URL
https://opencores.org/ocsvn/scarts/scarts/trunk
Subversion Repositories scarts
[/] [scarts/] [trunk/] [toolchain/] [scarts-gdb/] [gdb-6.8/] [sim/] [arm/] [thumbemu.c] - Rev 26
Compare with Previous | Blame | View Log
/* thumbemu.c -- Thumb instruction emulation. Copyright (C) 1996, Cygnus Software Technologies Ltd. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* We can provide simple Thumb simulation by decoding the Thumb instruction into its corresponding ARM instruction, and using the existing ARM simulator. */ #ifndef MODET /* required for the Thumb instruction support */ #if 1 #error "MODET needs to be defined for the Thumb world to work" #else #define MODET (1) #endif #endif #include "armdefs.h" #include "armemu.h" #include "armos.h" /* Attempt to emulate an ARMv6 instruction. Stores t_branch into PVALUE upon success or t_undefined otherwise. */ static void handle_v6_thumb_insn (ARMul_State * state, ARMword tinstr, tdstate * pvalid) { ARMword Rd; ARMword Rm; if (! state->is_v6) { * pvalid = t_undefined; return; } switch (tinstr & 0xFFC0) { case 0xb660: /* cpsie */ case 0xb670: /* cpsid */ case 0x4600: /* cpy */ case 0xba00: /* rev */ case 0xba40: /* rev16 */ case 0xbac0: /* revsh */ case 0xb650: /* setend */ default: printf ("Unhandled v6 thumb insn: %04x\n", tinstr); * pvalid = t_undefined; return; case 0xb200: /* sxth */ Rm = state->Reg [(tinstr & 0x38) >> 3]; if (Rm & 0x8000) state->Reg [(tinstr & 0x7)] = (Rm & 0xffff) | 0xffff0000; else state->Reg [(tinstr & 0x7)] = Rm & 0xffff; break; case 0xb240: /* sxtb */ Rm = state->Reg [(tinstr & 0x38) >> 3]; if (Rm & 0x80) state->Reg [(tinstr & 0x7)] = (Rm & 0xff) | 0xffffff00; else state->Reg [(tinstr & 0x7)] = Rm & 0xff; break; case 0xb280: /* uxth */ Rm = state->Reg [(tinstr & 0x38) >> 3]; state->Reg [(tinstr & 0x7)] = Rm & 0xffff; break; case 0xb2c0: /* uxtb */ Rm = state->Reg [(tinstr & 0x38) >> 3]; state->Reg [(tinstr & 0x7)] = Rm & 0xff; break; } /* Indicate that the instruction has been processed. */ * pvalid = t_branch; } /* Decode a 16bit Thumb instruction. The instruction is in the low 16-bits of the tinstr field, with the following Thumb instruction held in the high 16-bits. Passing in two Thumb instructions allows easier simulation of the special dual BL instruction. */ tdstate ARMul_ThumbDecode (ARMul_State * state, ARMword pc, ARMword tinstr, ARMword * ainstr) { tdstate valid = t_decoded; /* default assumes a valid instruction */ ARMword next_instr; if (state->bigendSig) { next_instr = tinstr & 0xFFFF; tinstr >>= 16; } else { next_instr = tinstr >> 16; tinstr &= 0xFFFF; } #if 1 /* debugging to catch non updates */ *ainstr = 0xDEADC0DE; #endif switch ((tinstr & 0xF800) >> 11) { case 0: /* LSL */ case 1: /* LSR */ case 2: /* ASR */ /* Format 1 */ *ainstr = 0xE1B00000 /* base opcode */ | ((tinstr & 0x1800) >> (11 - 5)) /* shift type */ | ((tinstr & 0x07C0) << (7 - 6)) /* imm5 */ | ((tinstr & 0x0038) >> 3) /* Rs */ | ((tinstr & 0x0007) << 12); /* Rd */ break; case 