URL
https://opencores.org/ocsvn/sdram_controller/sdram_controller/trunk
Subversion Repositories sdram_controller
[/] [sdram_controller/] [trunk/] [ddr.v] - Rev 4
Compare with Previous | Blame | View Log
/**************************************************************************************** * * File Name: ddr.v * Version: 6.00 * Model: BUS Functional * * Dependencies: ddr_parameters.v * * Description: Micron SDRAM DDR (Double Data Rate) * * Limitation: - Doesn't check for 8K-cycle refresh. * - Doesn't check power-down entry/exit * - Doesn't check self-refresh entry/exit. * * Note: - Set simulator resolution to "ps" accuracy * - Set DEBUG = 0 to disable $display messages * - Model assume Clk and Clk# crossing at both edge * * Disclaimer This software code and all associated documentation, comments or other * of Warranty: information (collectively "Software") is provided "AS IS" without * warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY * DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED * TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES * OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT * WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE * OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE. * FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR * THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, * ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE * OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI, * ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT, * INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, * WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, * OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE * THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGES. Because some jurisdictions prohibit the exclusion or * limitation of liability for consequential or incidental damages, the * above limitation may not apply to you. * * Copyright 2003 Micron Technology, Inc. All rights reserved. * * Rev Author Date Changes * --- ------ ---------- --------------------------------------- * 2.1 SPH 03/19/2002 - Second Release * - Fix tWR and several incompatability * between different simulators * 3.0 TFK 02/18/2003 - Added tDSS and tDSH timing checks. * - Added tDQSH and tDQSL timing checks. * 3.1 CAH 05/28/2003 - update all models to release version 3.1 * (no changes to this model) * 3.2 JMK 06/16/2003 - updated all DDR400 models to support CAS Latency 3 * 3.3 JMK 09/11/2003 - Added initialization sequence checks. * 4.0 JMK 12/01/2003 - Grouped parameters into "ddr_parameters.v" * - Fixed tWTR check * 4.1 JMK 01/14/2004 - Grouped specify parameters by speed grade * - Fixed mem_sizes parameter * 4.2 JMK 03/19/2004 - Fixed pulse width checking on Dqs * 4.3 JMK 04/27/2004 - Changed BL wire size in tb module * - Changed Dq_buf size to [15:0] * 5.0 JMK 06/16/2004 - Added read to write checking. * - Added read with precharge truncation to write checking. * - Added associative memory array to reduce memory consumption. * - Added checking for required DQS edges during write. * 5.1 JMK 08/16/2004 - Fixed checking for required DQS edges during write. * - Fixed wdqs_valid window. * 5.2 JMK 09/24/2004 - Read or Write without activate will be ignored. * 5.3 JMK 10/27/2004 - Added tMRD checking during Auto Refresh and Activate. * - Added tRFC checking during Load Mode and Precharge. * 5.4 JMK 12/13/2004 - The model will not respond to illegal command sequences. * 5.5 SPH 01/13/2005 - The model will issue a halt on illegal command sequences. * JMK 02/11/2005 - Changed the display format for numbers to hex. * 5.6 JMK 04/22/2005 - Fixed Write with auto precharge calculation. * 5.7 JMK 08/05/2005 - Changed conditions for read with precharge truncation error. * - Renamed parameters file with .vh extension. * 5.8 BAS 12/26/2006 - Added parameters for T46A part - 256Mb * - Added x32 functionality * 6.00 JMK 05/31/2007 - Added ddr_184_dimm module model * 6.00 BAS 05/31/2007 - Updated 128Mb, 256Mb, 512Mb, and 1024Mb parameter sheets ****************************************************************************************/ `define sg6T `define x16 // DO NOT CHANGE THE TIMESCALE // MAKE SURE YOUR SIMULATOR USE "PS" RESOLUTION `timescale 1ns / 1ps module ddr (Clk, Clk_n, Cke, Cs_n, Ras_n, Cas_n, We_n, Ba , Addr, Dm, Dq, Dqs); `include "ddr_parameters.vh" // Port Declarations input Clk; input Clk_n; input Cke; input Cs_n; input Ras_n; input Cas_n; input We_n; input [1 : 0] Ba; input [ADDR_BITS - 1 : 0] Addr; input [DM_BITS - 1 : 0] Dm; inout [DQ_BITS - 1 : 0] Dq; inout [DQS_BITS - 1 : 0] Dqs; // Internal Wires (fixed width) wire [31 : 0] Dq_in; wire [3 : 0] Dqs_in; wire [3 : 0] Dm_in; assign Dq_in [DQ_BITS - 1 : 0] = Dq; assign Dqs_in [DQS_BITS - 1 : 0] = Dqs; assign Dm_in [DM_BITS - 1 : 0] = Dm; // Data pair reg [31 : 0] dq_rise; reg [3 : 0] dm_rise; reg [31 : 0] dq_fall; reg [3 : 0] dm_fall; reg [7 : 0] dm_pair; reg [31 : 0] Dq_buf; // Mode Register reg [ADDR_BITS - 1 : 0] Mode_reg; // Internal System Clock reg CkeZ, Sys_clk; // Internal Dqs initialize reg Dqs_int; // Dqs buffer reg [DQS_BITS - 1 : 0] Dqs_out; // Dq buffer reg [DQ_BITS - 1 : 0] Dq_out; // Read pipeline variables reg Read_cmnd [0 : 6]; reg [1 : 0] Read_bank [0 : 6]; reg [COL_BITS - 1 : 0] Read_cols [0 : 6]; // Write pipeline variables reg Write_cmnd [0 : 3]; reg [1 : 0] Write_bank [0 : 3]; reg [COL_BITS - 1 : 0] Write_cols [0 : 3]; // Auto precharge variables reg Read_precharge [0 : 3]; reg Write_precharge [0 : 3]; integer Count_precharge [0 : 3]; // Manual precharge variables reg A10_precharge [0 : 6]; reg [1 : 0] Bank_precharge [0 : 6]; reg Cmnd_precharge [0 : 6]; // Burst terminate variables reg Cmnd_bst [0 : 6]; // Memory Banks `ifdef FULL_MEM reg [DQ_BITS - 1 : 0] mem_array [0 : (1<<full_mem_bits)-1]; `else reg [DQ_BITS - 1 : 0] mem_array [0 : (1<<part_mem_bits)-1]; reg [full_mem_bits - 1 : 0] addr_array [0 : (1<<part_mem_bits)-1]; reg [part_mem_bits : 0] mem_used; initial mem_used = 0; `endif // Dqs edge checking integer i; reg [3 :0] expect_pos_dqs; reg [3 :0] expect_neg_dqs; // Burst counter reg [COL_BITS - 1 : 0] Burst_counter; // Precharge variables reg Pc_b0, Pc_b1, Pc_b2, Pc_b3; // Activate variables reg Act_b0, Act_b1, Act_b2, Act_b3; // Data IO variables reg Data_in_enable; reg Data_out_enable; // Internal address mux variables reg [1 : 0] Prev_bank; reg [1 : 0] Bank_addr; reg [COL_BITS - 1 : 0] Cols_addr, Cols_brst, Cols_temp; reg [ADDR_BITS - 1 : 0] Rows_addr; reg [ADDR_BITS - 1 : 0] B0_row_addr; reg [ADDR_BITS - 1 : 0] B1_row_addr; reg [ADDR_BITS - 1 : 0] B2_row_addr; reg [ADDR_BITS - 1 : 0] B3_row_addr; // DLL Reset variable reg DLL_enable; reg DLL_reset; reg DLL_done; integer DLL_count; integer aref_count; integer Prech_count; reg power_up_done; // Write DQS for tDSS, tDSH, tDQSH, tDQSL checks wire wdqs_valid = Write_cmnd[2] || Write_cmnd[1] || Data_in_enable; // Commands Decode wire Active_enable = ~Cs_n & ~Ras_n & Cas_n & We_n; wire Aref_enable = ~Cs_n & ~Ras_n & ~Cas_n & We_n; wire Burst_term = ~Cs_n & Ras_n & Cas_n & ~We_n; wire Ext_mode_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & Ba[0] & ~Ba[1]; wire Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & ~Ba[0] & ~Ba[1]; wire Prech_enable = ~Cs_n & ~Ras_n & Cas_n & ~We_n; wire Read_enable = ~Cs_n & Ras_n & ~Cas_n & We_n; wire Write_enable = ~Cs_n & Ras_n & ~Cas_n & ~We_n; // Burst Length Decode wire [3:0] burst_length = 1 << (Mode_reg[2:0]); reg [3:0] read_precharge_truncation; // CAS Latency Decode wire [2:0] cas_latency_x2 = (Mode_reg[6:4] === 3'o6) ? 5 : 2*Mode_reg[6:4]; // DQS Buffer assign Dqs = Dqs_out; // DQ Buffer assign Dq = Dq_out; // Timing Check time MRD_chk; time RFC_chk; time RRD_chk; time RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3; time RAP_chk0, RAP_chk1, RAP_chk2, RAP_chk3; time RC_chk0, RC_chk1, RC_chk2, RC_chk3; time RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3; time RP_chk0, RP_chk1, RP_chk2, RP_chk3; time WR_chk0, WR_chk1, WR_chk2, WR_chk3; initial begin CkeZ = 1'b0; Sys_clk = 1'b0; {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000; {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b1111; Dqs_int = 1'b0; Dqs_out = {DQS_BITS{1'bz}}; Dq_out = {DQ_BITS{1'bz}}; Data_in_enable = 1'b0; Data_out_enable = 1'b0; DLL_enable = 1'b0; DLL_reset = 1'b0; DLL_done = 1'b0; DLL_count = 0; aref_count = 0; Prech_count = 0; power_up_done = 0; MRD_chk = 0; RFC_chk = 0; RRD_chk = 0; {RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0; {RAP_chk0, RAP_chk1, RAP_chk2, RAP_chk3} = 0; {RC_chk0, RC_chk1, RC_chk2, RC_chk3} = 0; {RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0; {RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0; {WR_chk0, WR_chk1, WR_chk2, WR_chk3} = 0; $timeformat (-9, 3, " ns", 12); end // System Clock always begin @ (posedge Clk) begin Sys_clk = CkeZ; CkeZ = Cke; end @ (negedge Clk) begin Sys_clk = 1'b0; end end // Check to make sure that we have a Deselect or NOP command on the bus when CKE is brought high always @(Cke) begin if (Cke === 1'b1) begin if (!((Cs_n) || (~Cs_n & Ras_n & Cas_n & We_n))) begin $display ("%m: at time %t MEMORY ERROR: You must have a Deselect or NOP command applied", $time); $display ("%m: when the Clock Enable is brought High."); end end end // Check the initialization sequence initial begin @ (posedge Cke) begin @ (posedge DLL_enable) begin aref_count = 0; @ (posedge DLL_reset) begin @ (Prech_count) begin if (aref_count >= 2) begin if (DEBUG) $display ("%m: at time %t MEMORY: Power Up and Initialization Sequence is complete", $time); power_up_done = 1; end else begin aref_count = 0; @ (aref_count >= 2) begin if (DEBUG) $display ("%m: at time %t MEMORY: Power Up and Initialization Sequence is complete", $time); power_up_done = 1; end end end end end end end // Write Memory task write_mem; input [full_mem_bits - 1 : 0] addr; input [DQ_BITS - 1 : 0] data; reg [part_mem_bits : 0] i; begin `ifdef FULL_MEM mem_array[addr] = data; `else begin : loop for (i = 0; i < mem_used; i = i + 1) begin if (addr_array[i] === addr) begin disable loop; end end end if (i === mem_used) begin if (i === (1<<part_mem_bits)) begin $display ("At time %t ERROR: Memory overflow.\n Write to Address %h with Data %h will be lost.