URL
https://opencores.org/ocsvn/sdr_ctrl/sdr_ctrl/trunk
Subversion Repositories sdr_ctrl
[/] [sdr_ctrl/] [trunk/] [rtl/] [wb2sdrc/] [wb2sdrc.v] - Rev 33
Go to most recent revision | Compare with Previous | Blame | View Log
/********************************************************************* This file is part of the sdram controller project http://www.opencores.org/cores/sdr_ctrl/ Description: WISHBONE to SDRAM Controller Bus Transalator 1. This module translate the WISHBONE protocol to custom sdram controller i/f 2. Also Handle the clock domain change from Application layer to Sdram layer To Do: nothing Author(s): Dinesh Annayya, dinesha@opencores.org Copyright (C) 2000 Authors and OPENCORES.ORG This source file may be used and distributed without restriction provided that this copyright statement is not removed from the file and that any derivative work contains the original copyright notice and the associated disclaimer. This source file is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This source is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this source; if not, download it from http://www.opencores.org/lgpl.shtml *******************************************************************/ module wb2sdrc ( // WB bus wb_rst_i , wb_clk_i , wb_stb_i , wb_ack_o , wb_addr_i , wb_we_i , wb_dat_i , wb_sel_i , wb_dat_o , wb_cyc_i , wb_cti_i , //SDRAM Controller Hand-Shake Signal sdram_clk , sdram_resetn , sdr_req , sdr_req_addr , sdr_req_len , sdr_req_wr_n , sdr_req_ack , sdr_busy_n , sdr_wr_en_n , sdr_wr_next , sdr_rd_valid , sdr_last_rd , sdr_wr_data , sdr_rd_data ); parameter dw = 32; // data width parameter tw = 8; // tag id width parameter bl = 9; // burst_lenght_width //-------------------------------------- // Wish Bone Interface // ------------------------------------- input wb_rst_i ; input wb_clk_i ; input wb_stb_i ; output wb_ack_o ; input [29:0] wb_addr_i ; input wb_we_i ; // 1 - Write , 0 - Read input [dw-1:0] wb_dat_i ; input [dw/8-1:0] wb_sel_i ; // Byte enable output [dw-1:0] wb_dat_o ; input wb_cyc_i ; input [2:0] wb_cti_i ; /*************************************************** The Cycle Type Idenfier [CTI_IO()] Address Tag provides additional information about the current cycle. The MASTER sends this information to the SLAVE. The SLAVE can use this information to prepare the response for the next cycle. Table 4-2 Cycle Type Identifiers CTI_O(2:0) Description ‘000’ Classic cycle. ‘001’ Constant address burst cycle ‘010’ Incrementing burst cycle ‘011’ Reserved ‘100’ Reserved ‘101 Reserved ‘110’ Reserved ‘111’ End-of-Burst ****************************************************/ //-------------------------------------------- // SDRAM controller Interface //-------------------------------------------- input sdram_clk ; // sdram clock input sdram_resetn ; // sdram reset output sdr_req ; // SDRAM request output [29:0] sdr_req_addr ; // SDRAM Request Address output [bl-1:0] sdr_req_len ; output sdr_req_wr_n ; // 0 - Write, 1 -> Read input sdr_req_ack ; // SDRAM request Accepted input sdr_busy_n ; // 0 -> sdr busy output [dw/8-1:0] sdr_wr_en_n ; // Active low sdr byte-wise write data valid input sdr_wr_next ; // Ready to accept the next write input sdr_rd_valid ; // sdr read valid input sdr_last_rd ; // Indicate last Read of Burst Transfer output [dw-1:0] sdr_wr_data ; // sdr write data input [dw-1:0] sdr_rd_data ; // sdr read data //---------------------------------------------------- // Wire Decleration // --------------------------------------------------- wire cmdfifo_full ; wire cmdfifo_empty ; wire wrdatafifo_full ; wire wrdatafifo_empty ; wire tagfifo_full ; wire tagfifo_empty ; wire rddatafifo_empty ; wire rddatafifo_full ; reg pending_read ; //----------------------------------------------------------------------------- // Ack Generaltion Logic // If Write Request - Acknowledge if the command and write FIFO are not full // If Read Request - Generate the Acknowledgment once read fifo has data // available //----------------------------------------------------------------------------- assign wb_ack_o = (wb_stb_i && wb_cyc_i && wb_we_i) ? // Write Phase ((!cmdfifo_full) && (!wrdatafifo_full)) : (wb_stb_i && wb_cyc_i && !wb_we_i) ? // Read Phase !rddatafifo_empty : 1'b0; //--------------------------------------------------------------------------- // Command FIFO Write Generation // If Write Request - Generate write, when Write fifo and command fifo is // not full // If Read Request - Generate write, when command fifo not full and there // is no pending read request. //--------------------------------------------------------------------------- wire cmdfifo_wr = (wb_stb_i && wb_cyc_i && wb_we_i && (!cmdfifo_full) ) ? wb_ack_o : (wb_stb_i && wb_cyc_i && !wb_we_i && (!cmdfifo_full)) ? !pending_read: 1'b0 ; //--------------------------------------------------------------------------- // command fifo read generation // Command FIFo read will be generated, whenever SDRAM Controller // Acknowldge the Request //---------------------------------------------------------------------------- wire cmdfifo_rd = sdr_req_ack; //--------------------------------------------------------------------------- // Application layer request is generated towards the controller, whenever // Command FIFO is not full // -------------------------------------------------------------------------- assign sdr_req = !cmdfifo_empty; //---------------------------------------------------------------------------- // Since Burst length is not known at the start of the Burst, It's assumed as // Single Cycle Burst. We need to improvise this ... // -------------------------------------------------------------------------- wire [bl-1:0] burst_length = 1; // 0 Mean 1 Transfer //----------------------------------------------------------------------------- // In Wish Bone Spec, For Read Request has to be acked along with data. // We need to identify the pending read request. // Once we accept the read request, we should not accept one more read // request, untill we have transmitted the read data. // Pending Read will // set - with Read Request // reset - with Read Request + Ack // ---------------------------------------------------------------------------- always @(posedge wb_rst_i or posedge wb_clk_i) begin if(wb_rst_i) begin pending_read <= 1'b0; end else begin pending_read <= wb_stb_i & wb_cyc_i & !wb_we_i & !wb_ack_o; end end //--------------------------------------------------------------------- // Async Command FIFO. This block handle the clock domain change from // Application layer to SDRAM Controller // ------------------------------------------------------------------ // Address + Burst Length + W/R Request async_fifo #(.W(30+bl+1),.DP(4)) u_cmdfifo ( // Write Path Sys CLock Domain .wr_clk (wb_clk_i ), .wr_reset_n (!wb_rst_i ), .wr_en (cmdfifo_wr ), .wr_data ({burst_length, !wb_we_i, wb_addr_i} ), .afull ( ), .full (cmdfifo_full ), // Read Path, SDRAM clock domain .rd_clk (sdram_clk ), .rd_reset_n (sdram_resetn ), .aempty ( ), .empty (cmdfifo_empty ), .rd_en (cmdfifo_rd ), .rd_data ({sdr_req_len, sdr_req_wr_n, sdr_req_addr} ) ); // synopsys translate_off always @(posedge wb_clk_i) begin if (cmdfifo_full == 1'b1 && cmdfifo_wr == 1'b1) begin $display("ERROR:%m COMMAND FIFO WRITE OVERFLOW"); end end // synopsys translate_off always @(posedge sdram_clk) begin if (cmdfifo_empty == 1'b1 && cmdfifo_rd == 