         All_Interp.Table (All_Interp.Last) := No_Interp;
      end Add_Entry;
 
      ----------------------------
      -- Is_Universal_Operation --
      ----------------------------
 
      function Is_Universal_Operation (Op : Entity_Id) return Boolean is
         Arg : Node_Id;
 
      begin
         if Ekind (Op) /= E_Operator then
            return False;
 
         elsif Nkind (N) in N_Binary_Op then
            return Present (Universal_Interpretation (Left_Opnd (N)))
              and then Present (Universal_Interpretation (Right_Opnd (N)));
 
         elsif Nkind (N) in N_Unary_Op then
            return Present (Universal_Interpretation (Right_Opnd (N)));
 
         elsif Nkind (N) = N_Function_Call then
            Arg := First_Actual (N);
            while Present (Arg) loop
               if No (Universal_Interpretation (Arg)) then
                  return False;
               end if;
 
               Next_Actual (Arg);
            end loop;
 
            return True;
 
         else
            return False;
         end if;
      end Is_Universal_Operation;
 
   --  Start of processing for Add_One_Interp
 
   begin
      --  If the interpretation is a predefined operator, verify that the
      --  result type is visible, or that the entity has already been
      --  resolved (case of an instantiation node that refers to a predefined
      --  operation, or an internally generated operator node, or an operator
      --  given as an expanded name). If the operator is a comparison or
      --  equality, it is the type of the operand that matters to determine
      --  whether the operator is visible. In an instance, the check is not
      --  performed, given that the operator was visible in the generic.
 
      if Ekind (E) = E_Operator then
 
         if Present (Opnd_Type) then
            Vis_Type := Opnd_Type;
         else
            Vis_Type := Base_Type (T);
         end if;
 
         if In_Open_Scopes (Scope (Vis_Type))
           or else Is_Potentially_Use_Visible (Vis_Type)
           or else In_Use (Vis_Type)
           or else (In_Use (Scope (Vis_Type))
                      and then not Is_Hidden (Vis_Type))
           or else Nkind (N) = N_Expanded_Name
           or else (Nkind (N) in N_Op and then E = Entity (N))
           or else In_Instance
         then
            null;
 
         --  If the node is given in functional notation and the prefix
         --  is an expanded name, then the operator is visible if the
         --  prefix is the scope of the result type as well. If the
         --  operator is (implicitly) defined in an extension of system,
         --  it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
 
         elsif Nkind (N) = N_Function_Call
           and then Nkind (Name (N)) = N_Expanded_Name
           and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
                       or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
                       or else Scope (Vis_Type) = System_Aux_Id)
         then
            null;
 
         --  Save type for subsequent error message, in case no other
         --  interpretation is found.
 
         else
            Candidate_Type := Vis_Type;
            return;
         end if;
 
      --  In an instance, an abstract non-dispatching operation cannot
      --  be a candidate interpretation, because it could not have been
      --  one in the generic (it may be a spurious overloading in the
      --  instance).
 
      elsif In_Instance
        and then Is_Abstract (E)
        and then not Is_Dispatching_Operation (E)
      then
         return;
 
      --  An inherited interface operation that is implemented by some
      --  derived type does not participate in overload resolution, only
      --  the implementation operation does.
 
      elsif Is_Hidden (E)
        and then Is_Subprogram (E)
        and then Present (Abstract_Interface_Alias (E))
      then
         Add_One_Interp (N, Abstract_Interface_Alias (E), T);
         return;
      end if;
 
      --  If this is the first interpretation of N, N has type Any_Type.
      --  In that case place the new type on the node. If one interpretation
      --  already exists, indicate that the node is overloaded, and store
      --  both the previous and the new interpretation in All_Interp. If
      --  this is a later interpretation, just add it to the set.
 
      if Etype (N) = Any_Type then
         if Is_Type (E) then
            Set_Etype (N, T);
 
         else
            --  Record both the operator or subprogram name, and its type
 
            if Nkind (N) in N_Op or else Is_Entity_Name (N) then
               Set_Entity (N, E);
            end if;
 
            Set_Etype (N, T);
         end if;
 
      --  Either there is no current interpretation in the table for any
      --  node or the interpretation that is present is for a different
      --  node. In both cases add a new interpretation to the table.
 
      elsif Interp_Map.Last < 0
        or else
          (Interp_Map.Table (Interp_Map.Last).Node /= N
             and then not Is_Overloaded (N))
      then
         New_Interps (N);
 
         if (Nkind (N) in N_Op or else Is_Entity_Name (N))
           and then Present (Entity (N))
         then
            Add_Entry (Entity (N), Etype (N));
 
         elsif (Nkind (N) = N_Function_Call
                 or else Nkind (N) = N_Procedure_Call_Statement)
           and then (Nkind (Name (N)) = N_Operator_Symbol
                      or else Is_Entity_Name (Name (N)))
         then
            Add_Entry (Entity (Name (N)), Etype (N));
 
         else
            --  Overloaded prefix in indexed or selected component,
            --  or call whose name is an expression or another call.
 
            Add_Entry (Etype (N), Etype (N));
         end if;
 
         Add_Entry (E, T);
 
      else
         Add_Entry (E, T);
      end if;
   end Add_One_Interp;
 
   -------------------
   -- All_Overloads --
   -------------------
 
   procedure All_Overloads is
   begin
      for J in All_Interp.First .. All_Interp.Last loop
 
         if Present (All_Interp.Table (J).Nam) then
            Write_Entity_Info (All_Interp.Table (J). Nam, " ");
         else
            Write_Str ("No Interp");
         end if;
 
         Write_Str ("=================");
         Write_Eol;
      end loop;
   end All_Overloads;
 
   ---------------------
   -- Collect_Interps --
   ---------------------
 
   procedure Collect_Interps (N : Node_Id) is
      Ent          : constant Entity_Id := Entity (N);
      H            : Entity_Id;
      First_Interp : Interp_Index;
 
   begin
      New_Interps (N);
 
      --  Unconditionally add the entity that was initially matched
 
      First_Interp := All_Interp.Last;
      Add_One_Interp (N, Ent, Etype (N));
 
      --  For expanded name, pick up all additional entities from the
      --  same scope, since these are obviously also visible. Note that
      --  these are not necessarily contiguous on the homonym chain.
 
      if Nkind (N) = N_Expanded_Name then
         H := Homonym (Ent);
         while Present (H) loop
            if Scope (H) = Scope (Entity (N)) then
               Add_One_Interp (N, H, Etype (H));
            end if;
 
            H := Homonym (H);
         end loop;
 
      --  Case of direct name
 
      else
         --  First, search the homonym chain for directly visible entities
 
         H := Current_Entity (Ent);
         while Present (H) loop
            exit when (not Is_Overloadable (H))
              and then Is_Immediately_Visible (H);
 
            if Is_Immediately_Visible (H)
              and then H /= Ent
            then
               --  Only add interpretation if not hidden by an inner
               --  immediately visible one.
 
               for J in First_Interp .. All_Interp.Last - 1 loop
 
                  --  Current homograph is not hidden. Add to overloads
 
                  if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
                     exit;
 
                  --  Homograph is hidden, unless it is a predefined operator
 
                  elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
 
                     --  A homograph in the same scope can occur within an
                     --  instantiation, the resulting ambiguity has to be
                     --  resolved later.
 
                     if Scope (H) = Scope (Ent)
                        and then In_Instance
                        and then not Is_Inherited_Operation (H)
                     then
                        All_Interp.Table (All_Interp.Last) := (H, Etype (H));
                        All_Interp.Increment_Last;
                        All_Interp.Table (All_Interp.Last) := No_Interp;
                        goto Next_Homograph;
 
                     elsif Scope (H) /= Standard_Standard then
                        goto Next_Homograph;
                     end if;
                  end if;
               end loop;
 
               --  On exit, we know that current homograph is not hidden
 
               Add_One_Interp (N, H, Etype (H));
 
               if Debug_Flag_E then
                  Write_Str ("Add overloaded Interpretation ");
                  Write_Int (Int (H));
                  Write_Eol;
               end if;
            end if;
 
            <<Next_Homograph>>
               H := Homonym (H);
         end loop;
 
         --  Scan list of homographs for use-visible entities only
 
         H := Current_Entity (Ent);
 
         while Present (H) loop
            if Is_Potentially_Use_Visible (H)
              and then H /= Ent
              and then Is_Overloadable (H)
            then
               for J in First_Interp .. All_Interp.Last - 1 loop
 
                  if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
                     exit;
 
                  elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
                     goto Next_Use_Homograph;
                  end if;
               end loop;
 
               Add_One_Interp (N, H, Etype (H));
            end if;
 
            <<Next_Use_Homograph>>
               H := Homonym (H);
         end loop;
      end if;
 
      if All_Interp.Last = First_Interp + 1 then
 
         --  The original interpretation is in fact not overloaded
 
         Set_Is_Overloaded (N, False);
      end if;
   end Collect_Interps;
 
   ------------
   -- Covers --
   ------------
 
   function Covers (T1, T2 : Entity_Id) return Boolean is
 
      BT1 : Entity_Id;
      BT2 : Entity_Id;
 
      function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
      --  In an instance the proper view may not always be correct for
      --  private types, but private and full view are compatible. This
      --  removes spurious errors from nested instantiations that involve,
      --  among other things, types derived from private types.
 