\n You must increase the part_mem_bits parameter or `define FULL_MEM.", $time, addr, data); end else begin mem_used = mem_used + 1; addr_array[i] = addr; end end mem_array[i] = data; `endif end endtask // Read Memory task read_mem; input [full_mem_bits - 1 : 0] addr; output [DQ_BITS - 1 : 0] data; reg [part_mem_bits : 0] i; begin `ifdef FULL_MEM data = mem_array[addr]; `else begin : loop for (i = 0; i < mem_used; i = i + 1) begin if (addr_array[i] === addr) begin disable loop; end end end if (i <= mem_used) begin data = mem_array[i]; end `endif end endtask // Burst Decode task Burst_Decode; begin // Advance Burst Counter if (Burst_counter < burst_length) begin Burst_counter = Burst_counter + 1; end // Burst Type if (Mode_reg[3] === 1'b0) begin // Sequential Burst Cols_temp = Cols_addr + 1; end else if (Mode_reg[3] === 1'b1) begin // Interleaved Burst Cols_temp[2] = Burst_counter[2] ^ Cols_brst[2]; Cols_temp[1] = Burst_counter[1] ^ Cols_brst[1]; Cols_temp[0] = Burst_counter[0] ^ Cols_brst[0]; end // Burst Length if (burst_length === 2) begin Cols_addr [0] = Cols_temp [0]; end else if (burst_length === 4) begin Cols_addr [1 : 0] = Cols_temp [1 : 0]; end else if (burst_length === 8) begin Cols_addr [2 : 0] = Cols_temp [2 : 0]; end else begin Cols_addr = Cols_temp; end // Data Counter if (Burst_counter >= burst_length) begin Data_in_enable = 1'b0; Data_out_enable = 1'b0; read_precharge_truncation = 4'h0; end end endtask // Manual Precharge Pipeline task Manual_Precharge_Pipeline; begin // A10 Precharge Pipeline A10_precharge[0] = A10_precharge[1]; A10_precharge[1] = A10_precharge[2]; A10_precharge[2] = A10_precharge[3]; A10_precharge[3] = A10_precharge[4]; A10_precharge[4] = A10_precharge[5]; A10_precharge[5] = A10_precharge[6]; A10_precharge[6] = 1'b0; // Bank Precharge Pipeline Bank_precharge[0] = Bank_precharge[1]; Bank_precharge[1] = Bank_precharge[2]; Bank_precharge[2] = Bank_precharge[3]; Bank_precharge[3] = Bank_precharge[4]; Bank_precharge[4] = Bank_precharge[5]; Bank_precharge[5] = Bank_precharge[6]; Bank_precharge[6] = 2'b0; // Command Precharge Pipeline Cmnd_precharge[0] = Cmnd_precharge[1]; Cmnd_precharge[1] = Cmnd_precharge[2]; Cmnd_precharge[2] = Cmnd_precharge[3]; Cmnd_precharge[3] = Cmnd_precharge[4]; Cmnd_precharge[4] = Cmnd_precharge[5]; Cmnd_precharge[5] = Cmnd_precharge[6]; Cmnd_precharge[6] = 1'b0; // Terminate a Read if same bank or all banks if (Cmnd_precharge[0] === 1'b1) begin if (Bank_precharge[0] === Bank_addr || A10_precharge[0] === 1'b1) begin if (Data_out_enable === 1'b1) begin Data_out_enable = 1'b0; read_precharge_truncation = 4'hF; end end end end endtask // Burst Terminate Pipeline task Burst_Terminate_Pipeline; begin // Command Precharge Pipeline Cmnd_bst[0] = Cmnd_bst[1]; Cmnd_bst[1] = Cmnd_bst[2]; Cmnd_bst[2] = Cmnd_bst[3]; Cmnd_bst[3] = Cmnd_bst[4]; Cmnd_bst[4] = Cmnd_bst[5]; Cmnd_bst[5] = Cmnd_bst[6]; Cmnd_bst[6] = 1'b0; // Terminate a Read regardless of banks if (Cmnd_bst[0] === 1'b1 && Data_out_enable === 1'b1) begin Data_out_enable = 1'b0; end end endtask // Dq and Dqs Drivers task Dq_Dqs_Drivers; begin // read command pipeline Read_cmnd [0] = Read_cmnd [1]; Read_cmnd [1] = Read_cmnd [2]; Read_cmnd [2] = Read_cmnd [3]; Read_cmnd [3] = Read_cmnd [4]; Read_cmnd [4] = Read_cmnd [5]; Read_cmnd [5] = Read_cmnd [6]; Read_cmnd [6] = 1'b0; // read bank pipeline Read_bank [0] = Read_bank [1]; Read_bank [1] = Read_bank [2]; Read_bank [2] = Read_bank [3]; Read_bank [3] = Read_bank [4]; Read_bank [4] = Read_bank [5]; Read_bank [5] = Read_bank [6]; Read_bank [6] = 2'b0; // read column pipeline Read_cols [0] = Read_cols [1]; Read_cols [1] = Read_cols [2]; Read_cols [2] = Read_cols [3]; Read_cols [3] = Read_cols [4]; Read_cols [4] = Read_cols [5]; Read_cols [5] = Read_cols [6]; Read_cols [6] = 0; // Initialize Read command if (Read_cmnd [0] === 1'b1) begin Data_out_enable = 1'b1; Bank_addr = Read_bank [0]; Cols_addr = Read_cols [0]; Cols_brst = Cols_addr [2 : 0]; Burst_counter = 0; // Row Address Mux case (Bank_addr) 2'd0 : Rows_addr = B0_row_addr; 2'd1 : Rows_addr = B1_row_addr; 2'd2 : Rows_addr = B2_row_addr; 2'd3 : Rows_addr = B3_row_addr; default : $display ("At time %t ERROR: Invalid Bank Address", $time); endcase end // Toggle Dqs during Read command if (Data_out_enable === 1'b1) begin Dqs_int = 1'b0; if (Dqs_out === {DQS_BITS{1'b0}}) begin Dqs_out = {DQS_BITS{1'b1}}; end else if (Dqs_out === {DQS_BITS{1'b1}}) begin Dqs_out = {DQS_BITS{1'b0}}; end else begin Dqs_out = {DQS_BITS{1'b0}}; end end else if (Data_out_enable === 1'b0 && Dqs_int === 1'b0) begin Dqs_out = {DQS_BITS{1'bz}}; end // Initialize dqs for Read command if (Read_cmnd [2] === 1'b1) begin if (Data_out_enable === 1'b0) begin Dqs_int = 1'b1; Dqs_out = {DQS_BITS{1'b0}}; end end // Read latch if (Data_out_enable === 1'b1) begin // output data read_mem({Bank_addr, Rows_addr, Cols_addr}, Dq_out); if (DEBUG) begin $display ("At time %t READ : Bank = %h, Row = %h, Col = %h, Data = %h", $time, Bank_addr, Rows_addr, Cols_addr, Dq_out); end end else begin Dq_out = {DQ_BITS{1'bz}}; end end endtask // Write FIFO and DM Mask Logic task Write_FIFO_DM_Mask_Logic; begin // Write command pipeline Write_cmnd [0] = Write_cmnd [1]; Write_cmnd [1] = Write_cmnd [2]; Write_cmnd [2] = Write_cmnd [3]; Write_cmnd [3] = 1'b0; // Write command pipeline Write_bank [0] = Write_bank [1]; Write_bank [1] = Write_bank [2]; Write_bank [2] = Write_bank [3]; Write_bank [3] = 2'b0; // Write column pipeline Write_cols [0] = Write_cols [1]; Write_cols [1] = Write_cols [2]; Write_cols [2] = Write_cols [3]; Write_cols [3] = {COL_BITS{1'b0}}; // Initialize Write command if (Write_cmnd [0] === 1'b1) begin Data_in_enable = 1'b1; Bank_addr = Write_bank [0]; Cols_addr = Write_cols [0]; Cols_brst = Cols_addr [2 : 0]; Burst_counter = 0; // Row address mux case (Bank_addr) 2'd0 : Rows_addr = B0_row_addr; 2'd1 : Rows_addr = B1_row_addr; 2'd2 : Rows_addr = B2_row_addr; 2'd3 : Rows_addr = B3_row_addr; default : $display ("At time %t ERROR: Invalid Row Address", $time); endcase end // Write data if (Data_in_enable === 1'b1) begin // Data Buffer read_mem({Bank_addr, Rows_addr, Cols_addr}, Dq_buf); // write negedge Dqs on posedge Sys_clk if (Sys_clk) begin if (!dm_fall[0]) begin Dq_buf [ 7 : 0] = dq_fall [ 7 : 0]; end if (!dm_fall[1]) begin Dq_buf [15 : 8] = dq_fall [15 : 8]; end if (!dm_fall[2]) begin Dq_buf [23 : 16] = dq_fall [23 : 16]; end if (!dm_fall[3]) begin Dq_buf [31 : 24] = dq_fall [31 : 24]; end if (~&dm_fall) begin if (DEBUG) begin $display ("At time %t WRITE: Bank = %h, Row = %h, Col = %h, Data = %h", $time, Bank_addr, Rows_addr, Cols_addr, Dq_buf[DQ_BITS-1:0]); end end // write posedge Dqs on negedge Sys_clk end else begin if (!dm_rise[0]) begin Dq_buf [ 7 : 0] = dq_rise [ 7 : 0]; end if (!dm_rise[1]) begin Dq_buf [15 : 8] = dq_rise [15 : 8]; end if (!dm_rise[2]) begin Dq_buf [23 : 16] = dq_rise [23 : 16]; end if (!dm_rise[3]) begin Dq_buf [31 : 24] = dq_rise [31 : 24]; end if (~&dm_rise) begin if (DEBUG) begin $display ("At time %t WRITE: Bank = %h, Row = %h, Col = %h, Data = %h", $time, Bank_addr, Rows_addr, Cols_addr, Dq_buf[DQ_BITS-1:0]); end end end // Write Data write_mem({Bank_addr, Rows_addr, Cols_addr}, Dq_buf); // tWR start and tWTR check if (Sys_clk && &dm_pair === 1'b0) begin case (Bank_addr) 2'd0 : WR_chk0 = $time; 2'd1 : WR_chk1 = $time; 2'd2 : WR_chk2 = $time; 2'd3 : WR_chk3 = $time; default : $display ("At time %t ERROR: Invalid Bank Address (tWR)", $time); endcase // tWTR check if (Read_enable === 1'b1) begin $display ("At time %t ERROR: tWTR violation during Read", $time); end end end end endtask // Auto Precharge Calculation task Auto_Precharge_Calculation; begin // Precharge counter if (Read_precharge [0] === 1'b1 || Write_precharge [0] === 1'b1) begin Count_precharge [0] = Count_precharge [0] + 1; end if (Read_precharge [1] === 1'b1 || Write_precharge [1] === 1'b1) begin Count_precharge [1] = Count_precharge [1] + 1; end if (Read_precharge [2] === 1'b1 || Write_precharge [2] === 1'b1) begin Count_precharge [2] = Count_precharge [2] + 1; end if (Read_precharge [3] === 1'b1 || Write_precharge [3] === 1'b1) begin Count_precharge [3] = Count_precharge [3] + 1; end // Read with AutoPrecharge Calculation // The device start internal precharge when: // 1. Meet tRAS requirement // 2. BL/2 cycles after command if ((Read_precharge[0] === 1'b1) && ($time - RAS_chk0 >= tRAS)) begin if (Count_precharge[0] >= burst_length/2) begin Pc_b0 = 1'b1; Act_b0 = 1'b0; RP_chk0 = $time; Read_precharge[0] = 1'b0; end end if ((Read_precharge[1] === 1'b1) && ($time - RAS_chk1 >= tRAS)) begin if (Count_precharge[1] >= burst_length/2) begin Pc_b1 = 1'b1; Act_b1 = 1'b0; RP_chk1 = $time; Read_precharge[1] = 1'b0; end end if ((Read_precharge[2] === 1'b1) && ($time - RAS_chk2 >= tRAS)) begin if (Count_precharge[2] >= burst_length/2) begin Pc_b2 = 1'b1; Act_b2 = 1'b0; RP_chk2 = $time; Read_precharge[2] = 1'b0; end end if ((Read_precharge[3] === 1'b1) && ($time - RAS_chk3 >= tRAS)) begin if (Count_precharge[3] >= burst_length/2) begin Pc_b3 = 1'b1; Act_b3 = 1'b0; RP_chk3 = $time; Read_precharge[3] = 1'b0; end end // Write with AutoPrecharge Calculation // The device start internal precharge when: // 1. Meet tRAS requirement // 2. Write Latency PLUS BL/2 cycles PLUS tWR after Write command if ((Write_precharge[0] === 1'b1) && ($time - RAS_chk0 >= tRAS)) begin if ((Count_precharge[0] >= burst_length/2+1) && ($time - WR_chk0 >= tWR)) begin Pc_b0 = 1'b1; Act_b0 = 1'b0; RP_chk0 = $time; Write_precharge[0] = 1'b0; end end if ((Write_precharge[1] === 1'b1) && ($time - RAS_chk1 >= tRAS)) begin if ((Count_precharge[1] >= burst_length/2+1) && ($time - WR_chk1 >= tWR)) begin Pc_b1 = 1'b1; Act_b1 = 1'b0; RP_chk1 = $time; Write_precharge[1] = 1'b0; end end if ((Write_precharge[2] === 1'b1) && ($time - RAS_chk2 >= tRAS)) begin if ((Count_precharge[2] >= burst_length/2+1) && ($time - WR_chk2 >= tWR)) begin Pc_b2 = 1'b1; Act_b2 = 1'b0; RP_chk2 = $time; Write_precharge[2] = 1'b0; end end if ((Write_precharge[3] === 1'b1) && ($time - RAS_chk3 >= tRAS)) begin if ((Count_precharge[3] >= burst_length/2+1) && ($time - WR_chk3 >= tWR)) begin Pc_b3 = 1'b1; Act_b3 = 1'b0; RP_chk3 = $time; Write_precharge[3] = 1'b0; end end end endtask // DLL Counter task DLL_Counter; begin if (DLL_reset === 1'b1 && DLL_done === 1'b0) begin DLL_count = DLL_count + 1; if (DLL_count >= 200) begin DLL_done = 1'b1; end end end endtask // Control