URL
https://opencores.org/ocsvn/sincos/sincos/trunk
Subversion Repositories sincos
[/] [sincos/] [trunk/] [vhdl/] [arith/] [sincos/] [sincos.vhd] - Rev 43
Compare with Previous | Blame | View Log
-- portable sine table without silicon vendor macros. -- (c) 2005... Gerhard Hoffmann, Ulm, Germany opencores@hoffmann-hochfrequenz.de -- -- V1.0 2010-nov-22 published under BSD license -- V1.1 2011-feb-08 U_rom_dly_c cosine latency was off by 1. -- V1.2 2001-apr-04 corrected latency of block rom -- -- In Crawford, Frequency Synthesizer Handbook is the Sunderland technique -- to compress the table size up to 1/12th counted in storage bits by decomposing to 2 smaller ROMs. -- This has not yet been expoited here. 1/50 should be possible, too. -- -- I'm more interested in low latency because latency introduces an unwelcome -- dead time in wideband PLLs / phase demodulators. That also rules out the CORDIC for me. -- As long as it fits into a reasonable amount of block rams that's ok. -- -- TODO: BCD version, so we can do a DDS that delivers EXACTLY 10 MHz out for 100 MHz in. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.math_real.all; entity sintab is generic ( pipestages: integer range 0 to 10 ); port ( clk: in std_logic; ce: in std_logic := '1'; rst: in std_logic := '0'; theta: in unsigned; sine: out signed ); end entity sintab; architecture rtl of sintab is -- pipeline delay distribution. -- address and output stage are just conditional two's complementers/subtractors -- The ROM will consume most of the pipeline delay. Xilinx block rams won't do -- without some latency. During synthesis, the register balancer will shift -- pipe stages anyway to its taste, but at least it gets a good start. type delaytable is array(0 to 10) of integer; constant in_pipe: delaytable := ( 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1); constant adr_pipe: delaytable := ( 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3); constant rom_pipe: delaytable := ( 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4); constant out_pipe: delaytable := ( 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2); -- total delay 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 constant verbose: boolean := false; signal piped_theta: unsigned(theta'range); -- pipelined input signal rom_address: unsigned(theta'high-2 downto 0); signal piped_rom_address: unsigned(theta'high-2 downto 0); signal piped_abs_sin: unsigned(sine'high-1 downto 0); signal piped_invert: std_logic; signal sig_sin: signed(sine'range); ---------------------------------------------------------------------------------------------------- -- -- The sine lookup table and how it is initialized. -- -- -- the sine lookup table is unsigned because we store one quarter wave only. type sintab is array (0 to (2**(theta'length-2)) -1) of unsigned(sine'length-2 downto 0); function sine_at_middle_of_bin( bin: integer; rom_words: integer) return real is variable x: real; begin x := (real(bin) + 0.5) * MATH_PI / 2.0 / real(rom_words); return sin(x); end; function init_sin(verbose: boolean; rom_words: integer; bits_per_uword: integer) return sintab is variable s: sintab; variable y: real; constant scalefactor: real := real((2 ** bits_per_uword)-1); begin if verbose then report "initializing sine table: rom_words = " & integer'image(rom_words) & " rom bits per unsigned word = " & integer'image(bits_per_uword) & " scalefactor = " & real'image(scalefactor); end if; for i in 0 to rom_words-1 loop y := sine_at_middle_of_bin(i, rom_words); s(i) := to_unsigned(integer( round(y * scalefactor )), bits_per_uword); if verbose then report "i = " & integer'image(i) & " exact sin y = " & real'image(y) & " exact scaled y = " & real'image(y*scalefactor) & " rounded int s(i) = " & integer'image( to_integer(s(i))) & " error = " & real'image(y*scalefactor - real(to_integer(s(i)))) ; end if; end loop; return s; end function init_sin; -- The 'constant' is important here. It tells the synthesizer that -- all the computations can be done at compile time. constant sinrom: sintab := init_sin(verbose, 2 ** (theta'length-2), sine'length-1); ---------------------------------------------------------------------------------------------------- -- -- convert phase input to ROM address. -- -- theta has an address range from 0 to a little less than 2 Pi. (full circle) -- "a little less than 2 pi" is represented as all ones. -- The look up table goes only from 0 to a little less than 1/2 Pi. (quarter circle) -- The two highest bits of theta determine only the quadrant -- and are implemented by address mirroring and sign change. -- address mirroring hi bits sine cosine -- 1st quarter wave 00 no yes -- 2nd quarter wave 01 yes no -- 3rd quarter wave 10 no yes -- 4th quarter wave 11 yes no function reduce_sin_address (theta: unsigned) return unsigned is variable quarterwave_address: unsigned(theta'high-2 downto 0); variable mirrored: boolean; variable forward_address: unsigned(theta'high-2 downto 0); variable backward_address: unsigned(theta'high-2 downto 0); begin -- the highest bit makes no difference on the abs. value of the sine -- it just negates the value if set. This is done on the output side -- after the ROM. mirrored := ((theta(theta'high) = '0') and (theta(theta'high-1) = '1')) -- 2nd quadr. or ((theta(theta'high) = '1') and (theta(theta'high-1) = '1')); -- 4th quadr. forward_address := theta(theta'high-2 downto 0); backward_address := unsigned(-1 -signed( theta(theta'high-2 downto 0))); if mirrored then quarterwave_address := backward_address; else quarterwave_address := forward_address; end if; if verbose then report "theta = " & integer'image(to_integer(theta)) & " forward: " & integer'image(to_integer(forward_address)) & " backward: " & integer'image(to_integer(backward_address)) & " Quarterwave address = " & integer'image(to_integer(quarterwave_address)) & " mirrored: " & boolean'image(mirrored); end if; return quarterwave_address; end reduce_sin_address; begin -- input delay stage u_adr: entity