      ----------------------
      -- Full_View_Covers --
      ----------------------
 
      function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
      begin
         return
           Is_Private_Type (Typ1)
             and then
              ((Present (Full_View (Typ1))
                    and then Covers (Full_View (Typ1), Typ2))
                 or else Base_Type (Typ1) = Typ2
                 or else Base_Type (Typ2) = Typ1);
      end Full_View_Covers;
 
   --  Start of processing for Covers
 
   begin
      --  If either operand missing, then this is an error, but ignore it (and
      --  pretend we have a cover) if errors already detected, since this may
      --  simply mean we have malformed trees.
 
      if No (T1) or else No (T2) then
         if Total_Errors_Detected /= 0 then
            return True;
         else
            raise Program_Error;
         end if;
 
      else
         BT1 := Base_Type (T1);
         BT2 := Base_Type (T2);
      end if;
 
      --  Simplest case: same types are compatible, and types that have the
      --  same base type and are not generic actuals are compatible. Generic
      --  actuals  belong to their class but are not compatible with other
      --  types of their class, and in particular with other generic actuals.
      --  They are however compatible with their own subtypes, and itypes
      --  with the same base are compatible as well. Similarly, constrained
      --  subtypes obtained from expressions of an unconstrained nominal type
      --  are compatible with the base type (may lead to spurious ambiguities
      --  in obscure cases ???)
 
      --  Generic actuals require special treatment to avoid spurious ambi-
      --  guities in an instance, when two formal types are instantiated with
      --  the same actual, so that different subprograms end up with the same
      --  signature in the instance.
 
      if T1 = T2 then
         return True;
 
      elsif  BT1 = BT2
        or else BT1 = T2
        or else BT2 = T1
      then
         if not Is_Generic_Actual_Type (T1) then
            return True;
         else
            return (not Is_Generic_Actual_Type (T2)
                     or else Is_Itype (T1)
                     or else Is_Itype (T2)
                     or else Is_Constr_Subt_For_U_Nominal (T1)
                     or else Is_Constr_Subt_For_U_Nominal (T2)
                     or else Scope (T1) /= Scope (T2));
         end if;
 
      --  Literals are compatible with types in  a given "class"
 
      elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
        or else (T2 = Universal_Real    and then Is_Real_Type (T1))
        or else (T2 = Universal_Fixed   and then Is_Fixed_Point_Type (T1))
        or else (T2 = Any_Fixed         and then Is_Fixed_Point_Type (T1))
        or else (T2 = Any_String        and then Is_String_Type (T1))
        or else (T2 = Any_Character     and then Is_Character_Type (T1))
        or else (T2 = Any_Access        and then Is_Access_Type (T1))
      then
         return True;
 
      --  The context may be class wide
 
      elsif Is_Class_Wide_Type (T1)
        and then Is_Ancestor (Root_Type (T1), T2)
      then
         return True;
 
      elsif Is_Class_Wide_Type (T1)
        and then Is_Class_Wide_Type (T2)
        and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
      then
         return True;
 
      --  Ada 2005 (AI-345): A class-wide abstract interface type T1 covers a
      --  task_type or protected_type implementing T1
 
      elsif Ada_Version >= Ada_05
        and then Is_Class_Wide_Type (T1)
        and then Is_Interface (Etype (T1))
        and then Is_Concurrent_Type (T2)
        and then Interface_Present_In_Ancestor
                   (Typ   => Base_Type (T2),
                    Iface => Etype (T1))
      then
         return True;
 
      --  Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
      --  object T2 implementing T1
 
      elsif Ada_Version >= Ada_05
        and then Is_Class_Wide_Type (T1)
        and then Is_Interface (Etype (T1))
        and then Is_Tagged_Type (T2)
      then
         if Interface_Present_In_Ancestor (Typ => T2,
                                           Iface => Etype (T1))
         then
            return True;
 
         elsif Present (Abstract_Interfaces (T2)) then
 
            --  Ada 2005 (AI-251): A class-wide abstract interface type T1
            --  covers an object T2 that implements a direct derivation of T1.
 
            declare
               E : Elmt_Id := First_Elmt (Abstract_Interfaces (T2));
            begin
               while Present (E) loop
                  if Is_Ancestor (Etype (T1), Node (E)) then
                     return True;
                  end if;
 
                  Next_Elmt (E);
               end loop;
            end;
 
            --  We should also check the case in which T1 is an ancestor of
            --  some implemented interface???
 
            return False;
 
         else
            return False;
         end if;
 
      --  In a dispatching call the actual may be class-wide
 
      elsif Is_Class_Wide_Type (T2)
        and then Base_Type (Root_Type (T2)) = Base_Type (T1)
      then
         return True;
 
      --  Some contexts require a class of types rather than a specific type
 
      elsif (T1 = Any_Integer and then Is_Integer_Type (T2))
        or else (T1 = Any_Boolean and then Is_Boolean_Type (T2))
        or else (T1 = Any_Real and then Is_Real_Type (T2))
        or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
        or else (T1 = Any_Discrete and then Is_Discrete_Type (T2))
      then
         return True;
 
      --  An aggregate is compatible with an array or record type
 
      elsif T2 = Any_Composite
        and then Ekind (T1) in E_Array_Type .. E_Record_Subtype
      then
         return True;
 
      --  If the expected type is an anonymous access, the designated type must
      --  cover that of the expression.
 
      elsif Ekind (T1) = E_Anonymous_Access_Type
        and then Is_Access_Type (T2)
        and then Covers (Designated_Type (T1), Designated_Type (T2))
      then
         return True;
 
      --  An Access_To_Subprogram is compatible with itself, or with an
      --  anonymous type created for an attribute reference Access.
 
      elsif (Ekind (BT1) = E_Access_Subprogram_Type
               or else
             Ekind (BT1) = E_Access_Protected_Subprogram_Type)
        and then Is_Access_Type (T2)
        and then (not Comes_From_Source (T1)
                   or else not Comes_From_Source (T2))
        and then (Is_Overloadable (Designated_Type (T2))
                    or else
                  Ekind (Designated_Type (T2)) = E_Subprogram_Type)
        and then
          Type_Conformant (Designated_Type (T1), Designated_Type (T2))
        and then
          Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
      then
         return True;
 
      --  Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
      --  with itself, or with an anonymous type created for an attribute
      --  reference Access.
 
      elsif (Ekind (BT1) = E_Anonymous_Access_Subprogram_Type
               or else
             Ekind (BT1)
                      = E_Anonymous_Access_Protected_Subprogram_Type)
        and then Is_Access_Type (T2)
        and then (not Comes_From_Source (T1)
                   or else not Comes_From_Source (T2))
        and then (Is_Overloadable (Designated_Type (T2))
                    or else
                  Ekind (Designated_Type (T2)) = E_Subprogram_Type)
        and then
           Type_Conformant (Designated_Type (T1), Designated_Type (T2))
        and then
           Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
      then
         return True;
 
      --  The context can be a remote access type, and the expression the
      --  corresponding source type declared in a categorized package, or
      --  viceversa.
 
      elsif Is_Record_Type (T1)
        and then (Is_Remote_Call_Interface (T1)
                   or else Is_Remote_Types (T1))
        and then Present (Corresponding_Remote_Type (T1))
      then
         return Covers (Corresponding_Remote_Type (T1), T2);
 
      elsif Is_Record_Type (T2)
        and then (Is_Remote_Call_Interface (T2)
                   or else Is_Remote_Types (T2))
        and then Present (Corresponding_Remote_Type (T2))
      then
         return Covers (Corresponding_Remote_Type (T2), T1);
 
      elsif Ekind (T2) = E_Access_Attribute_Type
        and then (Ekind (BT1) = E_General_Access_Type
                    or else Ekind (BT1) = E_Access_Type)
        and then Covers (Designated_Type (T1), Designated_Type (T2))
      then
         --  If the target type is a RACW type while the source is an access
         --  attribute type, we are building a RACW that may be exported.
 
         if Is_Remote_Access_To_Class_Wide_Type (BT1) then
            Set_Has_RACW (Current_Sem_Unit);
         end if;
 
         return True;
 
      elsif Ekind (T2) = E_Allocator_Type
        and then Is_Access_Type (T1)
      then
         return Covers (Designated_Type (T1), Designated_Type (T2))
          or else
            (From_With_Type (Designated_Type (T1))
              and then Covers (Designated_Type (T2), Designated_Type (T1)));
 
