URL
https://opencores.org/ocsvn/scarts/scarts/trunk
Subversion Repositories scarts
[/] [scarts/] [trunk/] [toolchain/] [scarts-gdb/] [gdb-6.8/] [gdb/] [valarith.c] - Rev 25
Compare with Previous | Blame | View Log
/* Perform arithmetic and other operations on values, for GDB. Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "value.h" #include "symtab.h" #include "gdbtypes.h" #include "expression.h" #include "target.h" #include "language.h" #include "gdb_string.h" #include "doublest.h" #include "dfp.h" #include <math.h> #include "infcall.h" /* Define whether or not the C operator '/' truncates towards zero for differently signed operands (truncation direction is undefined in C). */ #ifndef TRUNCATION_TOWARDS_ZERO #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) #endif static struct value *value_subscripted_rvalue (struct value *, struct value *, int); static struct type *unop_result_type (enum exp_opcode op, struct type *type1); static struct type *binop_result_type (enum exp_opcode op, struct type *type1, struct type *type2); void _initialize_valarith (void); /* Given a pointer, return the size of its target. If the pointer type is void *, then return 1. If the target type is incomplete, then error out. This isn't a general purpose function, but just a helper for value_sub & value_add. */ static LONGEST find_size_for_pointer_math (struct type *ptr_type) { LONGEST sz = -1; struct type *ptr_target; ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); sz = TYPE_LENGTH (ptr_target); if (sz == 0) { if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) sz = 1; else { char *name; name = TYPE_NAME (ptr_target); if (name == NULL) name = TYPE_TAG_NAME (ptr_target); if (name == NULL) error (_("Cannot perform pointer math on incomplete types, " "try casting to a known type, or void *.")); else error (_("Cannot perform pointer math on incomplete type \"%s\", " "try casting to a known type, or void *."), name); } } return sz; } struct value * value_add (struct value *arg1, struct value *arg2) { struct value *valint; struct value *valptr; LONGEST sz; struct type *type1, *type2, *valptrtype; arg1 = coerce_array (arg1); arg2 = coerce_array (arg2); type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); if ((TYPE_CODE (type1) == TYPE_CODE_PTR || TYPE_CODE (type2) == TYPE_CODE_PTR) && (is_integral_type (type1) || is_integral_type (type2))) /* Exactly one argument is a pointer, and one is an integer. */ { struct value *retval; if (TYPE_CODE (type1) == TYPE_CODE_PTR) { valptr = arg1; valint = arg2; valptrtype = type1; } else { valptr = arg2; valint = arg1; valptrtype = type2; } sz = find_size_for_pointer_math (valptrtype); retval = value_from_pointer (valptrtype, value_as_address (valptr) + (sz * value_as_long (valint))); return retval; } return value_binop (arg1, arg2, BINOP_ADD); } struct value * value_sub (struct value *arg1, struct value *arg2) { struct type *type1, *type2; arg1 = coerce_array (arg1); arg2 = coerce_array (arg2); type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); if (TYPE_CODE (type1) == TYPE_CODE_PTR) { if (is_integral_type (type2)) { /* pointer - integer. */ LONGEST sz = find_size_for_pointer_math (type1); return value_from_pointer (type1, (value_as_address (arg1) - (sz * value_as_long (arg2)))); } else if (TYPE_CODE (type2) == TYPE_CODE_PTR && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) { /* pointer to <type x> - pointer to <type x>. */ LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); return value_from_longest (builtin_type_long, /* FIXME -- should be ptrdiff_t */ (value_as_long (arg1) - value_as_long (arg2)) / sz); } else { error (_("\ First argument of `-' is a pointer and second argument is neither\n\ an integer nor a pointer of the same type.")); } } return value_binop (arg1, arg2, BINOP_SUB); } /* Return the value of ARRAY[IDX]. See comments in value_coerce_array() for rationale for reason for doing lower bounds adjustment here rather than there. FIXME: Perhaps we should validate that the index is valid and if verbosity is set, warn about invalid indices (but still use them). */ struct value * value_subscript (struct value *array, struct value *idx) { struct value *bound; int c_style = current_language->c_style_arrays; struct type *tarray; array = coerce_ref (array); tarray = check_typedef (value_type (array)); if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY || TYPE_CODE (tarray) == TYPE_CODE_STRING) { struct type *range_type = TYPE_INDEX_TYPE (tarray); LONGEST lowerbound, upperbound; get_discrete_bounds (range_type, &lowerbound, &upperbound); if (VALUE_LVAL (array) != lval_memory) return value_subscripted_rvalue (array, idx, lowerbound); if (c_style == 0) { LONGEST index = value_as_long (idx); if (index >= lowerbound && index <= upperbound) return value_subscripted_rvalue (array, idx, lowerbound); /* Emit warning unless we have an array of unknown size. An array of unknown size has lowerbound 0 and upperbound -1. */ if (upperbound > -1) warning (_("array or string index out of range")); /* fall doing C stuff */ c_style = 1; } if (lowerbound != 0) { bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); idx = value_sub (idx, bound); } array = value_coerce_array (array); } if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING) { struct type *range_type = TYPE_INDEX_TYPE (tarray); LONGEST index = value_as_long (idx); struct value *v; int offset, byte, bit_index; LONGEST lowerbound, upperbound; get_discrete_bounds (range_type, &lowerbound, &upperbound); if (index < lowerbound || index > upperbound) error (_("bitstring index out of range")); index -= lowerbound; offset = index / TARGET_CHAR_BIT; byte = *((char *) value_contents (array) + offset); bit_index = index % TARGET_CHAR_BIT; byte >>= (gdbarch_bits_big_endian (current_gdbarch) ? TARGET_CHAR_BIT - 1 - bit_index : bit_index); v = value_from_longest (LA_BOOL_TYPE, byte & 1); set_value_bitpos (v, bit_index); set_value_bitsize (v, 1); VALUE_LVAL (v) = VALUE_LVAL (array); if (VALUE_LVAL (array) == lval_internalvar) VALUE_LVAL (v) = lval_internalvar_component; VALUE_ADDRESS (v) = VALUE_ADDRESS (array); VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array); set_value_offset (v, offset + value_offset (array)); return v; } if (c_style) return value_ind (value_add (array, idx)); else error (_("not an array or string")); } /* Return the value of EXPR[IDX], expr an aggregate rvalue (eg, a vector register). This routine used to promote floats to doubles, but no longer does. */ static struct value * value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound) { struct type *array_type = check_typedef (value_type (array)); struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); unsigned int elt_size = TYPE_LENGTH (elt_type); LONGEST index = value_as_long (idx); unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound); struct value *v; if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type)) error (_("no such vector element")); v = allocate_value (elt_type); if (value_lazy (array)) set_value_lazy (v, 1); else memcpy (value_contents_writeable (v), value_contents (array) + elt_offs, elt_size); if (VALUE_LVAL (array) == lval_internalvar) VALUE_LVAL (v) = lval_internalvar_component; else VALUE_LVAL (v) = VALUE_LVAL (array); VALUE_ADDRESS (v) = VALUE_ADDRESS (array); VALUE_REGNUM (v) = VALUE_REGNUM (array); VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array); set_value_offset (v, value_offset (array) + elt_offs); return v; } /* Check to see if either argument is a structure, or a reference to one. This is called so we know whether to go ahead with the normal binop or look for a user defined function instead. For now, we do not overload the `=' operator. */ int binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2) { struct type *type1, *type2; if (op == BINOP_ASSIGN || op == BINOP_CONCAT) return 0; type1 = check_typedef (value_type (arg1)); if (TYPE_CODE (type1) == TYPE_CODE_REF) type1 = check_typedef (TYPE_TARGET_TYPE (type1)); type2 = check_typedef (value_type (arg2)); if (TYPE_CODE (type2) == TYPE_CODE_REF) type2 = check_typedef (TYPE_TARGET_TYPE (type2)); return (TYPE_CODE (type1) == TYPE_CODE_STRUCT || TYPE_CODE (type2) == TYPE_CODE_STRUCT); } /* Check to see if argument is a structure. This is called so we know whether to go ahead with the normal unop or look for a user defined function instead. For now, we do not overload the `&' operator. */ int unop_user_defined_p (enum exp_opcode op, struct value *arg1) { struct type *type1; if (op == UNOP_ADDR) return 0; type1 = check_typedef (value_type (arg1)); for (;;) { if (TYPE_CODE (type1) == TYPE_CODE_STRUCT) return 1; else if (TYPE_CODE (type1) == TYPE_CODE_REF) type1 = TYPE_TARGET_TYPE (type1); else return 0; } } /* We know either arg1 or arg2 is a structure, so try to find the right user defined function. Create an argument vector that calls arg1.operator @ (arg1,arg2) and return that value (where '@' is any binary operator which is legal for GNU C++). OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP is the opcode saying how to modify it. Otherwise, OTHEROP is unused. */ struct value * value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, enum exp_opcode otherop, enum noside noside) { struct value **argvec; char *ptr; char tstr[13]; int static_memfuncp; arg1 = coerce_ref (arg1); arg2 = coerce_ref (arg2); arg1 = coerce_enum (arg1); arg2 = coerce_enum (arg2); /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) error (_("Can't do that binary op on that type")); /* FIXME be explicit */ argvec = (struct value **) alloca (sizeof (struct value *) * 4); argvec[1] = value_addr (arg1); argvec[2] = arg2; argvec[3] = 0; /* make the right function name up */ strcpy (tstr, "operator__"); ptr = tstr + 8; switch (op) { case BINOP_ADD: strcpy (ptr, "+"); break; case BINOP_SUB: strcpy (ptr, "-"); break; case BINOP_MUL: strcpy (ptr, "*"); break; case BINOP_DIV: strcpy (ptr, "/"); break; case BINOP_REM: strcpy (ptr, "%"); break; case BINOP_LSH: strcpy (ptr, "<<"); break; case BINOP_RSH: strcpy (ptr, ">>"); break; case BINOP_BITWISE_AND: strcpy (ptr, "&"); break; case BINOP_BITWISE_IOR: strcpy (ptr, "|"); break; case BINOP_BITWISE_XOR: strcpy (ptr, "^"); break; case BINOP_LOGICAL_AND: strcpy (ptr, "&&"); break; case BINOP_LOGICAL_OR: strcpy (ptr, "||"); break; case BINOP_MIN: strcpy (ptr, "<?"); break; case BINOP_MAX: strcpy (ptr, ">?"); break; case BINOP_ASSIGN: strcpy (ptr, "="); break; case BINOP_ASSIGN_MODIFY: switch (otherop) { case BINOP_ADD: strcpy (ptr, "+="); break; case BINOP_SUB: strcpy (ptr, "-="); break; case BINOP_MUL: strcpy (ptr, "*="); break; case BINOP_DIV: strcpy (ptr, "/="); break; case BINOP_REM: strcpy (ptr, "%="); break; case BINOP_BITWISE_AND: strcpy (ptr, "&="); break; case BINOP_BITWISE_IOR: strcpy (ptr, "|="); break; case BINOP_BITWISE_XOR: strcpy (ptr, "^="); break; case BINOP_MOD: /* invalid */ default: error (_("Invalid binary operation specified.")); } break; case BINOP_SUBSCRIPT: strcpy (ptr, "[]"); break; case BINOP_EQUAL: strcpy (ptr, "=="); break; case BINOP_NOTEQUAL: strcpy (ptr, "!