URL
https://opencores.org/ocsvn/sdr_ctrl/sdr_ctrl/trunk
Subversion Repositories sdr_ctrl
[/] [sdr_ctrl/] [trunk/] [verif/] [tb/] [tb_core.sv] - Rev 45
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////
//// ////
//// ////
//// This file is part of the SDRAM Controller project ////
//// http://www.opencores.org/cores/sdr_ctrl/ ////
//// ////
//// Description ////
//// SDRAM CTRL definitions. ////
//// ////
//// To Do: ////
//// nothing ////
// Version :0.1 - Test Bench automation is improvised with ////
// seperate data,address,burst length fifo. ////
// Now user can create different write and ////
// read sequence ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
// This testbench stand-alone verify the sdram core
`timescale 1ns/1ps
module tb_core;
parameter P_SYS = 10; // 100MHz
// General
reg RESETN;
reg sdram_clk;
initial sdram_clk = 0;
always #(P_SYS/2) sdram_clk = !sdram_clk;
parameter dw = 32; // data width
parameter tw = 8; // tag id width
parameter bl = 5; // burst_lenght_width
//-------------------------------------------
// Application Interface bus
//-------------------------------------------
reg app_req ; // Application Request
reg [8:0] app_req_len ; // Burst Request length
wire app_req_ack ; // Application Request Ack
reg [29:0] app_req_addr ; // Application Address
reg app_req_wr_n ; // 1 -> Read, 0 -> Write
reg [dw-1:0] app_wr_data ; // Write Data
reg [dw/8-1:0] app_wr_en_n ; // Write Enable, Active Low
wire app_rd_valid ; // Read Valid
wire app_last_rd ; // Last Read Valid
wire [dw-1:0] app_rd_data ; // Read Data
//--------------------------------------------
// SDRAM I/F
//--------------------------------------------
`ifdef SDR_32BIT
wire [31:0] Dq ; // SDRAM Read/Write Data Bus
wire [31:0] sdr_dout ; // SDRAM Data Out
wire [31:0] pad_sdr_din ; // SDRAM Data Input
wire [3:0] sdr_den_n ; // SDRAM Data Enable
wire [3:0] sdr_dqm ; // SDRAM DATA Mask
`elsif SDR_16BIT
wire [15:0] Dq ; // SDRAM Read/Write Data Bus
wire [15:0] sdr_dout ; // SDRAM Data Out
wire [15:0] pad_sdr_din ; // SDRAM Data Input
wire [1:0] sdr_den_n ; // SDRAM Data Enable
wire [1:0] sdr_dqm ; // SDRAM DATA Mask
`else
wire [7:0] Dq ; // SDRAM Read/Write Data Bus
wire [7:0] sdr_dout ; // SDRAM Data Out
wire [7:0] pad_sdr_din ; // SDRAM Data Input
wire [0:0] sdr_den_n ; // SDRAM Data Enable
wire [0:0] sdr_dqm ; // SDRAM DATA Mask
`endif
wire [1:0] sdr_ba ; // SDRAM Bank Select
wire [11:0] sdr_addr ; // SDRAM ADRESS
wire sdr_init_done ; // SDRAM Init Done
// to fix the sdram interface timing issue
wire #(2.0) sdram_clk_d = sdram_clk;
wire #(1.0) pad_clk = sdram_clk_d;
`ifdef SDR_32BIT
sdrc_core #(.SDR_DW(32),.SDR_BW(4)) u_dut(
`elsif SDR_16BIT
sdrc_core #(.SDR_DW(16),.SDR_BW(2)) u_dut(
`else // 8 BIT SDRAM
sdrc_core #(.SDR_DW(8),.SDR_BW(1)) u_dut(
`endif
// System
.clk (sdram_clk ),
.reset_n (RESETN ),
.pad_clk (pad_clk ),
`ifdef SDR_32BIT