      --  A boolean operation on integer literals is compatible with modular
      --  context.
 
      elsif T2 = Any_Modular
        and then Is_Modular_Integer_Type (T1)
      then
         return True;
 
      --  The actual type may be the result of a previous error
 
      elsif Base_Type (T2) = Any_Type then
         return True;
 
      --  A packed array type covers its corresponding non-packed type. This is
      --  not legitimate Ada, but allows the omission of a number of otherwise
      --  useless unchecked conversions, and since this can only arise in
      --  (known correct) expanded code, no harm is done
 
      elsif Is_Array_Type (T2)
        and then Is_Packed (T2)
        and then T1 = Packed_Array_Type (T2)
      then
         return True;
 
      --  Similarly an array type covers its corresponding packed array type
 
      elsif Is_Array_Type (T1)
        and then Is_Packed (T1)
        and then T2 = Packed_Array_Type (T1)
      then
         return True;
 
      elsif In_Instance
        and then
          (Full_View_Covers (T1, T2)
            or else Full_View_Covers (T2, T1))
      then
         return True;
 
      --  In the expansion of inlined bodies, types are compatible if they
      --  are structurally equivalent.
 
      elsif In_Inlined_Body
        and then (Underlying_Type (T1) = Underlying_Type (T2)
                   or else (Is_Access_Type (T1)
                              and then Is_Access_Type (T2)
                              and then
                                Designated_Type (T1) = Designated_Type (T2))
                   or else (T1 = Any_Access
                              and then Is_Access_Type (Underlying_Type (T2)))
                   or else (T2 = Any_Composite
                              and then
                                Is_Composite_Type (Underlying_Type (T1))))
      then
         return True;
 
      --  Ada 2005 (AI-50217): Additional branches to make the shadow entity
      --  compatible with its real entity.
 
      elsif From_With_Type (T1) then
 
         --  If the expected type is the non-limited view of a type, the
         --  expression may have the limited view.
 
         if Ekind (T1) = E_Incomplete_Type then
            return Covers (Non_Limited_View (T1), T2);
 
         elsif Ekind (T1) = E_Class_Wide_Type then
            return
              Covers (Class_Wide_Type (Non_Limited_View (Etype (T1))), T2);
         else
            return False;
         end if;
 
      elsif From_With_Type (T2) then
 
         --  If units in the context have Limited_With clauses on each other,
         --  either type might have a limited view. Checks performed elsewhere
         --  verify that the context type is the non-limited view.
 
         if Ekind (T2) = E_Incomplete_Type then
            return Covers (T1, Non_Limited_View (T2));
 
         elsif Ekind (T2) = E_Class_Wide_Type then
            return
              Covers (T1, Class_Wide_Type (Non_Limited_View (Etype (T2))));
         else
            return False;
         end if;
 
      --  Otherwise it doesn't cover!
 
      else
         return False;
      end if;
   end Covers;
 
   ------------------
   -- Disambiguate --
   ------------------
 
   function Disambiguate
     (N      : Node_Id;
      I1, I2 : Interp_Index;
      Typ    : Entity_Id)
      return   Interp
   is
      I           : Interp_Index;
      It          : Interp;
      It1, It2    : Interp;
      Nam1, Nam2  : Entity_Id;
      Predef_Subp : Entity_Id;
      User_Subp   : Entity_Id;
 
      function Inherited_From_Actual (S : Entity_Id) return Boolean;
      --  Determine whether one of the candidates is an operation inherited by
      --  a type that is derived from an actual in an instantiation.
 
      function In_Generic_Actual (Exp : Node_Id) return Boolean;
      --  Determine whether the expression is part of a generic actual. At
      --  the time the actual is resolved the scope is already that of the
      --  instance, but conceptually the resolution of the actual takes place
      --  in the enclosing context, and no special disambiguation rules should
      --  be applied.
 
      function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
      --  Determine whether a subprogram is an actual in an enclosing instance.
      --  An overloading between such a subprogram and one declared outside the
      --  instance is resolved in favor of the first, because it resolved in
      --  the generic.
 
      function Matches (Actual, Formal : Node_Id) return Boolean;
      --  Look for exact type match in an instance, to remove spurious
      --  ambiguities when two formal types have the same actual.
 
      function Standard_Operator return Boolean;
      --  Comment required ???
 
      function Remove_Conversions return Interp;
      --  Last chance for pathological cases involving comparisons on literals,
      --  and user overloadings of the same operator. Such pathologies have
      --  been removed from the ACVC, but still appear in two DEC tests, with
      --  the following notable quote from Ben Brosgol:
      --
      --  [Note: I disclaim all credit/responsibility/blame for coming up with
      --  this example; Robert Dewar brought it to our attention, since it is
      --  apparently found in the ACVC 1.5. I did not attempt to find the
      --  reason in the Reference Manual that makes the example legal, since I
      --  was too nauseated by it to want to pursue it further.]
      --
      --  Accordingly, this is not a fully recursive solution, but it handles
      --  DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
      --  pathology in the other direction with calls whose multiple overloaded
      --  actuals make them truly unresolvable.
 
      ------------------------
      --  In_Generic_Actual --
      ------------------------
 
      function In_Generic_Actual (Exp : Node_Id) return Boolean is
         Par : constant Node_Id := Parent (Exp);
 
      begin
         if No (Par) then
            return False;
 
         elsif Nkind (Par) in N_Declaration then
            if Nkind (Par) = N_Object_Declaration
              or else Nkind (Par) = N_Object_Renaming_Declaration
            then
               return Present (Corresponding_Generic_Association (Par));
            else
               return False;
            end if;
 
         elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
            return False;
 
         else
            return In_Generic_Actual (Parent (Par));
         end if;
      end In_Generic_Actual;
 
      ---------------------------
      -- Inherited_From_Actual --
      ---------------------------
 
      function Inherited_From_Actual (S : Entity_Id) return Boolean is
         Par : constant Node_Id := Parent (S);
      begin
         if Nkind (Par) /= N_Full_Type_Declaration
           or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
         then
            return False;
         else
            return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
              and then
               Is_Generic_Actual_Type (
                 Entity (Subtype_Indication (Type_Definition (Par))));
         end if;
      end Inherited_From_Actual;
 
      --------------------------
      -- Is_Actual_Subprogram --
      --------------------------
 
      function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
      begin
         return In_Open_Scopes (Scope (S))
           and then
             (Is_Generic_Instance (Scope (S))
                or else Is_Wrapper_Package (Scope (S)));
      end Is_Actual_Subprogram;
 
      -------------
      -- Matches --
      -------------
 
      function Matches (Actual, Formal : Node_Id) return Boolean is
         T1 : constant Entity_Id := Etype (Actual);
         T2 : constant Entity_Id := Etype (Formal);
      begin
         return T1 = T2
           or else
             (Is_Numeric_Type (T2)
               and then
             (T1 = Universal_Real or else T1 = Universal_Integer));
      end Matches;
 
      ------------------------
      -- Remove_Conversions --
      ------------------------
 
      function Remove_Conversions return Interp is
         I    : Interp_Index;
         It   : Interp;
         It1  : Interp;
         F1   : Entity_Id;
         Act1 : Node_Id;
         Act2 : Node_Id;
 
      begin
         It1 := No_Interp;
 
         Get_First_Interp (N, I, It);
         while Present (It.Typ) loop
 
            if not Is_Overloadable (It.Nam) then
               return No_Interp;
            end if;
 
            F1 := First_Formal (It.Nam);
 
            if No (F1) then
               return It1;
 
            else
               if Nkind (N) = N_Function_Call
                 or else Nkind (N) = N_Procedure_Call_Statement
               then
                  Act1 := First_Actual (N);
 
                  if Present (Act1) then
                     Act2 := Next_Actual (Act1);
                  else
                     Act2 := Empty;
                  end if;
 
               elsif Nkind (N) in N_Unary_Op then
                  Act1 := Right_Opnd (N);
                  Act2 := Empty;
 
               elsif Nkind (N) in N_Binary_Op then
                  Act1 := Left_Opnd (N);
                  Act2 := Right_Opnd (N);
 
               else
                  return It1;
               end if;
 
               if Nkind (Act1) in N_Op
                 and then Is_Overloaded (Act1)
                 and then (Nkind (Right_Opnd (Act1)) = N_Integer_Literal
                            or else Nkind (Right_Opnd (Act1)) = N_Real_Literal)
                 and then Has_Compatible_Type (Act1, Standard_Boolean)
                 and then Etype (F1) = Standard_Boolean
               then
                  --  If the two candidates are the original ones, the
                  --  ambiguity is real. Otherwise keep the original, further
                  --  calls to Disambiguate will take care of others in the
                  --  list of candidates.
 