="); break; case BINOP_LESS: strcpy (ptr, "<"); break; case BINOP_GTR: strcpy (ptr, ">"); break; case BINOP_GEQ: strcpy (ptr, ">="); break; case BINOP_LEQ: strcpy (ptr, "<="); break; case BINOP_MOD: /* invalid */ default: error (_("Invalid binary operation specified.")); } argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); if (argvec[0]) { if (static_memfuncp) { argvec[1] = argvec[0]; argvec++; } if (noside == EVAL_AVOID_SIDE_EFFECTS) { struct type *return_type; return_type = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); return value_zero (return_type, VALUE_LVAL (arg1)); } return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); } error (_("member function %s not found"), tstr); #ifdef lint return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); #endif } /* We know that arg1 is a structure, so try to find a unary user defined operator that matches the operator in question. Create an argument vector that calls arg1.operator @ (arg1) and return that value (where '@' is (almost) any unary operator which is legal for GNU C++). */ struct value * value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) { struct value **argvec; char *ptr, *mangle_ptr; char tstr[13], mangle_tstr[13]; int static_memfuncp, nargs; arg1 = coerce_ref (arg1); arg1 = coerce_enum (arg1); /* now we know that what we have to do is construct our arg vector and find the right function to call it with. */ if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) error (_("Can't do that unary op on that type")); /* FIXME be explicit */ argvec = (struct value **) alloca (sizeof (struct value *) * 4); argvec[1] = value_addr (arg1); argvec[2] = 0; nargs = 1; /* make the right function name up */ strcpy (tstr, "operator__"); ptr = tstr + 8; strcpy (mangle_tstr, "__"); mangle_ptr = mangle_tstr + 2; switch (op) { case UNOP_PREINCREMENT: strcpy (ptr, "++"); break; case UNOP_PREDECREMENT: strcpy (ptr, "--"); break; case UNOP_POSTINCREMENT: strcpy (ptr, "++"); argvec[2] = value_from_longest (builtin_type_int, 0); argvec[3] = 0; nargs ++; break; case UNOP_POSTDECREMENT: strcpy (ptr, "--"); argvec[2] = value_from_longest (builtin_type_int, 0); argvec[3] = 0; nargs ++; break; case UNOP_LOGICAL_NOT: strcpy (ptr, "!"); break; case UNOP_COMPLEMENT: strcpy (ptr, "~"); break; case UNOP_NEG: strcpy (ptr, "-"); break; case UNOP_PLUS: strcpy (ptr, "+"); break; case UNOP_IND: strcpy (ptr, "*"); break; default: error (_("Invalid unary operation specified.")); } argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); if (argvec[0]) { if (static_memfuncp) { argvec[1] = argvec[0]; nargs --; argvec++; } if (noside == EVAL_AVOID_SIDE_EFFECTS) { struct type *return_type; return_type = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); return value_zero (return_type, VALUE_LVAL (arg1)); } return call_function_by_hand (argvec[0], nargs, argvec + 1); } error (_("member function %s not found"), tstr); return 0; /* For lint -- never reached */ } /* Concatenate two values with the following conditions: (1) Both values must be either bitstring values or character string values and the resulting value consists of the concatenation of ARG1 followed by ARG2. or One value must be an integer value and the other value must be either a bitstring value or character string value, which is to be repeated by the number of times specified by the integer value. (2) Boolean values are also allowed and are treated as bit string values of length 1. (3) Character values are also allowed and are treated as character string values of length 1. */ struct value * value_concat (struct value *arg1, struct value *arg2) { struct value *inval1; struct value *inval2; struct value *outval = NULL; int inval1len, inval2len; int count, idx; char *ptr; char inchar; struct type *type1 = check_typedef (value_type (arg1)); struct type *type2 = check_typedef (value_type (arg2)); /* First figure out if we are dealing with two values to be concatenated or a repeat count and a value to be repeated. INVAL1 is set to the first of two concatenated values, or the repeat count. INVAL2 is set to the second of the two concatenated values or the value to be repeated. */ if (TYPE_CODE (type2) == TYPE_CODE_INT) { struct type *tmp = type1; type1 = tmp; tmp = type2; inval1 = arg2; inval2 = arg1; } else { inval1 = arg1; inval2 = arg2; } /* Now process the input values. */ if (TYPE_CODE (type1) == TYPE_CODE_INT) { /* We have a repeat