3: /* ADD/SUB */ /* Format 2 */ { ARMword subset[4] = { 0xE0900000, /* ADDS Rd,Rs,Rn */ 0xE0500000, /* SUBS Rd,Rs,Rn */ 0xE2900000, /* ADDS Rd,Rs,#imm3 */ 0xE2500000 /* SUBS Rd,Rs,#imm3 */ }; /* It is quicker indexing into a table, than performing switch or conditionals: */ *ainstr = subset[(tinstr & 0x0600) >> 9] /* base opcode */ | ((tinstr & 0x01C0) >> 6) /* Rn or imm3 */ | ((tinstr & 0x0038) << (16 - 3)) /* Rs */ | ((tinstr & 0x0007) << (12 - 0)); /* Rd */ } break; case 4: /* MOV */ case 5: /* CMP */ case 6: /* ADD */ case 7: /* SUB */ /* Format 3 */ { ARMword subset[4] = { 0xE3B00000, /* MOVS Rd,#imm8 */ 0xE3500000, /* CMP Rd,#imm8 */ 0xE2900000, /* ADDS Rd,Rd,#imm8 */ 0xE2500000, /* SUBS Rd,Rd,#imm8 */ }; *ainstr = subset[(tinstr & 0x1800) >> 11] /* base opcode */ | ((tinstr & 0x00FF) >> 0) /* imm8 */ | ((tinstr & 0x0700) << (16 - 8)) /* Rn */ | ((tinstr & 0x0700) << (12 - 8)); /* Rd */ } break; case 8: /* Arithmetic and high register transfers */ /* TODO: Since the subsets for both Format 4 and Format 5 instructions are made up of different ARM encodings, we could save the following conditional, and just have one large subset. */ if ((tinstr & (1 << 10)) == 0) { /* Format 4 */ struct { ARMword opcode; enum { t_norm, t_shift, t_neg, t_mul } otype; } subset[16] = { { 0xE0100000, t_norm}, /* ANDS Rd,Rd,Rs */ { 0xE0300000, t_norm}, /* EORS Rd,Rd,Rs */ { 0xE1B00010, t_shift}, /* MOVS Rd,Rd,LSL Rs */ { 0xE1B00030, t_shift}, /* MOVS Rd,Rd,LSR Rs */ { 0xE1B00050, t_shift}, /* MOVS Rd,Rd,ASR Rs */ { 0xE0B00000, t_norm}, /* ADCS Rd,Rd,Rs */ { 0xE0D00000, t_norm}, /* SBCS Rd,Rd,Rs */ { 0xE1B00070, t_shift}, /* MOVS Rd,Rd,ROR Rs */ { 0xE1100000, t_norm}, /* TST Rd,Rs */ { 0xE2700000, t_neg}, /* RSBS Rd,Rs,#0 */ { 0xE1500000, t_norm}, /* CMP Rd,Rs */ { 0xE1700000, t_norm}, /* CMN Rd,Rs */ { 0xE1900000, t_norm}, /* ORRS Rd,Rd,Rs */ { 0xE0100090, t_mul} , /* MULS Rd,Rd,Rs */ { 0xE1D00000, t_norm}, /* BICS Rd,Rd,Rs */ { 0xE1F00000, t_norm} /* MVNS Rd,Rs */ }; *ainstr = subset[(tinstr & 0x03C0) >> 6].opcode; /* base */ switch (subset[(tinstr & 0x03C0) >> 6].otype) { case t_norm: *ainstr |= ((tinstr & 0x0007) << 16) /* Rn */ | ((tinstr & 0x0007) << 12) /* Rd */ | ((tinstr & 0x0038) >> 3); /* Rs */ break; case t_shift: *ainstr |= ((tinstr & 0x0007) << 12) /* Rd */ | ((tinstr & 0x0007) >> 0) /* Rm */ | ((tinstr & 0x0038) << (8 - 3)); /* Rs */ break; case t_neg: *ainstr |= ((tinstr & 0x0007) << 12) /* Rd */ | ((tinstr & 0x0038) << (16 - 3)); /* Rn */ break; case t_mul: *ainstr |= ((tinstr & 0x0007) << 16) /* Rd */ | ((tinstr & 0x0007) << 8) /* Rs */ | ((tinstr & 0x0038) >> 3); /* Rm */ break; } } else { /* Format 5 */ ARMword Rd = ((tinstr & 0x0007) >> 0); ARMword Rs = ((tinstr & 0x0038) >> 3); if (tinstr & (1 << 7)) Rd += 8; if (tinstr & (1 << 6)) Rs += 8; switch ((tinstr & 0x03C0) >> 6) { case 0x1: /* ADD Rd,Rd,Hs */ case 0x2: /* ADD Hd,Hd,Rs */ case 0x3: /* ADD Hd,Hd,Hs */ *ainstr = 0xE0800000 /* base */ | (Rd << 16) /* Rn */ | (Rd << 