                  if It1 /= No_Interp then
                     if It = Disambiguate.It1
                       or else It = Disambiguate.It2
                     then
                        if It1 = Disambiguate.It1
                          or else It1 = Disambiguate.It2
                        then
                           return No_Interp;
                        else
                           It1 := It;
                        end if;
                     end if;
 
                  elsif Present (Act2)
                    and then Nkind (Act2) in N_Op
                    and then Is_Overloaded (Act2)
                    and then (Nkind (Right_Opnd (Act1)) = N_Integer_Literal
                                or else
                              Nkind (Right_Opnd (Act1)) = N_Real_Literal)
                    and then Has_Compatible_Type (Act2, Standard_Boolean)
                  then
                     --  The preference rule on the first actual is not
                     --  sufficient to disambiguate.
 
                     goto Next_Interp;
 
                  else
                     It1 := It;
                  end if;
               end if;
            end if;
 
            <<Next_Interp>>
               Get_Next_Interp (I, It);
         end loop;
 
         --  After some error, a formal may have Any_Type and yield a spurious
         --  match. To avoid cascaded errors if possible, check for such a
         --  formal in either candidate.
 
         if Serious_Errors_Detected > 0 then
            declare
               Formal : Entity_Id;
 
            begin
               Formal := First_Formal (Nam1);
               while Present (Formal) loop
                  if Etype (Formal) = Any_Type then
                     return Disambiguate.It2;
                  end if;
 
                  Next_Formal (Formal);
               end loop;
 
               Formal := First_Formal (Nam2);
               while Present (Formal) loop
                  if Etype (Formal) = Any_Type then
                     return Disambiguate.It1;
                  end if;
 
                  Next_Formal (Formal);
               end loop;
            end;
         end if;
 
         return It1;
      end Remove_Conversions;
 
      -----------------------
      -- Standard_Operator --
      -----------------------
 
      function Standard_Operator return Boolean is
         Nam : Node_Id;
 
      begin
         if Nkind (N) in N_Op then
            return True;
 
         elsif Nkind (N) = N_Function_Call then
            Nam := Name (N);
 
            if Nkind (Nam) /= N_Expanded_Name then
               return True;
            else
               return Entity (Prefix (Nam)) = Standard_Standard;
            end if;
         else
            return False;
         end if;
      end Standard_Operator;
 
   --  Start of processing for Disambiguate
 
   begin
      --  Recover the two legal interpretations
 
      Get_First_Interp (N, I, It);
      while I /= I1 loop
         Get_Next_Interp (I, It);
      end loop;
 
      It1  := It;
      Nam1 := It.Nam;
      while I /= I2 loop
         Get_Next_Interp (I, It);
      end loop;
 
      It2  := It;
      Nam2 := It.Nam;
 
      --  If the context is universal, the predefined operator is preferred.
      --  This includes bounds in numeric type declarations, and expressions
      --  in type conversions. If no interpretation yields a universal type,
      --  then we must check whether the user-defined entity hides the prede-
      --  fined one.
 
      if Chars (Nam1) in  Any_Operator_Name
        and then Standard_Operator
      then
         if        Typ = Universal_Integer
           or else Typ = Universal_Real
           or else Typ = Any_Integer
           or else Typ = Any_Discrete
           or else Typ = Any_Real
           or else Typ = Any_Type
         then
            --  Find an interpretation that yields the universal type, or else
            --  a predefined operator that yields a predefined numeric type.
 
            declare
               Candidate : Interp := No_Interp;
 
            begin
               Get_First_Interp (N, I, It);
               while Present (It.Typ) loop
                  if (Covers (Typ, It.Typ)
                        or else Typ = Any_Type)
                    and then
                     (It.Typ = Universal_Integer
                       or else It.Typ = Universal_Real)
                  then
                     return It;
 
                  elsif Covers (Typ, It.Typ)
                    and then Scope (It.Typ) = Standard_Standard
                    and then Scope (It.Nam) = Standard_Standard
                    and then Is_Numeric_Type (It.Typ)
                  then
                     Candidate := It;
                  end if;
 
                  Get_Next_Interp (I, It);
               end loop;
 
               if Candidate /= No_Interp then
                  return Candidate;
               end if;
            end;
 
         elsif Chars (Nam1) /= Name_Op_Not
           and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
         then
            --  Equality or comparison operation. Choose predefined operator if
            --  arguments are universal. The node may be an operator, name, or
            --  a function call, so unpack arguments accordingly.
 
            declare
               Arg1, Arg2 : Node_Id;
 
            begin
               if Nkind (N) in N_Op then
                  Arg1 := Left_Opnd  (N);
                  Arg2 := Right_Opnd (N);
 
               elsif Is_Entity_Name (N)
                 or else Nkind (N) = N_Operator_Symbol
               then
                  Arg1 := First_Entity (Entity (N));
                  Arg2 := Next_Entity (Arg1);
 
               else
                  Arg1 := First_Actual (N);
                  Arg2 := Next_Actual (Arg1);
               end if;
 
               if Present (Arg2)
                 and then Present (Universal_Interpretation (Arg1))
                 and then Universal_Interpretation (Arg2) =
                          Universal_Interpretation (Arg1)
               then
                  Get_First_Interp (N, I, It);
                  while Scope (It.Nam) /= Standard_Standard loop
                     Get_Next_Interp (I, It);
                  end loop;
 
                  return It;
               end if;
            end;
         end if;
      end if;
 
      --  If no universal interpretation, check whether user-defined operator
      --  hides predefined one, as well as other special cases. If the node
      --  is a range, then one or both bounds are ambiguous. Each will have
      --  to be disambiguated w.r.t. the context type. The type of the range
      --  itself is imposed by the context, so we can return either legal
      --  interpretation.
 
      if Ekind (Nam1) = E_Operator then
         Predef_Subp := Nam1;
         User_Subp   := Nam2;
 
      elsif Ekind (Nam2) = E_Operator then
         Predef_Subp := Nam2;
         User_Subp   := Nam1;
 
      elsif Nkind (N) = N_Range then
         return It1;
 
      --  If two user defined-subprograms are visible, it is a true ambiguity,
      --  unless one of them is an entry and the context is a conditional or
      --  timed entry call, or unless we are within an instance and this is
      --  results from two formals types with the same actual.
 
      else
         if Nkind (N) = N_Procedure_Call_Statement
           and then Nkind (Parent (N)) = N_Entry_Call_Alternative
           and then N = Entry_Call_Statement (Parent (N))
         then
            if Ekind (Nam2) = E_Entry then
               return It2;
            elsif Ekind (Nam1) = E_Entry then
               return It1;
            else
               return No_Interp;
            end if;
 
         --  If the ambiguity occurs within an instance, it is due to several
         --  formal types with the same actual. Look for an exact match between
         --  the types of the formals of the overloadable entities, and the
         --  actuals in the call, to recover the unambiguous match in the
         --  original generic.
 
         --  The ambiguity can also be due to an overloading between a formal
         --  subprogram and a subprogram declared outside the generic. If the
         --  node is overloaded, it did not resolve to the global entity in
         --  the generic, and we choose the formal subprogram.
 
         --  Finally, the ambiguity can be between an explicit subprogram and
         --  one inherited (with different defaults) from an actual. In this
         --  case the resolution was to the explicit declaration in the
         --  generic, and remains so in the instance.
 
         elsif In_Instance
           and then not In_Generic_Actual (N)
         then
            if Nkind (N) = N_Function_Call
              or else Nkind (N) = N_Procedure_Call_Statement
            then
               declare
                  Actual  : Node_Id;
                  Formal  : Entity_Id;
                  Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
                  Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
 
               begin
                  if Is_Act1 and then not Is_Act2 then
                     return It1;
 
                  elsif Is_Act2 and then not Is_Act1 then
                     return It2;
 
                  elsif Inherited_From_Actual (Nam1)
                    and then Comes_From_Source (Nam2)
                  then
                     return It2;
 
                  elsif Inherited_From_Actual (Nam2)
                    and then Comes_From_Source (Nam1)
                  then
                     return It1;
                  end if;
 
                  Actual := First_Actual (N);
                  Formal := First_Formal (Nam1);
                  while Present (Actual) loop
                     if Etype (Actual) /= Etype (Formal) then
                        return It2;
                     end if;
 
                     Next_Actual (Actual);
                     Next_Formal (Formal);
                  end loop;
 
                  return It1;
               end;
 
            elsif Nkind (N) in N_Binary_Op then
               if Matches (Left_Opnd (N), First_Formal (Nam1))
                 and then
                   Matches (Right_Opnd (N), Next_Formal (First_Formal (Nam1)))
               then
                  return It1;
               else
                  return It2;
               end if;
 
            elsif Nkind (N) in  N_Unary_Op then
               if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
                  return It1;
               else
                  return It2;
               end if;
 
            else
               return Remove_Conversions;
            end if;
         else
            return Remove_Conversions;
         end if;
      end if;
 