count. Validate the second value and then construct a value repeated that many times. */ if (TYPE_CODE (type2) == TYPE_CODE_STRING || TYPE_CODE (type2) == TYPE_CODE_CHAR) { count = longest_to_int (value_as_long (inval1)); inval2len = TYPE_LENGTH (type2); ptr = (char *) alloca (count * inval2len); if (TYPE_CODE (type2) == TYPE_CODE_CHAR) { inchar = (char) unpack_long (type2, value_contents (inval2)); for (idx = 0; idx < count; idx++) { *(ptr + idx) = inchar; } } else { for (idx = 0; idx < count; idx++) { memcpy (ptr + (idx * inval2len), value_contents (inval2), inval2len); } } outval = value_string (ptr, count * inval2len); } else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING || TYPE_CODE (type2) == TYPE_CODE_BOOL) { error (_("unimplemented support for bitstring/boolean repeats")); } else { error (_("can't repeat values of that type")); } } else if (TYPE_CODE (type1) == TYPE_CODE_STRING || TYPE_CODE (type1) == TYPE_CODE_CHAR) { /* We have two character strings to concatenate. */ if (TYPE_CODE (type2) != TYPE_CODE_STRING && TYPE_CODE (type2) != TYPE_CODE_CHAR) { error (_("Strings can only be concatenated with other strings.")); } inval1len = TYPE_LENGTH (type1); inval2len = TYPE_LENGTH (type2); ptr = (char *) alloca (inval1len + inval2len); if (TYPE_CODE (type1) == TYPE_CODE_CHAR) { *ptr = (char) unpack_long (type1, value_contents (inval1)); } else { memcpy (ptr, value_contents (inval1), inval1len); } if (TYPE_CODE (type2) == TYPE_CODE_CHAR) { *(ptr + inval1len) = (char) unpack_long (type2, value_contents (inval2)); } else { memcpy (ptr + inval1len, value_contents (inval2), inval2len); } outval = value_string (ptr, inval1len + inval2len); } else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING || TYPE_CODE (type1) == TYPE_CODE_BOOL) { /* We have two bitstrings to concatenate. */ if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING && TYPE_CODE (type2) != TYPE_CODE_BOOL) { error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.")); } error (_("unimplemented support for bitstring/boolean concatenation.")); } else { /* We don't know how to concatenate these operands. */ error (_("illegal operands for concatenation.")); } return (outval); } /* Return result type of OP performed on TYPE1. The result type follows ANSI C rules. If the result is not appropropriate for any particular language then it needs to patch this function to return the correct type. */ static struct type * unop_result_type (enum exp_opcode op, struct type *type1) { struct type *result_type; type1 = check_typedef (type1); result_type = type1; switch (op) { case UNOP_PLUS: case UNOP_NEG: break; case UNOP_COMPLEMENT: /* Reject floats and decimal floats. */ if (!is_integral_type (type1)) error (_("Argument to complement operation not an integer or boolean.")); break; default: error (_("Invalid unary operation on numbers.")); } if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT || TYPE_CODE (type1) == TYPE_CODE_FLT) { return result_type; } else if (is_integral_type (type1)) { /* Perform integral promotion for ANSI C/C++. If not appropropriate for any particular language it needs to modify this function to return the correct result for it. */ if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_type_int)) result_type = builtin_type_int; return result_type; } else { error (_("Argument to unary operation not a number.")); return 0; /* For lint -- never reached */ } } /* Return result type of OP performed on TYPE1, TYPE2. If the result is not appropropriate for any particular language then it needs to patch this function to return the correct type. */ static struct type * binop_result_type (enum exp_opcode op, struct type *type1, struct type *type2) { type1 = check_typedef (type1); type2 = check_typedef (type2); if ((TYPE_CODE (type1) != TYPE_CODE_FLT && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT && !is_integral_type (type1)) || (TYPE_CODE (type2) != TYPE_CODE_FLT && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT && !is_integral_type (type2))) error (_("Argument to arithmetic operation not a number or boolean.")); if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT) { switch (op) { case BINOP_ADD: case BINOP_SUB: case BINOP_MUL: case BINOP_DIV: case BINOP_EXP: break; default: error (_("Operation not valid for decimal floating point number.")); } if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT) /* If type1 is not a decimal float, the type of the result is the type of the decimal float argument, type2. */ return type2; else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT) /* Same logic, for the case where type2 is not a decimal float. */ return type1; else /* Both are decimal floats, the type of the result is the bigger of the two. */ return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) ? type1 : type2; } else if (TYPE_CODE (type1) == TYPE_CODE_FLT || TYPE_CODE (type2) == TYPE_CODE_FLT) { switch (op) { case BINOP_ADD: case BINOP_SUB: case BINOP_MUL: case BINOP_DIV: case BINOP_EXP: case BINOP_MIN: case BINOP_MAX: break; default: error (_("Integer-only operation on floating point number.")); } switch (current_language->la_language) { case language_c: case