12) /* Rd */ | (Rs << 0); /* Rm */ break; case 0x5: /* CMP Rd,Hs */ case 0x6: /* CMP Hd,Rs */ case 0x7: /* CMP Hd,Hs */ *ainstr = 0xE1500000 /* base */ | (Rd << 16) /* Rn */ | (Rd << 12) /* Rd */ | (Rs << 0); /* Rm */ break; case 0x9: /* MOV Rd,Hs */ case 0xA: /* MOV Hd,Rs */ case 0xB: /* MOV Hd,Hs */ *ainstr = 0xE1A00000 /* base */ | (Rd << 16) /* Rn */ | (Rd << 12) /* Rd */ | (Rs << 0); /* Rm */ break; case 0xC: /* BX Rs */ case 0xD: /* BX Hs */ *ainstr = 0xE12FFF10 /* base */ | ((tinstr & 0x0078) >> 3); /* Rd */ break; case 0xE: /* UNDEFINED */ case 0xF: /* UNDEFINED */ if (state->is_v5) { /* BLX Rs; BLX Hs */ *ainstr = 0xE12FFF30 /* base */ | ((tinstr & 0x0078) >> 3); /* Rd */ break; } /* Drop through. */ case 0x0: /* UNDEFINED */ case 0x4: /* UNDEFINED */ case 0x8: /* UNDEFINED */ handle_v6_thumb_insn (state, tinstr, & valid); break; } } break; case 9: /* LDR Rd,[PC,#imm8] */ /* Format 6 */ *ainstr = 0xE59F0000 /* base */ | ((tinstr & 0x0700) << (12 - 8)) /* Rd */ | ((tinstr & 0x00FF) << (2 - 0)); /* off8 */ break; case 10: case 11: /* TODO: Format 7 and Format 8 perform the same ARM encoding, so the following could be merged into a single subset, saving on the following boolean: */ if ((tinstr & (1 << 9)) == 0) { /* Format 7 */ ARMword subset[4] = { 0xE7800000, /* STR Rd,[Rb,Ro] */ 0xE7C00000, /* STRB Rd,[Rb,Ro] */ 0xE7900000, /* LDR Rd,[Rb,Ro] */ 0xE7D00000 /* LDRB Rd,[Rb,Ro] */ }; *ainstr = subset[(tinstr & 0x0C00) >> 10] /* base */ | ((tinstr & 0x0007) << (12 - 0)) /* Rd */ | ((tinstr & 0x0038) << (16 - 3)) /* Rb */ | ((tinstr & 0x01C0) >> 6); /* Ro */ } else { /* Format 8 */ ARMword subset[4] = { 0xE18000B0, /* STRH Rd,[Rb,Ro] */ 0xE19000D0, /* LDRSB Rd,[Rb,Ro] */ 0xE19000B0, /* LDRH Rd,[Rb,Ro] */ 0xE19000F0 /* LDRSH Rd,[Rb,Ro] */ }; *ainstr = subset[(tinstr & 0x0C00) >> 10] /* base */ | ((tinstr & 0x0007) << (12 - 0)) /* Rd */ | ((tinstr & 0x0038) << (16 - 3)) /* Rb */ | ((tinstr & 0x01C0) >> 6); /* Ro */ } break; case 12: /* STR Rd,[Rb,#imm5] */ case 13: /* LDR Rd,[Rb,#imm5] */ case 14: /* STRB Rd,[Rb,#imm5] */ case 15: /* LDRB Rd,[Rb,#imm5] */ /* Format 9 */ { ARMword subset[4] = { 0xE5800000, /* STR Rd,[Rb,#imm5] */ 0xE5900000, /* LDR Rd,[Rb,#imm5] */ 0xE5C00000, /* STRB Rd,[Rb,#imm5] */ 0xE5D00000 /* LDRB Rd,[Rb,#imm5] */ }; /* The offset range defends on whether we are transferring a byte or word value: */ *ainstr = subset[(tinstr & 0x1800) >> 11] /* base */ | ((tinstr & 0x0007) << (12 - 0)) /* Rd */ | ((tinstr & 0x0038) << (16 - 3)) /* Rb */ | ((tinstr & 0x07C0) >> (6 - ((tinstr & (1 << 12)) ? 0 : 2))); /* off5 */ } break; case 16: /* STRH Rd,[Rb,#imm5] */ case 17: /* LDRH Rd,[Rb,#imm5] */ /* Format 10 */ *ainstr = ((tinstr & (1 << 11)) /* base */ ? 0xE1D000B0 /* LDRH */ : 0xE1C000B0) /* STRH */ | ((tinstr & 0x0007) << (12 - 0)) /* Rd */ | ((tinstr & 0x0038) << (16 - 3)) /* Rb */ | ((tinstr & 0x01C0) >> (6 - 1)) /* off5, low nibble */ | ((tinstr & 0x0600) >> (9 - 8)); /* off5, high nibble */ break; case 18: /* STR Rd,[SP,#imm8] */ case 19: /* LDR Rd,[SP,#imm8] */ /* Format 11 */ *ainstr = ((tinstr & (1 << 11)) /* base */ ? 