      --  an implicit concatenation operator on a string type cannot be
      --  disambiguated from the predefined concatenation. This can only
      --  happen with concatenation of string literals.
 
      if Chars (User_Subp) = Name_Op_Concat
        and then Ekind (User_Subp) = E_Operator
        and then Is_String_Type (Etype (First_Formal (User_Subp)))
      then
         return No_Interp;
 
      --  If the user-defined operator is in  an open scope, or in the scope
      --  of the resulting type, or given by an expanded name that names its
      --  scope, it hides the predefined operator for the type. Exponentiation
      --  has to be special-cased because the implicit operator does not have
      --  a symmetric signature, and may not be hidden by the explicit one.
 
      elsif (Nkind (N) = N_Function_Call
              and then Nkind (Name (N)) = N_Expanded_Name
              and then (Chars (Predef_Subp) /= Name_Op_Expon
                          or else Hides_Op (User_Subp, Predef_Subp))
              and then Scope (User_Subp) = Entity (Prefix (Name (N))))
        or else Hides_Op (User_Subp, Predef_Subp)
      then
         if It1.Nam = User_Subp then
            return It1;
         else
            return It2;
         end if;
 
      --  Otherwise, the predefined operator has precedence, or if the user-
      --  defined operation is directly visible we have a true ambiguity. If
      --  this is a fixed-point multiplication and division in Ada83 mode,
      --  exclude the universal_fixed operator, which often causes ambiguities
      --  in legacy code.
 
      else
         if (In_Open_Scopes (Scope (User_Subp))
           or else Is_Potentially_Use_Visible (User_Subp))
           and then not In_Instance
         then
            if Is_Fixed_Point_Type (Typ)
              and then (Chars (Nam1) = Name_Op_Multiply
                          or else Chars (Nam1) = Name_Op_Divide)
              and then Ada_Version = Ada_83
            then
               if It2.Nam = Predef_Subp then
                  return It1;
               else
                  return It2;
               end if;
            else
               return No_Interp;
            end if;
 
         elsif It1.Nam = Predef_Subp then
            return It1;
 
         else
            return It2;
         end if;
      end if;
   end Disambiguate;
 
   ---------------------
   -- End_Interp_List --
   ---------------------
 
   procedure End_Interp_List is
   begin
      All_Interp.Table (All_Interp.Last) := No_Interp;
      All_Interp.Increment_Last;
   end End_Interp_List;
 
   -------------------------
   -- Entity_Matches_Spec --
   -------------------------
 
   function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
   begin
      --  Simple case: same entity kinds, type conformance is required. A
      --  parameterless function can also rename a literal.
 
      if Ekind (Old_S) = Ekind (New_S)
        or else (Ekind (New_S) = E_Function
                  and then Ekind (Old_S) = E_Enumeration_Literal)
      then
         return Type_Conformant (New_S, Old_S);
 
      elsif Ekind (New_S) = E_Function
        and then Ekind (Old_S) = E_Operator
      then
         return Operator_Matches_Spec (Old_S, New_S);
 
      elsif Ekind (New_S) = E_Procedure
        and then Is_Entry (Old_S)
      then
         return Type_Conformant (New_S, Old_S);
 
      else
         return False;
      end if;
   end Entity_Matches_Spec;
 
   ----------------------
   -- Find_Unique_Type --
   ----------------------
 
   function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
      T  : constant Entity_Id := Etype (L);
      I  : Interp_Index;
      It : Interp;
      TR : Entity_Id := Any_Type;
 
   begin
      if Is_Overloaded (R) then
         Get_First_Interp (R, I, It);
         while Present (It.Typ) loop
            if Covers (T, It.Typ) or else Covers (It.Typ, T) then
 
               --  If several interpretations are possible and L is universal,
               --  apply preference rule.
 
               if TR /= Any_Type then
 
                  if (T = Universal_Integer or else T = Universal_Real)
                    and then It.Typ = T
                  then
                     TR := It.Typ;
                  end if;
 
               else
                  TR := It.Typ;
               end if;
            end if;
 
            Get_Next_Interp (I, It);
         end loop;
 
         Set_Etype (R, TR);
 
      --  In the non-overloaded case, the Etype of R is already set correctly
 
      else
         null;
      end if;
 
      --  If one of the operands is Universal_Fixed, the type of the other
      --  operand provides the context.
 
      if Etype (R) = Universal_Fixed then
         return T;
 
      elsif T = Universal_Fixed then
         return Etype (R);
 
      --  Ada 2005 (AI-230): Support the following operators:
 
      --    function "="  (L, R : universal_access) return Boolean;
      --    function "/=" (L, R : universal_access) return Boolean;
 
      elsif Ada_Version >= Ada_05
        and then Ekind (Etype (L)) = E_Anonymous_Access_Type
        and then Is_Access_Type (Etype (R))
      then
         return Etype (L);
 
      elsif Ada_Version >= Ada_05
        and then Ekind (Etype (R)) = E_Anonymous_Access_Type
        and then Is_Access_Type (Etype (L))
      then
         return Etype (R);
 
      else
         return Specific_Type (T, Etype (R));
      end if;
 
   end Find_Unique_Type;
 
   ----------------------
   -- Get_First_Interp --
   ----------------------
 
   procedure Get_First_Interp
     (N  : Node_Id;
      I  : out Interp_Index;
      It : out Interp)
   is
      Map_Ptr : Int;
      Int_Ind : Interp_Index;
      O_N     : Node_Id;
 
   begin
      --  If a selected component is overloaded because the selector has
      --  multiple interpretations, the node is a call to a protected
      --  operation or an indirect call. Retrieve the interpretation from
      --  the selector name. The selected component may be overloaded as well
      --  if the prefix is overloaded. That case is unchanged.
 
      if Nkind (N) = N_Selected_Component
        and then Is_Overloaded (Selector_Name (N))
      then
         O_N := Selector_Name (N);
      else
         O_N := N;
      end if;
 
      Map_Ptr := Headers (Hash (O_N));
      while Present (Interp_Map.Table (Map_Ptr).Node) loop
         if Interp_Map.Table (Map_Ptr).Node = O_N then
            Int_Ind := Interp_Map.Table (Map_Ptr).Index;
            It := All_Interp.Table (Int_Ind);
            I := Int_Ind;
            return;
         else
            Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
         end if;
      end loop;
 
      --  Procedure should never be called if the node has no interpretations
 
      raise Program_Error;
   end Get_First_Interp;
 
   ---------------------
   -- Get_Next_Interp --
   ---------------------
 
   procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
   begin
      I  := I + 1;
      It := All_Interp.Table (I);
   end Get_Next_Interp;
 
   -------------------------
   -- Has_Compatible_Type --
   -------------------------
 
   function Has_Compatible_Type
     (N    : Node_Id;
      Typ  : Entity_Id)
      return Boolean
   is
      I  : Interp_Index;
      It : Interp;
 
   begin
      if N = Error then
         return False;
      end if;
 
      if Nkind (N) = N_Subtype_Indication
        or else not Is_Overloaded (N)
      then
         return
           Covers (Typ, Etype (N))
 
            --  Ada 2005 (AI-345) The context may be a synchronized interface.
            --  If the type is already frozen use the corresponding_record
            --  to check whether it is a proper descendant.
 
           or else
             (Is_Concurrent_Type (Etype (N))
                and then Present (Corresponding_Record_Type (Etype (N)))
                and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
 
           or else
             (not Is_Tagged_Type (Typ)
                and then Ekind (Typ) /= E_Anonymous_Access_Type
                and then Covers (Etype (N), Typ));
 
      else
         Get_First_Interp (N, I, It);
         while Present (It.Typ) loop
            if (Covers (Typ, It.Typ)
                  and then
                    (Scope (It.Nam) /= Standard_Standard
                       or else not Is_Invisible_Operator (N, Base_Type (Typ))))
 
               --  Ada 2005 (AI-345)
 
              or else
                (Is_Concurrent_Type (It.Typ)
                  and then Present (Corresponding_Record_Type
                                                             (Etype (It.Typ)))
                  and then Covers (Typ, Corresponding_Record_Type
                                                             (Etype (It.Typ))))
 
              or else (not Is_Tagged_Type (Typ)
                         and then Ekind (Typ) /= E_Anonymous_Access_Type
                         and then Covers (It.Typ, Typ))
            then
               return True;
            end if;
 
            Get_Next_Interp (I, It);
         end loop;
 
         return False;
      end if;
   end Has_Compatible_Type;
 