language_cplus: case language_asm: case language_objc: /* Perform ANSI/ISO-C promotions. If only one type is float, use its type. Otherwise use the bigger type. */ if (TYPE_CODE (type1) != TYPE_CODE_FLT) return type2; else if (TYPE_CODE (type2) != TYPE_CODE_FLT) return type1; else return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) ? type1 : type2; default: /* For other languages the result type is unchanged from gdb version 6.7 for backward compatibility. If either arg was long double, make sure that value is also long double. Otherwise use double. */ if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (current_gdbarch) || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (current_gdbarch)) return builtin_type_long_double; else return builtin_type_double; } } else if (TYPE_CODE (type1) == TYPE_CODE_BOOL && TYPE_CODE (type2) == TYPE_CODE_BOOL) { switch (op) { case BINOP_BITWISE_AND: case BINOP_BITWISE_IOR: case BINOP_BITWISE_XOR: case BINOP_EQUAL: case BINOP_NOTEQUAL: break; default: error (_("Invalid operation on booleans.")); } return type1; } else /* Integral operations here. */ /* FIXME: Also mixed integral/booleans, with result an integer. */ { unsigned int promoted_len1 = TYPE_LENGTH (type1); unsigned int promoted_len2 = TYPE_LENGTH (type2); int is_unsigned1 = TYPE_UNSIGNED (type1); int is_unsigned2 = TYPE_UNSIGNED (type2); unsigned int result_len; int unsigned_operation; /* Determine type length and signedness after promotion for both operands. */ if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) { is_unsigned1 = 0; promoted_len1 = TYPE_LENGTH (builtin_type_int); } if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) { is_unsigned2 = 0; promoted_len2 = TYPE_LENGTH (builtin_type_int); } /* Determine type length of the result, and if the operation should be done unsigned. For exponentiation and shift operators, use the length and type of the left operand. Otherwise, use the signedness of the operand with the greater length. If both operands are of equal length, use unsigned operation if one of the operands is unsigned. */ if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) { /* In case of the shift operators and exponentiation the type of the result only depends on the type of the left operand. */ unsigned_operation = is_unsigned1; result_len = promoted_len1; } else if (promoted_len1 > promoted_len2) { unsigned_operation = is_unsigned1; result_len = promoted_len1; } else if (promoted_len2 > promoted_len1) { unsigned_operation = is_unsigned2; result_len = promoted_len2; } else { unsigned_operation = is_unsigned1 || is_unsigned2; result_len = promoted_len1; } switch (op) { case BINOP_ADD: case BINOP_SUB: case BINOP_MUL: case BINOP_DIV: case BINOP_INTDIV: case BINOP_EXP: case BINOP_REM: case BINOP_MOD: case BINOP_LSH: case BINOP_RSH: case BINOP_BITWISE_AND: case BINOP_BITWISE_IOR: case BINOP_BITWISE_XOR: case BINOP_LOGICAL_AND: case BINOP_LOGICAL_OR: case BINOP_MIN: case BINOP_MAX: case BINOP_EQUAL: case BINOP_NOTEQUAL: case BINOP_LESS: break; default: error (_("Invalid binary operation on numbers.")); } switch (current_language->la_language) { case language_c: case language_cplus: case language_asm: case language_objc: if (result_len <= TYPE_LENGTH (builtin_type_int)) { return (unsigned_operation ? builtin_type_unsigned_int : builtin_type_int); } else if (result_len <= TYPE_LENGTH (builtin_type_long)) { return (unsigned_operation ? builtin_type_unsigned_long : builtin_type_long); } else { return (unsigned_operation ? builtin_type_unsigned_long_long : builtin_type_long_long); } default: /* For other languages the result type is unchanged from gdb version 6.7 for backward compatibility. If either arg was long long, make sure that value is also long long. Otherwise use long. */ if (unsigned_operation) { if (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT) return builtin_type_unsigned_long_long; else return builtin_type_unsigned_long; } else { if (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT) return builtin_type_long_long; else return builtin_type_long; } } } return NULL; /* avoid -Wall warning */ } /* Integer exponentiation: V1**V2, where both arguments are integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ static LONGEST integer_pow (LONGEST v1, LONGEST v2) { if (v2 < 0) { if (v1 == 0) error (_("Attempt to raise 0 to negative power.")); else return 0; } else { /* The Russian Peasant's Algorithm */ LONGEST v; v = 1; for (;;) { if (v2 & 1L) v *= v1; v2 >>= 1; if (v2 == 0) return v; v1 *= v1; } } } /* Integer exponentiation: V1**V2, where both arguments are integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ static ULONGEST uinteger_pow (ULONGEST v1, LONGEST v2) { if (v2 < 0) { if (v1 == 0) error (_("Attempt to raise 0 to negative power.")); else return 0; } else { /* The Russian Peasant's Algorithm */ ULONGEST v; v = 1; for (;;) { if (v2 & 1L) v *= v1; v2 >>= 1; if (v2 == 0) return v; v1 *= v1; } } } /* Obtain decimal value of arguments for binary operation, converting from other types if one of them is not decimal floating point. */ static void value_args_as_decimal (struct value *arg1, struct value *arg2, gdb_byte *x, int *len_x, gdb_byte *y, int *len_y) { struct type *type1, *type2; type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); /* At least one of the arguments must be of decimal float type. */ gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT); if (TYPE_CODE (type1) == TYPE_CODE_FLT || TYPE_CODE (type2) == TYPE_CODE_FLT) /* The DFP extension to the C language does not allow mixing of * decimal float types with other float types in expressions * (see WDTR 24732, page 12). */ error (_("Mixing decimal floating types with other floating types is not allowed.")); /* Obtain decimal value of arg1, converting from other types if necessary. */ if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) { *len_x = TYPE_LENGTH (type1); memcpy (x, value_contents (arg1), *len_x); } else if (is_integral_type (type1)) { *len_x = TYPE_LENGTH (type2); decimal_from_integral (arg1, x, *len_x); } else error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), TYPE_NAME (type2)); /* Obtain decimal value of arg2, converting from other types if necessary. */ if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT) { *len_y = TYPE_LENGTH (type2); memcpy (y, value_contents (arg2), *len_y); } else if (is_integral_type (type2)) { *len_y = TYPE_LENGTH (type1); decimal_from_integral (arg2, y, *len_y); } else error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), TYPE_NAME (type2)); } /* Perform a binary operation on two operands which have reasonable representations as integers or floats. This includes booleans, characters, integers, or floats. Does not support addition and subtraction on pointers; use value_add or value_sub if you want to handle those possibilities. */ struct value * value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) { struct value *val; struct type *result_type; arg1 = coerce_ref (arg1); arg2 = coerce_ref (arg2); result_type = binop_result_type (op, value_type (arg1), value_type (arg2)); if (TYPE_CODE (result_type) == TYPE_CODE_DECFLOAT) { struct type *v_type; int len_v1, len_v2, len_v; gdb_byte v1[16], v2[16]; gdb_byte v[16]; value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2); switch (op) { case BINOP_ADD: case BINOP_SUB: case BINOP_MUL: case BINOP_DIV: case BINOP_EXP: decimal_binop (op, v1, len_v1, v2, len_v2, v, &len_v); break; default: error (_("Operation not valid for decimal floating point number.")); } val = value_from_decfloat (result_type, v); } else if (TYPE_CODE (result_type) == TYPE_CODE_FLT) { /* FIXME-if-picky-about-floating-accuracy: Should be doing this in target format. real.c in GCC probably has the necessary code. */ DOUBLEST v1, v2, v = 0; v1 = value_as_double (arg1); v2 = value_as_double (arg2); switch (op) { case BINOP_ADD: v = v1 + v2; break; case BINOP_SUB: v = v1 - v2; break; case BINOP_MUL: v = v1 * v2; break; case BINOP_DIV: v = v1 / v2; break; case BINOP_EXP: errno = 0; v = pow (v1, v2); if (errno) error (_("Cannot perform exponentiation: %s"), safe_strerror (errno)); break; case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; default: error (_("Integer-only operation on floating point number.")); } val = allocate_value (result_type); store_typed_floating (value_contents_raw (val), value_type (val), v); } else if (TYPE_CODE (result_type) == TYPE_CODE_BOOL) { LONGEST v1, v2, v = 0; v1 = value_as_long (arg1); v2 = value_as_long (arg2); switch (op) { case BINOP_BITWISE_AND: v = v1 & v2; break; case BINOP_BITWISE_IOR: v = v1 | v2; break; case BINOP_BITWISE_XOR: v = v1 ^ v2; break; case BINOP_EQUAL: v = v1 == v2; break; case BINOP_NOTEQUAL: v = v1 != v2; break; default: error (_("Invalid operation on booleans.")); } val = allocate_value (result_type); store_signed_integer (value_contents_raw (val), TYPE_LENGTH (result_type), v); } else /* Integral operations here. */ { int unsigned_operation = TYPE_UNSIGNED (result_type); if (unsigned_operation) { unsigned int len1, len2, result_len; LONGEST v2_signed = value_as_long (arg2); ULONGEST v1, v2, v = 0; v1 = (ULONGEST) value_as_long (arg1); v2 = (ULONGEST) v2_signed; /* Truncate values to the type length of the result. Things are mildly tricky because binop_result_type may return a long which on amd64 is 8 bytes, and that's a problem if ARG1, ARG2 are both <= 4 bytes: we need to truncate the values at 4 bytes not 8. So fetch the lengths of the original types and truncate at the larger of the two. */ len1 = TYPE_LENGTH (value_type (arg1)); len2 = TYPE_LENGTH (value_type (arg1)); result_len = len1 > len2 ? len1 : len2; if (result_len < sizeof (ULONGEST)) { v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; } switch (op) { case BINOP_ADD: v = v1 + v2; break; case BINOP_SUB: v = v1 - v2; break; case BINOP_MUL: v = v1 * v2; break; case BINOP_DIV: case BINOP_INTDIV: if (v2 != 0) v = v1 / v2; else error (_("Division by zero")); break; case BINOP_EXP: v = uinteger_pow (v1, v2_signed); break; case BINOP_REM: if (v2 != 0) v = v1 % v2; else error (_("Division by zero")); break; case BINOP_MOD: /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, v1 mod 0 has a defined value, v1. */ if (v2 == 0) { v = v1; } else { v = v1 / v2; /* Note floor(v1/v2) == v1/v2 for unsigned. */ v = v1 - (v2 * v); } break; case