0xE59D0000 /* LDR */ : 0xE58D0000) /* STR */ | ((tinstr & 0x0700) << (12 - 8)) /* Rd */ | ((tinstr & 0x00FF) << 2); /* off8 */ break; case 20: /* ADD Rd,PC,#imm8 */ case 21: /* ADD Rd,SP,#imm8 */ /* Format 12 */ if ((tinstr & (1 << 11)) == 0) { /* NOTE: The PC value used here should by word aligned */ /* We encode shift-left-by-2 in the rotate immediate field, so no shift of off8 is needed. */ *ainstr = 0xE28F0F00 /* base */ | ((tinstr & 0x0700) << (12 - 8)) /* Rd */ | (tinstr & 0x00FF); /* off8 */ } else { /* We encode shift-left-by-2 in the rotate immediate field, so no shift of off8 is needed. */ *ainstr = 0xE28D0F00 /* base */ | ((tinstr & 0x0700) << (12 - 8)) /* Rd */ | (tinstr & 0x00FF); /* off8 */ } break; case 22: case 23: switch (tinstr & 0x0F00) { case 0x0000: /* Format 13 */ /* NOTE: The instruction contains a shift left of 2 equivalent (implemented as ROR #30): */ *ainstr = ((tinstr & (1 << 7)) /* base */ ? 0xE24DDF00 /* SUB */ : 0xE28DDF00) /* ADD */ | (tinstr & 0x007F); /* off7 */ break; case 0x0400: /* Format 14 - Push */ * ainstr = 0xE92D0000 | (tinstr & 0x00FF); break; case 0x0500: /* Format 14 - Push + LR */ * ainstr = 0xE92D4000 | (tinstr & 0x00FF); break; case 0x0c00: /* Format 14 - Pop */ * ainstr = 0xE8BD0000 | (tinstr & 0x00FF); break; case 0x0d00: /* Format 14 - Pop + PC */ * ainstr = 0xE8BD8000 | (tinstr & 0x00FF); break; case 0x0e00: if (state->is_v5) { /* This is normally an undefined instruction. The v5t architecture defines this particular pattern as a BKPT instruction, for hardware assisted debugging. We map onto the arm BKPT instruction. */ * ainstr = 0xE1200070 | ((tinstr & 0xf0) << 4) | (tinstr & 0xf); break; } /* Drop through. */ default: /* Everything else is an undefined instruction. */ handle_v6_thumb_insn (state, tinstr, & valid); break; } break; case 24: /* STMIA */ case 25: /* LDMIA */ /* Format 15 */ *ainstr = ((tinstr & (1 << 11)) /* base */ ? 0xE8B00000 /* LDMIA */ : 0xE8A00000) /* STMIA */ | ((tinstr & 0x0700) << (16 - 8)) /* Rb */ | (tinstr & 0x00FF); /* mask8 */ break; case 26: /* Bcc */ case 27: /* Bcc/SWI */ if ((tinstr & 0x0F00) == 0x0F00) { /* Format 17 : SWI */ *ainstr = 0xEF000000; /* Breakpoint must be handled specially. */ if ((tinstr & 0x00FF) == 0x18) *ainstr |= ((tinstr & 0x00FF) << 16); /* New breakpoint value. See gdb/arm-tdep.c */ else if ((tinstr & 0x00FF) == 0xFE) *ainstr |= SWI_Breakpoint; else *ainstr |= (tinstr & 0x00FF); } else if ((tinstr & 0x0F00) != 0x0E00) { /* Format 16 */ int doit = FALSE; /* TODO: Since we are doing a switch here, we could just add the SWI and undefined instruction checks into this switch to same on a couple of conditionals: */ switch ((tinstr & 0x0F00) >> 8) { case EQ: doit = ZFLAG; break; case NE: doit = !ZFLAG; break; case VS: doit = VFLAG; break; case VC: doit = !VFLAG; break; case MI: doit = NFLAG; break; case PL: doit = !NFLAG; break; case