.sdr_width (2'b00 ), // 32 BIT SDRAM
`elsif SDR_16BIT
.sdr_width (2'b01 ), // 16 BIT SDRAM
`else
.sdr_width (2'b10 ), // 8 BIT SDRAM
`endif
.cfg_colbits (2'b00 ), // 8 Bit Column Address
/* Request from app */
.app_req (app_req ), // Transfer Request
.app_req_addr (app_req_addr ), // SDRAM Address
.app_req_addr_mask (29'h1FFF_FFFF ), // Address mask for queue wrap
.app_req_len (app_req_len ), // Burst Length (in 16 bit words)
.app_req_wrap (1'b0 ), // Wrap mode request (xfr_len = 4)
.app_req_wr_n (app_req_wr_n ), // 0 => Write request, 1 => read req
.app_req_ack (app_req_ack ), // Request has been accepted
.sdr_core_busy_n ( ), // OK to arbitrate next request
.app_wr_data (app_wr_data ),
.app_wr_en_n (app_wr_en_n ),
.app_rd_data (app_rd_data ),
.app_last_rd (app_last_rd ),
.app_rd_valid (app_rd_valid ),
.app_wr_next_req (app_wr_next_req ),
.app_req_dma_last (app_req ),
/* Interface to SDRAMs */
.sdr_cs_n (sdr_cs_n ),
.sdr_cke (sdr_cke ),
.sdr_ras_n (sdr_ras_n ),
.sdr_cas_n (sdr_cas_n ),
.sdr_we_n (sdr_we_n ),
.sdr_dqm (sdr_dqm ),
.sdr_ba (sdr_ba ),
.sdr_addr (sdr_addr ),
.pad_sdr_din (Dq ),
.sdr_dout (sdr_dout ),
.sdr_den_n (sdr_den_n ),
/* Parameters */
.sdr_init_done (sdr_init_done ),
.cfg_req_depth (2'h3 ), //how many req. buffer should hold
.cfg_sdr_en (1'b1 ),
.cfg_sdr_mode_reg (12'h033 ),
.cfg_sdr_tras_d (4'h4 ),
.cfg_sdr_trp_d (4'h2 ),
.cfg_sdr_trcd_d (4'h2 ),
.cfg_sdr_cas (3'h3 ),
.cfg_sdr_trcar_d (4'h7 ),
.cfg_sdr_twr_d (4'h1 ),
.cfg_sdr_rfsh (12'h100 ), // reduced from 12'hC35
.cfg_sdr_rfmax (3'h6 )
);
`ifdef SDR_32BIT
assign Dq[7:0] = (sdr_den_n[0] == 1'b0) ? sdr_dout[7:0] : 8'hZZ;
assign Dq[15:8] = (sdr_den_n[1] == 1'b0) ? sdr_dout[15:8] : 8'hZZ;
assign Dq[23:16] = (sdr_den_n[2] == 1'b0) ? sdr_dout[23:16] : 8'hZZ;
assign Dq[31:24] = (sdr_den_n[3] == 1'b0) ? sdr_dout[31:24] : 8'hZZ;
mt48lc2m32b2 #(.data_bits(32)) u_sdram32 (
.Dq (Dq ) ,
.Addr (sdr_addr ),
.Ba (sdr_ba ),
.Clk (sdram_clk_d ),
.Cke (sdr_cke ),
.Cs_n (sdr_cs_n ),
.Ras_n (sdr_ras_n ),
.Cas_n (sdr_cas_n ),
.We_n (sdr_we_n ),
.Dqm (sdr_dqm )
);
`elsif SDR_16BIT
assign Dq[7:0] = (sdr_den_n[0] == 1'b0) ? sdr_dout[7:0] : 8'hZZ;
assign Dq[15:8] = (sdr_den_n[1] == 1'b0) ? sdr_dout[15:8] : 8'hZZ;
IS42VM16400K u_sdram16 (
.dq (Dq ),
.addr (sdr_addr ),
.ba (sdr_ba ),
.clk (sdram_clk_d ),
.cke (sdr_cke ),
.csb (sdr_cs_n ),
.rasb (sdr_ras_n ),
.casb (sdr_cas_n ),
.web (sdr_we_n ),
.dqm (sdr_dqm )
);
`else
assign Dq[7:0] = (sdr_den_n[0] == 1'b0) ? sdr_dout[7:0] : 8'hZZ;
mt48lc8m8a2 #(.data_bits(8)) u_sdram8 (
.Dq (Dq ) ,
.Addr (sdr_addr ),
.Ba (sdr_ba ),
.Clk (sdram_clk_d ),
.Cke (sdr_cke ),
.Cs_n (sdr_cs_n ),
.Ras_n (sdr_ras_n ),
.Cas_n (sdr_cas_n ),
.We_n (sdr_we_n ),
.Dqm (sdr_dqm )
);
`endif
//--------------------
// data/address/burst length FIFO
//--------------------
int dfifo[$]; // data fifo
int afifo[$]; // address fifo
int bfifo[$]; // Burst Length fifo
reg [31:0] read_data;