1'b1) begin $display("ERROR:%m COMMAND FIFO READ OVERFLOW"); end end // synopsys translate_on //--------------------------------------------------------------------- // Write Data FIFO Write Generation, when ever Acked + Write Request // Note: Ack signal generation already taking account of FIFO full condition // --------------------------------------------------------------------- wire wrdatafifo_wr = wb_ack_o & wb_we_i ; //------------------------------------------------------------------------ // Write Data FIFO Read Generation, When ever Next Write request generated // from SDRAM Controller // ------------------------------------------------------------------------ wire wrdatafifo_rd = sdr_wr_next; //------------------------------------------------------------------------ // Async Write Data FIFO // This block handle the clock domain change over + Write Data + Byte mask // From Application layer to SDRAM controller layer //------------------------------------------------------------------------ // Write DATA + Data Mask FIFO async_fifo #(.W(dw+(dw/8)), .DP(16)) u_wrdatafifo ( // Write Path , System clock domain .wr_clk (wb_clk_i ), .wr_reset_n (!wb_rst_i ), .wr_en (wrdatafifo_wr ), .wr_data ({~wb_sel_i, wb_dat_i} ), .afull ( ), .full (wrdatafifo_full ), // Read Path , SDRAM clock domain .rd_clk (sdram_clk ), .rd_reset_n (sdram_resetn ), .aempty ( ), .empty (wrdatafifo_empty ), .rd_en (wrdatafifo_rd ), .rd_data ({sdr_wr_en_n, sdr_wr_data} ) ); // synopsys translate_off always @(posedge wb_clk_i) begin if (wrdatafifo_full == 1'b1 && wrdatafifo_wr == 1'b1) begin $display("ERROR:%m WRITE DATA FIFO WRITE OVERFLOW"); end end always @(posedge sdram_clk) begin if (wrdatafifo_empty == 1'b1 && wrdatafifo_rd == 1'b1) begin $display("ERROR:%m WRITE DATA FIFO READ OVERFLOW"); end end // synopsys translate_on // ------------------------------------------------------------------- // READ DATA FIFO // ------------------------------------------------------------------ wire rd_eop; // last read indication // Read FIFO write generation, when ever SDRAM controller issues the read // valid signal wire rddatafifo_wr = sdr_rd_valid; // Read FIFO read generation, when ever ack is generated along with read // request. // Note: Ack generation is already accounted the write FIFO Not Empty // condition wire rddatafifo_rd = wb_ack_o & !wb_we_i; //------------------------------------------------------------------------- // Async Read FIFO // This block handles the clock domain change over + Read data from SDRAM // controller to Application layer. // Note: // 1. READ DATA FIFO depth is kept small, assuming that Sys-CLock > SDRAM Clock // READ DATA + EOP // 2. EOP indicate, last transfer of Burst Read Access. use-full for future // Tag handling per burst // // ------------------------------------------------------------------------ async_fifo #(.W(dw+1), .DP(4)) u_rddatafifo ( // Write Path , SDRAM clock domain .wr_clk (sdram_clk ), .wr_reset_n (sdram_resetn ), .wr_en (rddatafifo_wr ), .wr_data ({sdr_last_rd, sdr_rd_data} ), .afull ( ), .full (rddatafifo_full ), // Read Path , SYS clock domain .rd_clk (wb_clk_i ), .rd_reset_n (!wb_rst_i ), .empty (rddatafifo_empty ), .aempty ( ), .rd_en (rddatafifo_rd ), .rd_data ({rd_eop, wb_dat_o} ) ); // synopsys translate_off always @(posedge sdram_clk) begin if (rddatafifo_full == 1'b1 && rddatafifo_wr == 1'b1) begin $display("ERROR:%m READ DATA FIFO WRITE OVERFLOW"); end end always @(posedge wb_clk_i) begin if (rddatafifo_empty == 1'b1 && rddatafifo_rd == 1'b1) begin $display("ERROR:%m READ DATA FIFO READ OVERFLOW"); end end // synopsys translate_on endmodule
Go to most recent revision | Compare with Previous | Blame | View Log