BINOP_LSH: v = v1 << v2; break; case BINOP_RSH: v = v1 >> v2; break; case BINOP_BITWISE_AND: v = v1 & v2; break; case BINOP_BITWISE_IOR: v = v1 | v2; break; case BINOP_BITWISE_XOR: v = v1 ^ v2; break; case BINOP_LOGICAL_AND: v = v1 && v2; break; case BINOP_LOGICAL_OR: v = v1 || v2; break; case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; case BINOP_EQUAL: v = v1 == v2; break; case BINOP_NOTEQUAL: v = v1 != v2; break; case BINOP_LESS: v = v1 < v2; break; default: error (_("Invalid binary operation on numbers.")); } val = allocate_value (result_type); store_unsigned_integer (value_contents_raw (val), TYPE_LENGTH (value_type (val)), v); } else { LONGEST v1, v2, v = 0; v1 = value_as_long (arg1); v2 = value_as_long (arg2); switch (op) { case BINOP_ADD: v = v1 + v2; break; case BINOP_SUB: v = v1 - v2; break; case BINOP_MUL: v = v1 * v2; break; case BINOP_DIV: case BINOP_INTDIV: if (v2 != 0) v = v1 / v2; else error (_("Division by zero")); break; case BINOP_EXP: v = integer_pow (v1, v2); break; case BINOP_REM: if (v2 != 0) v = v1 % v2; else error (_("Division by zero")); break; case BINOP_MOD: /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, X mod 0 has a defined value, X. */ if (v2 == 0) { v = v1; } else { v = v1 / v2; /* Compute floor. */ if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) { v--; } v = v1 - (v2 * v); } break; case BINOP_LSH: v = v1 << v2; break; case BINOP_RSH: v = v1 >> v2; break; case BINOP_BITWISE_AND: v = v1 & v2; break; case BINOP_BITWISE_IOR: v = v1 | v2; break; case BINOP_BITWISE_XOR: v = v1 ^ v2; break; case BINOP_LOGICAL_AND: v = v1 && v2; break; case BINOP_LOGICAL_OR: v = v1 || v2; break; case BINOP_MIN: v = v1 < v2 ? v1 : v2; break; case BINOP_MAX: v = v1 > v2 ? v1 : v2; break; case BINOP_EQUAL: v = v1 == v2; break; case BINOP_LESS: v = v1 < v2; break; default: error (_("Invalid binary operation on numbers.")); } val = allocate_value (result_type); store_signed_integer (value_contents_raw (val), TYPE_LENGTH (value_type (val)), v); } } return val; } /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ int value_logical_not (struct value *arg1) { int len; const gdb_byte *p; struct type *type1; arg1 = coerce_number (arg1); type1 = check_typedef (value_type (arg1)); if (TYPE_CODE (type1) == TYPE_CODE_FLT) return 0 == value_as_double (arg1); else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1)); len = TYPE_LENGTH (type1); p = value_contents (arg1); while (--len >= 0) { if (*p++) break; } return len < 0; } /* Perform a comparison on two string values (whose content are not necessarily null terminated) based on their length */ static int value_strcmp (struct value *arg1, struct value *arg2) { int len1 = TYPE_LENGTH (value_type (arg1)); int len2 = TYPE_LENGTH (value_type (arg2)); const gdb_byte *s1 = value_contents (arg1); const gdb_byte *s2 = value_contents (arg2); int i, len = len1 < len2 ? len1 : len2; for (i = 0; i < len; i++) { if (s1[i] < s2[i]) return -1; else if (s1[i] > s2[i]) return 1; else continue; } if (len1 < len2) return -1; else if (len1 > len2) return 1; else return 0; } /* Simulate the C operator == by returning a 1 iff ARG1 and ARG2 have equal contents. */ int value_equal (struct value *arg1, struct value *arg2) { int len; const gdb_byte *p1; const gdb_byte *p2; struct type *type1, *type2; enum type_code code1; enum type_code code2; int is_int1, is_int2; arg1 = coerce_array (arg1); arg2 = coerce_array (arg2); type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); code1 = TYPE_CODE (type1); code2 = TYPE_CODE (type2); is_int1 = is_integral_type (type1); is_int2 = is_integral_type (type2); if (is_int1 && is_int2) return longest_to_int (value_as_long (value_binop (arg1, arg2, BINOP_EQUAL))); else if ((code1 == TYPE_CODE_FLT || is_int1) && (code2 == TYPE_CODE_FLT || is_int2)) { /* NOTE: kettenis/20050816: Avoid compiler bug on systems where `long double' values are returned in static storage (m68k). */ DOUBLEST d = value_as_double (arg1); return d == value_as_double (arg2); } else if ((code1 == TYPE_CODE_DECFLOAT || is_int1) && (code2 == TYPE_CODE_DECFLOAT || is_int2)) { gdb_byte v1[16], v2[16]; int len_v1, len_v2; value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2); return decimal_compare (v1, len_v1, v2, len_v2) == 0; } /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever is bigger. */ else if (code1 == TYPE_CODE_PTR && is_int2) return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); else if (code2 == TYPE_CODE_PTR && is_int1) return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); else if (code1 == code2 && ((len = (int) TYPE_LENGTH (type1)) == (int) TYPE_LENGTH (type2))) { p1 = value_contents (arg1); p2 = value_contents (arg2); while (--len >= 0) { if (*p1++ != *p2++) break; } return len < 0; } else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) { return value_strcmp (arg1, arg2) == 0; } else { error (_("Invalid type combination in equality test.")); return 0; /* For lint -- never reached */ } } /* Simulate the C operator < by returning 1 iff ARG1's contents are less than ARG2's. */ int value_less (struct value *arg1, struct value *arg2) { enum type_code code1; enum type_code code2; struct