Logic task Control_Logic; begin // Auto Refresh if (Aref_enable === 1'b1) begin // Display DEBUG Message if (DEBUG) begin $display ("At time %t AREF : Auto Refresh", $time); end // Precharge to Auto Refresh if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) || ($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin $display ("At time %t ERROR: tRP violation during Auto Refresh", $time); end // LMR/EMR to Auto Refresh if ($time - MRD_chk < tMRD) begin $display ("At time %t ERROR: tMRD violation during Auto Refresh", $time); end // Auto Refresh to Auto Refresh if ($time - RFC_chk < tRFC) begin $display ("At time %t ERROR: tRFC violation during Auto Refresh", $time); end // Precharge to Auto Refresh if (Pc_b0 === 1'b0 || Pc_b1 === 1'b0 || Pc_b2 === 1'b0 || Pc_b3 === 1'b0) begin $display ("At time %t ERROR: All banks must be Precharged before Auto Refresh", $time); if (!no_halt) $stop (0); end else begin aref_count = aref_count + 1; RFC_chk = $time; end end // Extended Mode Register if (Ext_mode_enable === 1'b1) begin if (DEBUG) begin $display ("At time %t EMR : Extended Mode Register", $time); end // Precharge to LMR/EMR if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) || ($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin $display ("At time %t ERROR: tRP violation during Extended Mode Register", $time); end // LMR/EMR to LMR/EMR if ($time - MRD_chk < tMRD) begin $display ("At time %t ERROR: tMRD violation during Extended Mode Register", $time); end // Auto Refresh to LMR/EMR if ($time - RFC_chk < tRFC) begin $display ("At time %t ERROR: tRFC violation during Extended Mode Register", $time); end // Precharge to LMR/EMR if (Pc_b0 === 1'b0 || Pc_b1 === 1'b0 || Pc_b2 === 1'b0 || Pc_b3 === 1'b0) begin $display ("At time %t ERROR: all banks must be Precharged before Extended Mode Register", $time); if (!no_halt) $stop (0); end else begin if (Addr[0] === 1'b0) begin DLL_enable = 1'b1; if (DEBUG) begin $display ("At time %t EMR : Enable DLL", $time); end end else begin DLL_enable = 1'b0; if (DEBUG) begin $display ("At time %t EMR : Disable DLL", $time); end end MRD_chk = $time; end end // Load Mode Register if (Mode_reg_enable === 1'b1) begin if (DEBUG) begin $display ("At time %t LMR : Load Mode Register", $time); end // Precharge to LMR/EMR if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) || ($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin $display ("At time %t ERROR: tRP violation during Load Mode Register", $time); end // LMR/EMR to LMR/EMR if ($time - MRD_chk < tMRD) begin $display ("At time %t ERROR: tMRD violation during Load Mode Register", $time); end // Auto Refresh to LMR/EMR if ($time - RFC_chk < tRFC) begin $display ("At time %t ERROR: tRFC violation during Load Mode Register", $time); end // Precharge to LMR/EMR if (Pc_b0 === 1'b0 || Pc_b1 === 1'b0 || Pc_b2 === 1'b0 || Pc_b3 === 1'b0) begin $display ("At time %t ERROR: all banks must be Precharged before Load Mode Register", $time); end else begin // Register Mode Mode_reg = Addr; // DLL Reset if (DLL_enable === 1'b1 && Addr [8] === 1'b1) begin DLL_reset = 1'b1; DLL_done = 1'b0; DLL_count = 0; end else if (DLL_enable === 1'b1 && DLL_reset === 1'b0 && Addr [8] === 1'b0) begin $display ("At time %t ERROR: DLL is ENABLE: DLL RESET is required.", $time); end else if (DLL_enable === 1'b0 && Addr [8] === 1'b1) begin $display ("At time %t ERROR: DLL is DISABLE: DLL RESET will be ignored.", $time); end // Burst Length case (Addr [2 : 0]) 3'b001 : $display ("At time %t LMR : Burst Length = 2", $time); 3'b010 : $display ("At time %t LMR : Burst Length = 4", $time); 3'b011 : $display ("At time %t LMR : Burst Length = 8", $time); default : $display ("At time %t ERROR: Burst Length not supported", $time); endcase // CAS Latency case (Addr [6 : 4]) 3'b010 : $display ("At time %t LMR : CAS Latency = 2", $time); 3'b110 : $display ("At time %t LMR : CAS Latency = 2.5", $time); 3'b011 : $display ("At time %t LMR : CAS Latency = 3", $time); default : $display ("At time %t ERROR: CAS Latency not supported", $time); endcase // Record current tMRD time MRD_chk = $time; end end // Activate Block if (Active_enable === 1'b1) begin if (!(power_up_done)) begin $display ("%m: at time %t ERROR: Power Up and Initialization Sequence not completed before executing Activate command", $time); end // Display DEBUG Message if (DEBUG) begin $display ("At time %t ACT : Bank = %h, Row = %h", $time, Ba, Addr); end // Activate to Activate (different bank) if ((Prev_bank != Ba) && ($time - RRD_chk < tRRD)) begin $display ("At time %t ERROR: tRRD violation during Activate bank %h", $time, Ba); end // LMR/EMR to Activate if ($time - MRD_chk < tMRD) begin $display ("At time %t ERROR: tMRD violation during Activate bank %h", $time, Ba); end // AutoRefresh to Activate if ($time - RFC_chk < tRFC) begin $display ("At time %t ERROR: tRFC violation during Activate bank %h", $time, Ba); end // Precharge to Activate if ((Ba === 2'b00 && Pc_b0 === 1'b0) || (Ba === 2'b01 && Pc_b1 === 1'b0) || (Ba === 2'b10 && Pc_b2 === 1'b0) || (Ba === 2'b11 && Pc_b3 === 1'b0)) begin $display ("At time %t ERROR: Bank = %h is already activated - Command