   ----------
   -- Hash --
   ----------
 
   function Hash (N : Node_Id) return Int is
   begin
      --  Nodes have a size that is power of two, so to select significant
      --  bits only we remove the low-order bits.
 
      return ((Int (N) / 2 ** 5) mod Header_Size);
   end Hash;
 
   --------------
   -- Hides_Op --
   --------------
 
   function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
      Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
   begin
      return Operator_Matches_Spec (Op, F)
        and then (In_Open_Scopes (Scope (F))
                    or else Scope (F) = Scope (Btyp)
                    or else (not In_Open_Scopes (Scope (Btyp))
                              and then not In_Use (Btyp)
                              and then not In_Use (Scope (Btyp))));
   end Hides_Op;
 
   ------------------------
   -- Init_Interp_Tables --
   ------------------------
 
   procedure Init_Interp_Tables is
   begin
      All_Interp.Init;
      Interp_Map.Init;
      Headers := (others => No_Entry);
   end Init_Interp_Tables;
 
   -----------------------------------
   -- Interface_Present_In_Ancestor --
   -----------------------------------
 
   function Interface_Present_In_Ancestor
     (Typ   : Entity_Id;
      Iface : Entity_Id) return Boolean
   is
      Target_Typ : Entity_Id;
 
      function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
      --  Returns True if Typ or some ancestor of Typ implements Iface
 
      function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
         E    : Entity_Id;
         AI   : Entity_Id;
         Elmt : Elmt_Id;
 
      begin
         if Typ = Iface then
            return True;
         end if;
 
         --  Handle private types
 
         if Present (Full_View (Typ))
           and then not Is_Concurrent_Type (Full_View (Typ))
         then
            E := Full_View (Typ);
         else
            E := Typ;
         end if;
 
         loop
            if Present (Abstract_Interfaces (E))
              and then Present (Abstract_Interfaces (E))
              and then not Is_Empty_Elmt_List (Abstract_Interfaces (E))
            then
               Elmt := First_Elmt (Abstract_Interfaces (E));
               while Present (Elmt) loop
                  AI := Node (Elmt);
 
                  if AI = Iface or else Is_Ancestor (Iface, AI) then
                     return True;
                  end if;
 
                  Next_Elmt (Elmt);
               end loop;
            end if;
 
            exit when Etype (E) = E
 
               --  Handle private types
 
               or else (Present (Full_View (Etype (E)))
                         and then Full_View (Etype (E)) = E);
 
            --  Check if the current type is a direct derivation of the
            --  interface
 
            if Etype (E) = Iface then
               return True;
            end if;
 
            --  Climb to the immediate ancestor handling private types
 
            if Present (Full_View (Etype (E))) then
               E := Full_View (Etype (E));
            else
               E := Etype (E);
            end if;
         end loop;
 
         return False;
      end Iface_Present_In_Ancestor;
 
   --  Start of processing for Interface_Present_In_Ancestor
 
   begin
      if Is_Access_Type (Typ) then
         Target_Typ := Etype (Directly_Designated_Type (Typ));
      else
         Target_Typ := Typ;
      end if;
 
      --  In case of concurrent types we can't use the Corresponding Record_Typ
      --  to look for the interface because it is built by the expander (and
      --  hence it is not always available). For this reason we traverse the
      --  list of interfaces (available in the parent of the concurrent type)
 
      if Is_Concurrent_Type (Target_Typ) then
         if Present (Interface_List (Parent (Target_Typ))) then
            declare
               AI : Node_Id;
            begin
               AI := First (Interface_List (Parent (Target_Typ)));
               while Present (AI) loop
                  if Etype (AI) = Iface then
                     return True;
 
                  elsif Present (Abstract_Interfaces (Etype (AI)))
                     and then Iface_Present_In_Ancestor (Etype (AI))
                  then
                     return True;
                  end if;
 
                  Next (AI);
               end loop;
            end;
         end if;
 
         return False;
      end if;
 
      if Is_Class_Wide_Type (Target_Typ) then
         Target_Typ := Etype (Target_Typ);
      end if;
 
      if Ekind (Target_Typ) = E_Incomplete_Type then
         pragma Assert (Present (Non_Limited_View (Target_Typ)));
         Target_Typ := Non_Limited_View (Target_Typ);
 
         --  Protect the frontend against previously detected errors
 
         if Ekind (Target_Typ) = E_Incomplete_Type then
            return False;
         end if;
      end if;
 
      return Iface_Present_In_Ancestor (Target_Typ);
   end Interface_Present_In_Ancestor;
 
   ---------------------
   -- Intersect_Types --
   ---------------------
 
   function Intersect_Types (L, R : Node_Id) return Entity_Id is
      Index : Interp_Index;
      It    : Interp;
      Typ   : Entity_Id;
 
      function Check_Right_Argument (T : Entity_Id) return Entity_Id;
      --  Find interpretation of right arg that has type compatible with T
 
      --------------------------
      -- Check_Right_Argument --
      --------------------------
 
      function Check_Right_Argument (T : Entity_Id) return Entity_Id is
         Index : Interp_Index;
         It    : Interp;
         T2    : Entity_Id;
 
      begin
         if not Is_Overloaded (R) then
            return Specific_Type (T, Etype (R));
 
         else
            Get_First_Interp (R, Index, It);
            loop
               T2 := Specific_Type (T, It.Typ);
 
               if T2 /= Any_Type then
                  return T2;
               end if;
 
               Get_Next_Interp (Index, It);
               exit when No (It.Typ);
            end loop;
 
            return Any_Type;
         end if;
      end Check_Right_Argument;
 
   --  Start processing for Intersect_Types
 
   begin
      if Etype (L) = Any_Type or else Etype (R) = Any_Type then
         return Any_Type;
      end if;
 
      if not Is_Overloaded (L) then
         Typ := Check_Right_Argument (Etype (L));
 
      else
         Typ := Any_Type;
         Get_First_Interp (L, Index, It);
         while Present (It.Typ) loop
            Typ := Check_Right_Argument (It.Typ);
            exit when Typ /= Any_Type;
            Get_Next_Interp (Index, It);
         end loop;
 
      end if;
 
      --  If Typ is Any_Type, it means no compatible pair of types was found
 
      if Typ = Any_Type then
         if Nkind (Parent (L)) in N_Op then
            Error_Msg_N ("incompatible types for operator", Parent (L));
 
         elsif Nkind (Parent (L)) = N_Range then
            Error_Msg_N ("incompatible types given in constraint", Parent (L));
 
         --  Ada 2005 (AI-251): Complete the error notification
 
         elsif Is_Class_Wide_Type (Etype (R))
             and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
         then
            Error_Msg_NE ("(Ada 2005) does not implement interface }",
                          L, Etype (Class_Wide_Type (Etype (R))));
 
         else
            Error_Msg_N ("incompatible types", Parent (L));
         end if;
      end if;
 
      return Typ;
   end Intersect_Types;
 
   -----------------
   -- Is_Ancestor --
   -----------------
 
   function Is_Ancestor (T1, T2 : Entity_Id) return Boolean is
      Par : Entity_Id;
 
   begin
      if Base_Type (T1) = Base_Type (T2) then
         return True;
 
      elsif Is_Private_Type (T1)
        and then Present (Full_View (T1))
        and then Base_Type (T2) = Base_Type (Full_View (T1))
      then
         return True;
 
      else
         Par := Etype (T2);
 
         loop
            --  If there was a error on the type declaration, do not recurse
 
            if Error_Posted (Par) then
               return False;
 
            elsif Base_Type (T1) = Base_Type (Par)
              or else (Is_Private_Type (T1)
                         and then Present (Full_View (T1))
                         and then Base_Type (Par) = Base_Type (Full_View (T1)))
            then
               return True;
 
            elsif Is_Private_Type (Par)
              and then Present (Full_View (Par))
              and then Full_View (Par) = Base_Type (T1)
            then
               return True;
 
            elsif Etype (Par) /= Par then
               Par := Etype (Par);
            else
               return False;
            end if;
         end loop;
      end if;
   end Is_Ancestor;
 
   ---------------------------
   -- Is_Invisible_Operator --
   ---------------------------
 
   function Is_Invisible_Operator
     (N    : Node_Id;
      T    : Entity_Id)
      return Boolean
   is
      Orig_Node : constant Node_Id := Original_Node (N);
 
   begin
      if Nkind (N) not in N_Op then
         return False;
 
      elsif not Comes_From_Source (N) then
         return False;
 
      elsif No (Universal_Interpretation (Right_Opnd (N))) then
         return False;
 
      elsif Nkind (N) in N_Binary_Op
        and then No (Universal_Interpretation (Left_Opnd (N)))
      then
         return False;
 
      else return
        Is_Numeric_Type (T)
          and then not In_Open_Scopes (Scope (T))
          and then not Is_Potentially_Use_Visible (T)
          and then not In_Use (T)
          and then not In_Use (Scope (T))
          and then
            (Nkind (Orig_Node) /= N_Function_Call
              or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
              or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
 
          and then not In_Instance;
      end if;
   end Is_Invisible_Operator;
 