type *type1, *type2; int is_int1, is_int2; arg1 = coerce_array (arg1); arg2 = coerce_array (arg2); type1 = check_typedef (value_type (arg1)); type2 = check_typedef (value_type (arg2)); code1 = TYPE_CODE (type1); code2 = TYPE_CODE (type2); is_int1 = is_integral_type (type1); is_int2 = is_integral_type (type2); if (is_int1 && is_int2) return longest_to_int (value_as_long (value_binop (arg1, arg2, BINOP_LESS))); else if ((code1 == TYPE_CODE_FLT || is_int1) && (code2 == TYPE_CODE_FLT || is_int2)) { /* NOTE: kettenis/20050816: Avoid compiler bug on systems where `long double' values are returned in static storage (m68k). */ DOUBLEST d = value_as_double (arg1); return d < value_as_double (arg2); } else if ((code1 == TYPE_CODE_DECFLOAT || is_int1) && (code2 == TYPE_CODE_DECFLOAT || is_int2)) { gdb_byte v1[16], v2[16]; int len_v1, len_v2; value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2); return decimal_compare (v1, len_v1, v2, len_v2) == -1; } else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) return value_as_address (arg1) < value_as_address (arg2); /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever is bigger. */ else if (code1 == TYPE_CODE_PTR && is_int2) return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); else if (code2 == TYPE_CODE_PTR && is_int1) return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) return value_strcmp (arg1, arg2) < 0; else { error (_("Invalid type combination in ordering comparison.")); return 0; } } /* The unary operators +, - and ~. They free the argument ARG1. */ struct value * value_pos (struct value *arg1) { struct type *type; struct type *result_type; arg1 = coerce_ref (arg1); type = check_typedef (value_type (arg1)); result_type = unop_result_type (UNOP_PLUS, value_type (arg1)); if (TYPE_CODE (type) == TYPE_CODE_FLT) return value_from_double (result_type, value_as_double (arg1)); else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT) return value_from_decfloat (result_type, value_contents (arg1)); else if (is_integral_type (type)) { return value_from_longest (result_type, value_as_long (arg1)); } else { error ("Argument to positive operation not a number."); return 0; /* For lint -- never reached */ } } struct value * value_neg (struct value *arg1) { struct type *type; struct type *result_type; arg1 = coerce_ref (arg1); type = check_typedef (value_type (arg1)); result_type = unop_result_type (UNOP_NEG, value_type (arg1)); if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT) { struct value *val = allocate_value (result_type); int len = TYPE_LENGTH (type); gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */ memcpy (decbytes, value_contents (arg1), len); if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE) decbytes[len-1] = decbytes[len - 1] | 0x80; else decbytes[0] = decbytes[0] | 0x80; memcpy (value_contents_raw (val), decbytes, len); return val; } else if (TYPE_CODE (type) == TYPE_CODE_FLT) return value_from_double (result_type, -value_as_double (arg1)); else if (is_integral_type (type)) { return value_from_longest (result_type, -value_as_long (arg1)); } else { error (_("Argument to negate operation not a number.")); return 0; /* For lint -- never reached */ } } struct value * value_complement (struct value *arg1) { struct type *type; struct type *result_type; arg1 = coerce_ref (arg1); type = check_typedef (value_type (arg1)); result_type = unop_result_type (UNOP_COMPLEMENT, value_type (arg1)); if (!is_integral_type (type)) error (_("Argument to complement operation not an integer or boolean.")); return value_from_longest (result_type, ~value_as_long (arg1)); } /* The INDEX'th bit of SET value whose value_type is TYPE, and whose value_contents is valaddr. Return -1 if out of range, -2 other error. */ int value_bit_index (struct type *type, const gdb_byte *valaddr, int index) { LONGEST low_bound, high_bound; LONGEST word; unsigned rel_index; struct type *range = TYPE_FIELD_TYPE (type, 0); if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) return -2; if (index < low_bound || index > high_bound) return -1; rel_index = index - low_bound; word = unpack_long (builtin_type_unsigned_char, valaddr + (rel_index / TARGET_CHAR_BIT)); rel_index %= TARGET_CHAR_BIT; if (gdbarch_bits_big_endian (current_gdbarch)) rel_index = TARGET_CHAR_BIT - 1 - rel_index; return (word >> rel_index) & 1; } struct value * value_in (struct value *element, struct value *set) { int member; struct type *settype = check_typedef (value_type (set)); struct type *eltype = check_typedef (value_type (element)); if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) eltype = TYPE_TARGET_TYPE (eltype); if (TYPE_CODE (settype) != TYPE_CODE_SET) error (_("Second argument of 'IN' has wrong type")); if (TYPE_CODE (eltype) != TYPE_CODE_INT && TYPE_CODE (eltype) != TYPE_CODE_CHAR && TYPE_CODE (eltype) != TYPE_CODE_ENUM && TYPE_CODE (eltype) != TYPE_CODE_BOOL) error (_("First argument of 'IN' has wrong type")); member = value_bit_index (settype, value_contents (set), value_as_long (element)); if (member < 0) error (_("First argument of 'IN' not in range")); return value_from_longest (LA_BOOL_TYPE, member); } void _initialize_valarith (void) { }