Ignored", $time, Ba); if (!no_halt) $stop (0); end else begin // Activate Bank 0 if (Ba === 2'b00 && Pc_b0 === 1'b1) begin // Activate to Activate (same bank) if ($time - RC_chk0 < tRC) begin $display ("At time %t ERROR: tRC violation during Activate bank %h", $time, Ba); end // Precharge to Activate if ($time - RP_chk0 < tRP) begin $display ("At time %t ERROR: tRP violation during Activate bank %h", $time, Ba); end // Record variables for checking violation Act_b0 = 1'b1; Pc_b0 = 1'b0; B0_row_addr = Addr; RC_chk0 = $time; RCD_chk0 = $time; RAS_chk0 = $time; RAP_chk0 = $time; end // Activate Bank 1 if (Ba === 2'b01 && Pc_b1 === 1'b1) begin // Activate to Activate (same bank) if ($time - RC_chk1 < tRC) begin $display ("At time %t ERROR: tRC violation during Activate bank %h", $time, Ba); end // Precharge to Activate if ($time - RP_chk1 < tRP) begin $display ("At time %t ERROR: tRP violation during Activate bank %h", $time, Ba); end // Record variables for checking violation Act_b1 = 1'b1; Pc_b1 = 1'b0; B1_row_addr = Addr; RC_chk1 = $time; RCD_chk1 = $time; RAS_chk1 = $time; RAP_chk1 = $time; end // Activate Bank 2 if (Ba === 2'b10 && Pc_b2 === 1'b1) begin // Activate to Activate (same bank) if ($time - RC_chk2 < tRC) begin $display ("At time %t ERROR: tRC violation during Activate bank %h", $time, Ba); end // Precharge to Activate if ($time - RP_chk2 < tRP) begin $display ("At time %t ERROR: tRP violation during Activate bank %h", $time, Ba); end // Record variables for checking violation Act_b2 = 1'b1; Pc_b2 = 1'b0; B2_row_addr = Addr; RC_chk2 = $time; RCD_chk2 = $time; RAS_chk2 = $time; RAP_chk2 = $time; end // Activate Bank 3 if (Ba === 2'b11 && Pc_b3 === 1'b1) begin // Activate to Activate (same bank) if ($time - RC_chk3 < tRC) begin $display ("At time %t ERROR: tRC violation during Activate bank %h", $time, Ba); end // Precharge to Activate if ($time - RP_chk3 < tRP) begin $display ("At time %t ERROR: tRP violation during Activate bank %h", $time, Ba); end // Record variables for checking violation Act_b3 = 1'b1; Pc_b3 = 1'b0; B3_row_addr = Addr; RC_chk3 = $time; RCD_chk3 = $time; RAS_chk3 = $time; RAP_chk3 = $time; end // Record variable for checking violation RRD_chk = $time; Prev_bank = Ba; read_precharge_truncation[Ba] = 1'b0; end end // Precharge Block - consider NOP if bank already precharged or in process of precharging if (Prech_enable === 1'b1) begin // Display DEBUG Message if (DEBUG) begin $display ("At time %t PRE : Addr[10] = %b, Bank = %b", $time, Addr[10], Ba); end // LMR/EMR to Precharge if ($time - MRD_chk < tMRD) begin $display ("At time %t ERROR: tMRD violation during Precharge", $time); end // AutoRefresh to Precharge if ($time - RFC_chk < tRFC) begin $display ("At time %t ERROR: tRFC violation during Precharge", $time); end // Precharge bank 0 if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b00)) && Act_b0 === 1'b1) begin Act_b0 = 1'b0; Pc_b0 = 1'b1; RP_chk0 = $time; // Activate to Precharge Bank if ($time - RAS_chk0 < tRAS) begin $display ("At time %t ERROR: tRAS violation during Precharge", $time); end // tWR violation check for Write if ($time - WR_chk0 < tWR) begin $display ("At time %t ERROR: tWR violation during Precharge", $time); end end // Precharge bank 1 if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b01)) && Act_b1 === 1'b1) begin Act_b1 = 1'b0; Pc_b1 = 1'b1; RP_chk1 = $time; // Activate to Precharge Bank 1 if ($time - RAS_chk1 < tRAS) begin $display ("At time %t ERROR: tRAS violation during Precharge", $time); end // tWR violation check for Write if ($time - WR_chk1 < tWR) begin $display ("At time %t ERROR: tWR violation during Precharge", $time); end end // Precharge bank 2 if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b10)) && Act_b2 === 1'b1) begin Act_b2 = 1'b0; Pc_b2 = 1'b1; RP_chk2 = $time; // Activate to Precharge Bank 2 if ($time - RAS_chk2 < tRAS) begin $display ("At time %t ERROR: tRAS violation during Precharge", $time); end // tWR violation check for Write if ($time - WR_chk2 < tWR) begin $display ("At time %t ERROR: tWR violation during Precharge", $time); end end // Precharge bank 3 if ((Addr[10] === 1'b1 || (Addr[10] === 1'b0 && Ba === 2'b11)) && Act_b3 === 1'b1) begin Act_b3 = 1'b0; Pc_b3 = 1'b1; RP_chk3 = $time; // Activate to Precharge Bank 3 if ($time - RAS_chk3 < tRAS) begin $display ("At time %t ERROR: tRAS violation during Precharge", $time); end // tWR violation check for Write if ($time - WR_chk3 < tWR) begin $display ("At time %t ERROR: tWR violation during Precharge", $time); end end // Prech_count is to make sure we have met part of the initialization sequence Prech_count = Prech_count + 1; // Pipeline for READ A10_precharge [cas_latency_x2] = Addr[10]; Bank_precharge[cas_latency_x2] = Ba; Cmnd_precharge[cas_latency_x2] = 1'b1; end // Burst terminate if (Burst_term === 1'b1) begin // Display DEBUG Message if (DEBUG) begin $display ("At time %t BST : Burst Terminate",$time); end if (Data_in_enable === 1'b1) begin // Illegal to burst terminate a Write $display ("At time %t ERROR: It's illegal to burst terminate a Write", $time); if (!no_halt) $stop (0); end else if (Read_precharge[0] === 1'b1 || Read_precharge[1] === 1'b1 || // Illegal to burst terminate a Read with Auto Precharge Read_precharge[2] === 1'b1 || Read_precharge[3] === 1'b1) begin $display ("At time %t ERROR: It's illegal to burst terminate a Read with Auto Precharge", $time); if (!no_halt) $stop (0); end else begin // Burst Terminate Command Pipeline for Read Cmnd_bst[cas_latency_x2] = 1'b1; end end // Read Command if (Read_enable === 1'b1) begin if (!