   -------------------
   -- Is_Subtype_Of --
   -------------------
 
   function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
      S : Entity_Id;
 
   begin
      S := Ancestor_Subtype (T1);
      while Present (S) loop
         if S = T2 then
            return True;
         else
            S := Ancestor_Subtype (S);
         end if;
      end loop;
 
      return False;
   end Is_Subtype_Of;
 
   ------------------
   -- List_Interps --
   ------------------
 
   procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
      Index : Interp_Index;
      It    : Interp;
 
   begin
      Get_First_Interp (Nam, Index, It);
      while Present (It.Nam) loop
         if Scope (It.Nam) = Standard_Standard
           and then Scope (It.Typ) /= Standard_Standard
         then
            Error_Msg_Sloc := Sloc (Parent (It.Typ));
            Error_Msg_NE ("   & (inherited) declared#!", Err, It.Nam);
 
         else
            Error_Msg_Sloc := Sloc (It.Nam);
            Error_Msg_NE ("   & declared#!", Err, It.Nam);
         end if;
 
         Get_Next_Interp (Index, It);
      end loop;
   end List_Interps;
 
   -----------------
   -- New_Interps --
   -----------------
 
   procedure New_Interps (N : Node_Id)  is
      Map_Ptr : Int;
 
   begin
      All_Interp.Increment_Last;
      All_Interp.Table (All_Interp.Last) := No_Interp;
 
      Map_Ptr := Headers (Hash (N));
 
      if Map_Ptr = No_Entry then
 
         --  Place new node at end of table
 
         Interp_Map.Increment_Last;
         Headers (Hash (N)) := Interp_Map.Last;
 
      else
         --   Place node at end of chain, or locate its previous entry
 
         loop
            if Interp_Map.Table (Map_Ptr).Node = N then
 
               --  Node is already in the table, and is being rewritten.
               --  Start a new interp section, retain hash link.
 
               Interp_Map.Table (Map_Ptr).Node  := N;
               Interp_Map.Table (Map_Ptr).Index := All_Interp.Last;
               Set_Is_Overloaded (N, True);
               return;
 
            else
               exit when Interp_Map.Table (Map_Ptr).Next = No_Entry;
               Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
            end if;
         end loop;
 
         --  Chain the new node
 
         Interp_Map.Increment_Last;
         Interp_Map.Table (Map_Ptr).Next := Interp_Map.Last;
      end if;
 
      Interp_Map.Table (Interp_Map.Last) := (N, All_Interp.Last, No_Entry);
      Set_Is_Overloaded (N, True);
   end New_Interps;
 
   ---------------------------
   -- Operator_Matches_Spec --
   ---------------------------
 
   function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
      Op_Name : constant Name_Id   := Chars (Op);
      T       : constant Entity_Id := Etype (New_S);
      New_F   : Entity_Id;
      Old_F   : Entity_Id;
      Num     : Int;
      T1      : Entity_Id;
      T2      : Entity_Id;
 
   begin
      --  To verify that a predefined operator matches a given signature,
      --  do a case analysis of the operator classes. Function can have one
      --  or two formals and must have the proper result type.
 
      New_F := First_Formal (New_S);
      Old_F := First_Formal (Op);
      Num := 0;
      while Present (New_F) and then Present (Old_F) loop
         Num := Num + 1;
         Next_Formal (New_F);
         Next_Formal (Old_F);
      end loop;
 
      --  Definite mismatch if different number of parameters
 
      if Present (Old_F) or else Present (New_F) then
         return False;
 
      --  Unary operators
 
      elsif Num = 1 then
         T1 := Etype (First_Formal (New_S));
 
         if Op_Name = Name_Op_Subtract
           or else Op_Name = Name_Op_Add
           or else Op_Name = Name_Op_Abs
         then
            return Base_Type (T1) = Base_Type (T)
              and then Is_Numeric_Type (T);
 
         elsif Op_Name = Name_Op_Not then
            return Base_Type (T1) = Base_Type (T)
              and then Valid_Boolean_Arg (Base_Type (T));
 
         else
            return False;
         end if;
 
      --  Binary operators
 
      else
         T1 := Etype (First_Formal (New_S));
         T2 := Etype (Next_Formal (First_Formal (New_S)));
 
         if Op_Name =  Name_Op_And or else Op_Name = Name_Op_Or
           or else Op_Name = Name_Op_Xor
         then
            return Base_Type (T1) = Base_Type (T2)
              and then Base_Type (T1) = Base_Type (T)
              and then Valid_Boolean_Arg (Base_Type (T));
 
         elsif Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne then
            return Base_Type (T1) = Base_Type (T2)
              and then not Is_Limited_Type (T1)
              and then Is_Boolean_Type (T);
 
         elsif Op_Name = Name_Op_Lt or else Op_Name = Name_Op_Le
           or else Op_Name = Name_Op_Gt or else Op_Name = Name_Op_Ge
         then
            return Base_Type (T1) = Base_Type (T2)
              and then Valid_Comparison_Arg (T1)
              and then Is_Boolean_Type (T);
 
         elsif Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
            return Base_Type (T1) = Base_Type (T2)
              and then Base_Type (T1) = Base_Type (T)
              and then Is_Numeric_Type (T);
 
         --  for division and multiplication, a user-defined function does
         --  not match the predefined universal_fixed operation, except in
         --  Ada83 mode.
 
         elsif Op_Name = Name_Op_Divide then
            return (Base_Type (T1) = Base_Type (T2)
              and then Base_Type (T1) = Base_Type (T)
              and then Is_Numeric_Type (T)
              and then (not Is_Fixed_Point_Type (T)
                         or else Ada_Version = Ada_83))
 
            --  Mixed_Mode operations on fixed-point types
 
              or else (Base_Type (T1) = Base_Type (T)
                        and then Base_Type (T2) = Base_Type (Standard_Integer)
                        and then Is_Fixed_Point_Type (T))
 
            --  A user defined operator can also match (and hide) a mixed
            --  operation on universal literals.
 
              or else (Is_Integer_Type (T2)
                        and then Is_Floating_Point_Type (T1)
                        and then Base_Type (T1) = Base_Type (T));
 
         elsif Op_Name = Name_Op_Multiply then
            return (Base_Type (T1) = Base_Type (T2)
              and then Base_Type (T1) = Base_Type (T)
              and then Is_Numeric_Type (T)
              and then (not Is_Fixed_Point_Type (T)
                         or else Ada_Version = Ada_83))
 
            --  Mixed_Mode operations on fixed-point types
 
              or else (Base_Type (T1) = Base_Type (T)
                        and then Base_Type (T2) = Base_Type (Standard_Integer)
                        and then Is_Fixed_Point_Type (T))
 
              or else (Base_Type (T2) = Base_Type (T)
                        and then Base_Type (T1) = Base_Type (Standard_Integer)
                        and then Is_Fixed_Point_Type (T))
 
              or else (Is_Integer_Type (T2)
                        and then Is_Floating_Point_Type (T1)
                        and then Base_Type (T1) = Base_Type (T))
 
              or else (Is_Integer_Type (T1)
                        and then Is_Floating_Point_Type (T2)
                        and then Base_Type (T2) = Base_Type (T));
 
         elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
            return Base_Type (T1) = Base_Type (T2)
              and then Base_Type (T1) = Base_Type (T)
              and then Is_Integer_Type (T);
 
         elsif Op_Name = Name_Op_Expon then
            return Base_Type (T1) = Base_Type (T)
              and then Is_Numeric_Type (T)
              and then Base_Type (T2) = Base_Type (Standard_Integer);
 
         elsif Op_Name = Name_Op_Concat then
            return Is_Array_Type (T)
              and then (Base_Type (T) = Base_Type (Etype (Op)))
              and then (Base_Type (T1) = Base_Type (T)
                         or else
                        Base_Type (T1) = Base_Type (Component_Type (T)))
              and then (Base_Type (T2) = Base_Type (T)
                         or else
                        Base_Type (T2) = Base_Type (Component_Type (T)));
 
         else
            return False;
         end if;
      end if;
   end Operator_Matches_Spec;
 
   -------------------
   -- Remove_Interp --
   -------------------
 
   procedure Remove_Interp (I : in out Interp_Index) is
      II : Interp_Index;
 
   begin
      --  Find end of Interp list and copy downward to erase the discarded one
 
      II := I + 1;
      while Present (All_Interp.Table (II).Typ) loop
         II := II + 1;
      end loop;
 
      for J in I + 1 .. II loop
         All_Interp.Table (J - 1) := All_Interp.Table (J);
      end loop;
 
      --  Back up interp. index to insure that iterator will pick up next
      --  available interpretation.
 