reg [31:0] ErrCnt;
int k;
reg [31:0] StartAddr;
/////////////////////////////////////////////////////////////////////////
// Test Case
/////////////////////////////////////////////////////////////////////////
initial begin //{
ErrCnt = 0;
app_req_addr = 0;
app_wr_data = 0;
app_wr_en_n = 4'hF;
app_req_wr_n = 0;
app_req = 0;
app_req_len = 0;
RESETN = 1'h1;
#100
// Applying reset
RESETN = 1'h0;
#10000;
// Releasing reset
RESETN = 1'h1;
#1000;
wait(u_dut.sdr_init_done == 1);
#1000;
burst_write(32'h4_0000,6'h4);
#1000;
burst_read();
#1000;
burst_write(32'h0040_0000,6'h5);
#1000;
burst_read();
// 4 Write & 4 Read
burst_write(32'h4_0000,6'h4);
burst_write(32'h5_0000,6'h5);
burst_write(32'h6_0000,6'h6);
burst_write(32'h7_0000,6'h7);
burst_read();
burst_read();
burst_read();
burst_read();
// 2 write and 2 read random
for(k=0; k < 20; k++) begin
StartAddr = $random & 32'h003FFFFF;
burst_write(StartAddr,($random & 8'h3f)+1);
#100;
StartAddr = $random & 32'h003FFFFF;
burst_write(StartAddr,($random & 8'h3f)+1);
#100;
burst_read();
#100;
burst_read();
#100;
end
#10000;
$display("###############################");
if(ErrCnt == 0)
$display("STATUS: SDRAM Write/Read TEST PASSED");
else
$display("ERROR: SDRAM Write/Read TEST FAILED");
$display("###############################");
$finish;
end
task burst_write;
input [31:0] Address;
input [7:0] bl;
int i;
begin
afifo.push_back(Address);
bfifo.push_back(bl);
@ (negedge sdram_clk);
app_req = 1;
app_wr_en_n = 0;
app_req_wr_n = 1'b0;
app_req_addr = Address[31:2];
app_req_len = bl;
$display("Write Address: %x, Burst Size: %d",Address,bl);
// wait for app_req_ack == 1
do begin
@ (posedge sdram_clk);
end while(app_req_ack == 1'b0);
@ (negedge sdram_clk);
app_req = 0;
for(i=0; i < bl; i++) begin
app_wr_data = $random & 32'hFFFFFFFF;
dfifo.push_back(app_wr_data);
do begin
@ (posedge sdram_clk);
end while(app_wr_next_req == 1'b0);
@ (negedge sdram_clk);
$display("Status: Burst-No: %d Write Address: %x WriteData: %x ",i,Address,app_wr_data);
end
app_req = 0;
app_wr_en_n = 4'hF;
end
endtask
task burst_read;
reg [31:0] Address;
reg [7:0] bl;
int i,j;
reg [31:0] exp_data;
begin
Address = afifo.pop_front();
bl = bfifo.pop_front();
app_req = 1;
app_wr_en_n = 0;
app_req_wr_n = 1;
app_req_addr = Address[29:2];
app_req_len = bl;
// wait for app_req_ack == 1
do begin
@ (posedge sdram_clk);
end while(app_req_ack == 1'b0);
@ (negedge sdram_clk);
app_req = 0;
for(j=0; j < bl; j++) begin
wait(app_rd_valid == 1);
exp_data = dfifo.pop_front(); // Exptected Read Data
if(app_rd_data !== exp_data) begin
$display("READ ERROR: Burst-No: %d Addr: %x Rxp: %x Exd: %x",j,Address+(j*2),app_rd_data,exp_data);
ErrCnt = ErrCnt+1;
end else begin
$display("READ STATUS: Burst-No: %d Addr: %x Rxd: %x",j,Address+(j*2),app_rd_data);
end
@ (posedge sdram_clk);
@ (negedge sdram_clk);
end
end
endtask
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log