(power_up_done)) begin $display ("%m: at time %t ERROR: Power Up and Initialization Sequence not completed before executing Read Command", $time); end // Check for DLL reset before Read if (DLL_reset === 1 && DLL_done === 0) begin $display ("%m: at time %t ERROR: You need to wait 200 tCK after DLL Reset Enable to Read, Not %0d clocks.", $time, DLL_count); end // Display DEBUG Message if (DEBUG) begin $display ("At time %t READ : Bank = %h, Col = %h", $time, Ba, {Addr [11], Addr [9 : 0]}); end // Terminate a Write if (Data_in_enable === 1'b1) begin Data_in_enable = 1'b0; end // Activate to Read without Auto Precharge if ((Addr [10] === 1'b0 && Ba === 2'b00 && $time - RCD_chk0 < tRCD) || (Addr [10] === 1'b0 && Ba === 2'b01 && $time - RCD_chk1 < tRCD) || (Addr [10] === 1'b0 && Ba === 2'b10 && $time - RCD_chk2 < tRCD) || (Addr [10] === 1'b0 && Ba === 2'b11 && $time - RCD_chk3 < tRCD)) begin $display("At time %t ERROR: tRCD violation during Read", $time); end // Activate to Read with Auto Precharge if ((Addr [10] === 1'b1 && Ba === 2'b00 && $time - RAP_chk0 < tRAP) || (Addr [10] === 1'b1 && Ba === 2'b01 && $time - RAP_chk1 < tRAP) || (Addr [10] === 1'b1 && Ba === 2'b10 && $time - RAP_chk2 < tRAP) || (Addr [10] === 1'b1 && Ba === 2'b11 && $time - RAP_chk3 < tRAP)) begin $display ("At time %t ERROR: tRAP violation during Read", $time); end // Interrupt a Read with Auto Precharge (same bank only) if (Read_precharge [Ba] === 1'b1) begin $display ("At time %t ERROR: It's illegal to interrupt a Read with Auto Precharge", $time); if (!no_halt) $stop (0); // Cancel Auto Precharge if (Addr[10] === 1'b0) begin Read_precharge [Ba]= 1'b0; end end // Activate to Read if ((Ba === 2'b00 && Pc_b0 === 1'b1) || (Ba === 2'b01 && Pc_b1 === 1'b1) || (Ba === 2'b10 && Pc_b2 === 1'b1) || (Ba === 2'b11 && Pc_b3 === 1'b1)) begin $display("At time %t ERROR: Bank is not Activated for Read", $time); if (!no_halt) $stop (0); end else begin // CAS Latency pipeline Read_cmnd[cas_latency_x2] = 1'b1; Read_bank[cas_latency_x2] = Ba; Read_cols[cas_latency_x2] = {Addr [ADDR_BITS - 1 : 11], Addr [9 : 0]}; // Auto Precharge if (Addr[10] === 1'b1) begin Read_precharge [Ba]= 1'b1; Count_precharge [Ba]= 0; end end end // Write Command if (Write_enable === 1'b1) begin if (!(power_up_done)) begin $display ("%m: at time %t ERROR: Power Up and Initialization Sequence not completed before executing Write Command", $time); if (!no_halt) $stop (0); end // display DEBUG message if (DEBUG) begin $display ("At time %t WRITE: Bank = %h, Col = %h", $time, Ba, {Addr [ADDR_BITS - 1 : 11], Addr [9 : 0]}); end // Activate to Write if ((Ba === 2'b00 && $time - RCD_chk0 < tRCD) || (Ba === 2'b01 && $time - RCD_chk1 < tRCD) || (Ba === 2'b10 && $time - RCD_chk2 < tRCD) || (Ba === 2'b11 && $time - RCD_chk3 < tRCD)) begin $display("At time %t ERROR: tRCD violation during Write to Bank %h", $time, Ba); end // Read to Write if (Read_cmnd[0] || Read_cmnd[1] || Read_cmnd[2] || Read_cmnd[3] || Read_cmnd[4] || Read_cmnd[5] || Read_cmnd[6] || (Burst_counter < burst_length)) begin if (Data_out_enable || read_precharge_truncation[Ba]) begin $display("At time %t ERROR: Read to Write violation", $time); end end // Interrupt a Write with Auto Precharge (same bank only) if (Write_precharge [Ba] === 1'b1) begin $display ("At time %t ERROR: it's illegal to interrupt a Write with Auto Precharge", $time); if (!no_halt) $stop (0); // Cancel Auto Precharge if (Addr[10] === 1'b0) begin Write_precharge [Ba]= 1'b0; end end // Activate to Write if ((Ba === 2'b00 && Pc_b0 === 1'b1) || (Ba === 2'b01 && Pc_b1 === 1'b1) || (Ba === 2'b10 && Pc_b2 === 1'b1) || (Ba === 2'b11 && Pc_b3 === 1'b1)) begin $display("At time %t ERROR: Bank is not Activated for Write", $time); if (!no_halt) $stop (0); end else begin // Pipeline for Write Write_cmnd [3] = 1'b1; Write_bank [3] = Ba; Write_cols [3] = {Addr [ADDR_BITS - 1 : 11], Addr [9 : 0]}; // Auto Precharge if (Addr[10] === 1'b1) begin Write_precharge [Ba]= 1'b1; Count_precharge [Ba]= 0; end end end end endtask task check_neg_dqs; begin if (Write_cmnd[2] || Write_cmnd[1] || Data_in_enable) begin for (i=0; i<DQS_BITS; i=i+1) begin if (expect_neg_dqs[i]) begin $display ("At time %t ERROR: Negative DQS[%1d] transition required.", $time, i); end expect_neg_dqs[i] = 1'b1; end end else begin expect_pos_dqs = 0; expect_neg_dqs = 0; end end endtask task check_pos_dqs; begin if (Write_cmnd[2] || Write_cmnd[1] || Data_in_enable) begin for (i=0; i<DQS_BITS; i=i+1) begin if (expect_pos_dqs[i]) begin $display ("At time %t ERROR: Positive DQS[%1d] transition required.", $time, i); end expect_pos_dqs[i] = 1'b1; end end else begin expect_pos_dqs = 0; expect_neg_dqs = 0; end end endtask // Main Logic always @ (posedge Sys_clk) begin