      I := I - 1;
   end Remove_Interp;
 
   ------------------
   -- Save_Interps --
   ------------------
 
   procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
      Map_Ptr : Int;
      O_N     : Node_Id := Old_N;
 
   begin
      if Is_Overloaded (Old_N) then
         if Nkind (Old_N) = N_Selected_Component
           and then Is_Overloaded (Selector_Name (Old_N))
         then
            O_N := Selector_Name (Old_N);
         end if;
 
         Map_Ptr := Headers (Hash (O_N));
 
         while Interp_Map.Table (Map_Ptr).Node /= O_N loop
            Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
            pragma Assert (Map_Ptr /= No_Entry);
         end loop;
 
         New_Interps (New_N);
         Interp_Map.Table (Interp_Map.Last).Index :=
           Interp_Map.Table (Map_Ptr).Index;
      end if;
   end Save_Interps;
 
   -------------------
   -- Specific_Type --
   -------------------
 
   function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
      B1 : constant Entity_Id := Base_Type (T1);
      B2 : constant Entity_Id := Base_Type (T2);
 
      function Is_Remote_Access (T : Entity_Id) return Boolean;
      --  Check whether T is the equivalent type of a remote access type.
      --  If distribution is enabled, T is a legal context for Null.
 
      ----------------------
      -- Is_Remote_Access --
      ----------------------
 
      function Is_Remote_Access (T : Entity_Id) return Boolean is
      begin
         return Is_Record_Type (T)
           and then (Is_Remote_Call_Interface (T)
                      or else Is_Remote_Types (T))
           and then Present (Corresponding_Remote_Type (T))
           and then Is_Access_Type (Corresponding_Remote_Type (T));
      end Is_Remote_Access;
 
   --  Start of processing for Specific_Type
 
   begin
      if T1 = Any_Type or else T2 = Any_Type then
         return Any_Type;
      end if;
 
      if B1 = B2 then
         return B1;
 
      elsif False
        or else (T1 = Universal_Integer and then Is_Integer_Type (T2))
        or else (T1 = Universal_Real    and then Is_Real_Type (T2))
        or else (T1 = Universal_Fixed   and then Is_Fixed_Point_Type (T2))
        or else (T1 = Any_Fixed         and then Is_Fixed_Point_Type (T2))
      then
         return B2;
 
      elsif False
        or else (T2 = Universal_Integer and then Is_Integer_Type (T1))
        or else (T2 = Universal_Real    and then Is_Real_Type (T1))
        or else (T2 = Universal_Fixed   and then Is_Fixed_Point_Type (T1))
        or else (T2 = Any_Fixed         and then Is_Fixed_Point_Type (T1))
      then
         return B1;
 
      elsif T2 = Any_String and then Is_String_Type (T1) then
         return B1;
 
      elsif T1 = Any_String and then Is_String_Type (T2) then
         return B2;
 
      elsif T2 = Any_Character and then Is_Character_Type (T1) then
         return B1;
 
      elsif T1 = Any_Character and then Is_Character_Type (T2) then
         return B2;
 
      elsif T1 = Any_Access
        and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
      then
         return T2;
 
      elsif T2 = Any_Access
        and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
      then
         return T1;
 
      elsif T2 = Any_Composite
        and then Ekind (T1) in E_Array_Type .. E_Record_Subtype
      then
         return T1;
 
      elsif T1 = Any_Composite
        and then Ekind (T2) in E_Array_Type .. E_Record_Subtype
      then
         return T2;
 
      elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
         return T2;
 
      elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
         return T1;
 
      --  ----------------------------------------------------------
      --  Special cases for equality operators (all other predefined
      --  operators can never apply to tagged types)
      --  ----------------------------------------------------------
 
      --  Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
      --  interface
 
      elsif Is_Class_Wide_Type (T1)
        and then Is_Class_Wide_Type (T2)
        and then Is_Interface (Etype (T2))
      then
         return T1;
 
      --  Ada 2005 (AI-251): T1 is a concrete type that implements the
      --  class-wide interface T2
 
      elsif Is_Class_Wide_Type (T2)
        and then Is_Interface (Etype (T2))
        and then Interface_Present_In_Ancestor (Typ => T1,
                                                Iface => Etype (T2))
      then
         return T1;
 
      elsif Is_Class_Wide_Type (T1)
        and then Is_Ancestor (Root_Type (T1), T2)
      then
         return T1;
 
      elsif Is_Class_Wide_Type (T2)
        and then Is_Ancestor (Root_Type (T2), T1)
      then
         return T2;
 
      elsif (Ekind (B1) = E_Access_Subprogram_Type
               or else
             Ekind (B1) = E_Access_Protected_Subprogram_Type)
        and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
        and then Is_Access_Type (T2)
      then
         return T2;
 
      elsif (Ekind (B2) = E_Access_Subprogram_Type
               or else
             Ekind (B2) = E_Access_Protected_Subprogram_Type)
        and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
        and then Is_Access_Type (T1)
      then
         return T1;
 
      elsif (Ekind (T1) = E_Allocator_Type
              or else Ekind (T1) = E_Access_Attribute_Type
              or else Ekind (T1) = E_Anonymous_Access_Type)
        and then Is_Access_Type (T2)
      then
         return T2;
 
      elsif (Ekind (T2) = E_Allocator_Type
              or else Ekind (T2) = E_Access_Attribute_Type
              or else Ekind (T2) = E_Anonymous_Access_Type)
        and then Is_Access_Type (T1)
      then
         return T1;
 
      --  If none of the above cases applies, types are not compatible
 
      else
         return Any_Type;
      end if;
   end Specific_Type;
 
   -----------------------
   -- Valid_Boolean_Arg --
   -----------------------
 
   --  In addition to booleans and arrays of booleans, we must include
   --  aggregates as valid boolean arguments, because in the first pass of
   --  resolution their components are not examined. If it turns out not to be
   --  an aggregate of booleans, this will be diagnosed in Resolve.
   --  Any_Composite must be checked for prior to the array type checks because
   --  Any_Composite does not have any associated indexes.
 
   function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
   begin
      return Is_Boolean_Type (T)
        or else T = Any_Composite
        or else (Is_Array_Type (T)
                  and then T /= Any_String
                  and then Number_Dimensions (T) = 1
                  and then Is_Boolean_Type (Component_Type (T))
                  and then (not Is_Private_Composite (T)
                             or else In_Instance)
                  and then (not Is_Limited_Composite (T)
                             or else In_Instance))
        or else Is_Modular_Integer_Type (T)
        or else T = Universal_Integer;
   end Valid_Boolean_Arg;
 
   --------------------------
   -- Valid_Comparison_Arg --
   --------------------------
 
   function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
   begin
 
      if T = Any_Composite then
         return False;
      elsif Is_Discrete_Type (T)
        or else Is_Real_Type (T)
      then
         return True;
      elsif Is_Array_Type (T)
          and then Number_Dimensions (T) = 1
          and then Is_Discrete_Type (Component_Type (T))
          and then (not Is_Private_Composite (T)
                     or else In_Instance)
          and then (not Is_Limited_Composite (T)
                     or else In_Instance)
      then
         return True;
      elsif Is_String_Type (T) then
         return True;
      else
         return False;
      end if;
   end Valid_Comparison_Arg;
 
   ---------------------
   -- Write_Overloads --
   ---------------------
 
   procedure Write_Overloads (N : Node_Id) is
      I   : Interp_Index;
      It  : Interp;
      Nam : Entity_Id;
 
   begin
      if not Is_Overloaded (N) then
         Write_Str ("Non-overloaded entity ");
         Write_Eol;
         Write_Entity_Info (Entity (N), " ");
 
      else
         Get_First_Interp (N, I, It);
         Write_Str ("Overloaded entity ");
         Write_Eol;
         Nam := It.Nam;
 
         while Present (Nam) loop
            Write_Entity_Info (Nam,  "      ");
            Write_Str ("=================");
            Write_Eol;
            Get_Next_Interp (I, It);
            Nam := It.Nam;
         end loop;
      end if;
   end Write_Overloads;
 
   ----------------------
   -- Write_Interp_Ref --
   ----------------------
 
   procedure Write_Interp_Ref (Map_Ptr : Int) is
   begin
      Write_Str (" Node:  ");
      Write_Int (Int (Interp_Map.Table (Map_Ptr).Node));
      Write_Str (" Index: ");
      Write_Int (Int (Interp_Map.Table (Map_Ptr).Index));
      Write_Str (" Next:  ");
      Write_Int (Int (Interp_Map.Table (Map_Ptr).Next));
      Write_Eol;
   end Write_Interp_Ref;
 
end Sem_Type;
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.