CS: doit = CFLAG; break; case CC: doit = !CFLAG; break; case HI: doit = (CFLAG && !ZFLAG); break; case LS: doit = (!CFLAG || ZFLAG); break; case GE: doit = ((!NFLAG && !VFLAG) || (NFLAG && VFLAG)); break; case LT: doit = ((NFLAG && !VFLAG) || (!NFLAG && VFLAG)); break; case GT: doit = ((!NFLAG && !VFLAG && !ZFLAG) || (NFLAG && VFLAG && !ZFLAG)); break; case LE: doit = ((NFLAG && !VFLAG) || (!NFLAG && VFLAG)) || ZFLAG; break; } if (doit) { state->Reg[15] = (pc + 4 + (((tinstr & 0x7F) << 1) | ((tinstr & (1 << 7)) ? 0xFFFFFF00 : 0))); FLUSHPIPE; } valid = t_branch; } else /* UNDEFINED : cc=1110(AL) uses different format. */ handle_v6_thumb_insn (state, tinstr, & valid); break; case 28: /* B */ /* Format 18 */ state->Reg[15] = (pc + 4 + (((tinstr & 0x3FF) << 1) | ((tinstr & (1 << 10)) ? 0xFFFFF800 : 0))); FLUSHPIPE; valid = t_branch; break; case 29: /* UNDEFINED */ if (state->is_v5) { if (tinstr & 1) { handle_v6_thumb_insn (state, tinstr, & valid); break; } /* Drop through. */ /* Format 19 */ /* There is no single ARM instruction equivalent for this instruction. Also, it should only ever be matched with the fmt19 "BL/BLX instruction 1" instruction. However, we do allow the simulation of it on its own, with undefined results if r14 is not suitably initialised. */ { ARMword tmp = (pc + 2); state->Reg[15] = ((state->Reg[14] + ((tinstr & 0x07FF) << 1)) & 0xFFFFFFFC); CLEART; state->Reg[14] = (tmp | 1); valid = t_branch; FLUSHPIPE; break; } } handle_v6_thumb_insn (state, tinstr, & valid); break; case 30: /* BL instruction 1 */ /* Format 19 */ /* There is no single ARM instruction equivalent for this Thumb instruction. To keep the simulation simple (from the user perspective) we check if the following instruction is the second half of this BL, and if it is we simulate it immediately. */ state->Reg[14] = state->Reg[15] \ + (((tinstr & 0x07FF) << 12) \ | ((tinstr & (1 << 10)) ? 0xFF800000 : 0)); valid = t_branch; /* in-case we don't have the 2nd half */ tinstr = next_instr; /* move the instruction down */ pc += 2; /* point the pc at the 2nd half */ if (((tinstr & 0xF800) >> 11) != 31) { if (((tinstr & 0xF800) >> 11) == 29) { ARMword tmp = (pc + 2); state->Reg[15] = ((state->Reg[14] + ((tinstr & 0x07FE) << 1)) & 0xFFFFFFFC); CLEART; state->Reg[14] = (tmp | 1); valid = t_branch; FLUSHPIPE; } else /* Exit, since not correct instruction. */ pc -= 2; break; } /* else we fall through to process the second half of the BL */ pc += 2; /* point the pc at the 2nd half */ case 31: /* BL instruction 2 */ /* Format 19 */ /* There is no single ARM instruction equivalent for this instruction. Also, it should only ever be matched with the fmt19 "BL instruction 1" instruction. However, we do allow the simulation of it on its own, with undefined results if r14 is not suitably initialised. */ { ARMword tmp = pc; state->Reg[15] = (state->Reg[14] + ((tinstr & 0x07FF) << 1)); state->Reg[14] = (tmp | 1); valid = t_branch; FLUSHPIPE; } break; } return valid; }