Manual_Precharge_Pipeline; Burst_Terminate_Pipeline; Dq_Dqs_Drivers; Write_FIFO_DM_Mask_Logic; Burst_Decode; check_neg_dqs; Auto_Precharge_Calculation; DLL_Counter; Control_Logic; end always @ (negedge Sys_clk) begin Manual_Precharge_Pipeline; Burst_Terminate_Pipeline; Dq_Dqs_Drivers; Write_FIFO_DM_Mask_Logic; Burst_Decode; check_pos_dqs; end // Dqs Receiver always @ (posedge Dqs_in[0]) begin // Latch data at posedge Dqs dq_rise[7 : 0] = Dq_in[7 : 0]; dm_rise[0] = Dm_in[0]; expect_pos_dqs[0] = 0; end always @ (posedge Dqs_in[1]) begin // Latch data at posedge Dqs dq_rise[15 : 8] = Dq_in[15 : 8]; dm_rise[1] = Dm_in [1]; expect_pos_dqs[1] = 0; end always @ (posedge Dqs_in[2]) begin // Latch data at posedge Dqs dq_rise[23 : 16] = Dq_in[23 : 16]; dm_rise[2] = Dm_in [2]; expect_pos_dqs[2] = 0; end always @ (posedge Dqs_in[3]) begin // Latch data at posedge Dqs dq_rise[31 : 24] = Dq_in[31 : 24]; dm_rise[3] = Dm_in [3]; expect_pos_dqs[3] = 0; end always @ (negedge Dqs_in[0]) begin // Latch data at negedge Dqs dq_fall[7 : 0] = Dq_in[7 : 0]; dm_fall[0] = Dm_in[0]; dm_pair[1:0] = {dm_rise[0], dm_fall[0]}; expect_neg_dqs[0] = 0; end always @ (negedge Dqs_in[1]) begin // Latch data at negedge Dqs dq_fall[15: 8] = Dq_in[15 : 8]; dm_fall[1] = Dm_in[1]; dm_pair[3:2] = {dm_rise[1], dm_fall[1]}; expect_neg_dqs[1] = 0; end always @ (negedge Dqs_in[2]) begin // Latch data at negedge Dqs dq_fall[23: 16] = Dq_in[23 : 16]; dm_fall[2] = Dm_in[2]; dm_pair[5:4] = {dm_rise[2], dm_fall[2]}; expect_neg_dqs[2] = 0; end always @ (negedge Dqs_in[3]) begin // Latch data at negedge Dqs dq_fall[31: 24] = Dq_in[31 : 24]; dm_fall[3] = Dm_in[3]; dm_pair[7:6] = {dm_rise[3], dm_fall[3]}; expect_neg_dqs[3] = 0; end specify // SYMBOL UNITS DESCRIPTION // ------ ----- ----------- `ifdef sg5B // specparams for -5B (CL = 3) specparam tDSS = 1.0; // tDSS ns DQS falling edge to CLK rising (setup time) = 0.2*tCK specparam tDSH = 1.0; // tDSH ns DQS falling edge from CLK rising (hold time) = 0.2*tCK specparam tIH = 0.750; // tIH ns Input Hold Time specparam tIS = 0.750; // tIS ns Input Setup Time specparam tDQSH = 1.75; // tDQSH ns DQS input High Pulse Width = 0.35*tCK specparam tDQSL = 1.75; // tDQSL ns DQS input Low Pulse Width = 0.35*tCK `else `ifdef sg6 // specparams for -6 (CL = 2.5) specparam tDSS = 1.2; // tDSS ns DQS falling edge to CLK rising (setup time) = 0.2*tCK specparam tDSH = 1.2; // tDSH ns DQS falling edge from CLK rising (hold time) = 0.2*tCK specparam tIH = 0.750; // tIH ns Input Hold Time specparam tIS = 0.750; // tIS ns Input Setup Time specparam tDQSH = 2.1; // tDQSH ns DQS input High Pulse Width = 0.35*tCK specparam tDQSL = 2.1; // tDQSL ns DQS input Low Pulse Width = 0.35*tCK `else `ifdef sg6T // specparams for -6 (CL = 2.5) specparam tDSS = 1.2; // tDSS ns DQS falling edge to CLK rising (setup time) = 0.2*tCK specparam tDSH = 1.2; // tDSH ns DQS falling edge from CLK rising (hold time) = 0.2*tCK specparam tIH = 0.750; // tIH ns Input Hold Time specparam tIS = 0.750; // tIS ns Input Setup Time specparam tDQSH = 2.1; // tDQSH ns DQS input High Pulse Width = 0.35*tCK specparam tDQSL = 2.1; // tDQSL ns DQS input Low Pulse Width = 0.35*tCK `else `ifdef sg75 // specparams for -75E (CL = 2) specparam tDSS = 1.5; // tDSS ns DQS falling edge to CLK rising (setup time) = 0.2*tCK specparam tDSH = 1.5; // tDSH ns DQS falling edge from CLK rising (hold time) = 0.2*tCK specparam tIH = 0.900; // tIH ns Input Hold Time specparam tIS = 0.900; // tIS ns Input Setup Time specparam tDQSH = 2.625; // tDQSH ns DQS input High Pulse Width = 0.35*tCK specparam tDQSL = 2.625; // tDQSL ns DQS input Low Pulse Width = 0.35*tCK `else `ifdef sg75E // specparams for -75E (CL = 2) specparam tDSS = 1.5; // tDSS ns DQS falling edge to CLK rising (setup time) = 0.2*tCK specparam tDSH = 1.5; // tDSH ns DQS falling edge from CLK rising (hold time) = 0.2*tCK specparam tIH = 0.900; // tIH ns Input Hold Time specparam tIS = 0.900; // tIS ns Input Setup Time specparam tDQSH = 2.625; // tDQSH ns DQS input High Pulse Width = 0.35*tCK specparam tDQSL = 2.625; // tDQSL ns DQS input Low Pulse Width = 0.35*tCK `else `define sg75Z // specparams for -75Z (CL = 2) specparam tDSS = 1.5; // tDSS ns DQS falling edge to CLK rising (setup time) = 0.2*tCK specparam tDSH = 1.5; // tDSH ns DQS falling edge from CLK rising (hold time) = 0.2*tCK specparam tIH = 0.900; // tIH ns Input Hold Time specparam tIS = 0.900; // tIS ns Input Setup Time specparam tDQSH = 2.625; // tDQSH ns DQS input High Pulse Width = 0.35*tCK specparam tDQSL = 2.625; // tDQSL ns DQS input Low Pulse Width = 0.35*tCK `endif `endif `endif `endif `endif $width (posedge Dqs_in[0] &&& wdqs_valid, tDQSH); $width (posedge Dqs_in[1] &&& wdqs_valid, tDQSH); $width (negedge Dqs_in[0] &&& wdqs_valid, tDQSL); $width (negedge Dqs_in[1] &&& wdqs_valid, tDQSL); $setuphold(posedge Clk, Cke, tIS, tIH); $setuphold(posedge Clk, Cs_n, tIS, tIH); $setuphold(posedge Clk, Cas_n, tIS, tIH); $setuphold(posedge Clk, Ras_n, tIS, tIH); $setuphold(posedge Clk, We_n, tIS, tIH); $setuphold(posedge Clk, Addr, tIS, tIH); $setuphold(posedge Clk, Ba, tIS, tIH); $setuphold(posedge Clk, negedge Dqs &&& wdqs_valid, tDSS, tDSH); endspecify endmodule