work.unsigned_pipestage generic map ( n_stages => in_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => theta, o => piped_theta ); ---------------------------------------------------------------------------------------------------- -- propagate the information whether we will have to invert the output u_inv: entity work.sl_pipestage generic map ( n_stages => adr_pipe(pipestages) + rom_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => std_logic(piped_theta(piped_theta'high)), -- sine is neg. for 2nd half of cycle o => piped_invert -- i.e. when the highest input bit is set. ); ---------------------------------------------------------------------------------------------------- -- -- address folding with potential pipe stage -- rom_address <= reduce_sin_address(piped_theta); u_pip_adr: entity work.unsigned_pipestage generic map ( n_stages => adr_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => rom_address, o => piped_rom_address ); -------------------------------------------------------------------------------- -- -- ROM access dist_rom: if rom_pipe(pipestages) = 0 generate -- a distributed ROM if no latency is allowed begin piped_abs_sin <= sinrom(to_integer(piped_rom_address)); end generate; block_rom: if rom_pipe(pipestages) > 0 generate signal abs_sin: unsigned(sine'high-1 downto 0); begin -- Xilinx XST 12.3 needs a clocked process to infer -- BlockRam/ROM. It does not see that it could generate block ROM -- if it propagated a pipestage. u_rom: process(clk) is begin if rising_edge(clk) then abs_sin <= sinrom(to_integer(piped_rom_address)); end if; end process; -- additional rom pipeline delay if needed u_rom_dly: entity work.unsigned_pipestage generic map ( n_stages => rom_pipe(pipestages)-1 ) Port map ( clk => clk, ce => ce, rst => rst, i => abs_sin, o => piped_abs_sin ); end generate; -------------------------------------------------------------------------------- -- -- conditional output inversion -- table entries are unsigned. Make them one bit larger -- so that we have a home for the sign bit. sig_sin <= -signed(resize(piped_abs_sin, sine'length)) when piped_invert = '1' else signed(resize(piped_abs_sin, sine'length)); u_2: entity work.signed_pipestage generic map ( n_stages => out_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => sig_sin, o => sine ); END ARCHITECTURE rtl; ------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------- -- same game again for sine and cosine at the same time. -- Does not take more ROM bits, the ROM is just split in two -- for the first and second part of the address range. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.math_real.all; entity sincostab is generic ( pipestages: integer range 0 to 10 ); port ( clk: in std_logic; ce: in std_logic := '1'; rst: in std_logic := '0'; theta: in unsigned; sine: out signed; cosine: out signed ); end entity sincostab; architecture rtl of sincostab is type delaytable is array(0 to 10) of integer; constant in_pipe: delaytable := ( 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1); constant adr_pipe: delaytable := ( 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3); constant rom_pipe: delaytable := ( 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4); constant out_pipe: delaytable := ( 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2); -- total delay 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 constant verbose: boolean := true; signal piped_theta: unsigned(theta'range); -- pipelined input signal ras: unsigned(theta'high-2 downto 0); -- rom address for sine signal rac: unsigned(theta'high-2 downto 0); -- rom address for cos signal pras: unsigned(theta'high-2 downto 0); -- pipelined rom addresses signal prac: unsigned(theta'high-2 downto 0); signal piped_abs_sin: unsigned(sine'high-1 downto 0); signal piped_abs_cos: unsigned(cosine'high-1 downto 0); signal piped_invert_the_sin: std_logic; signal sig_sin: signed(sine'range); signal invert_the_cos: std_logic; signal piped_invert_the_cos: std_logic; signal sig_cos: signed(cosine'range); ---------------------------------------------------------------------------------------------------- -- -- The sine lookup table and how it is initialized. -- -- -- the sine lookup table is unsigned because we store one quarter wave only. type sintab is array (0 to (2**(theta'length-3)) -1) of unsigned(sine'length-2 downto 0); function sine_at_middle_of_bin( bin: integer; rom_words: integer) return real is variable x: real; begin x := (real(bin) + 0.5) * MATH_PI / 2.0 / real(rom_words); return sin(x); end; -- initialize sine table for 0 to 44 degrees function init_sin1(verbose: boolean; rom_words: integer; bits_per_uword: integer) return sintab is variable s: sintab; variable y: real; constant scalefactor: real := real((2 ** bits_per_uword)-1); begin if verbose then report "initializing sine table: rom_words = " & integer'image(rom_words) & " rom bits per unsigned word = " & integer'image(bits_per_uword) & " scalefactor = " & real'image(scalefactor); end if; for i in 0 to (rom_words/2)-1 loop y := sine_at_middle_of_bin(i, rom_words); s(i) := to_unsigned(integer( round(y * scalefactor )), bits_per_uword); if verbose then report "i = " & integer'image(i) & " exact sin y = " & real'image(y) & " exact scaled y = " & real'image(y*scalefactor) & " rounded int s(i) = " & integer'image( to_integer(s(i))) & " error = " & real'image(y*scalefactor - real(to_integer(s(i)))) ; end if; end loop; return s; end function init_sin1; -- initialize sine table for 45 to 89 degrees function init_sin2(verbose: boolean; rom_words: integer; bits_per_uword: integer) return sintab is variable s: sintab; variable y: real; constant scalefactor: real := real((2 ** bits_per_uword)-1); begin if verbose then report "initializing sine table: rom_words = " & integer'image(rom_words) & " rom bits per unsigned word = " & integer'image(bits_per_uword) & " scalefactor = " & real'image(scalefactor); end if; for i in rom_words/2 to rom_words-1 loop y := sine_at_middle_of_bin(i, rom_words); s(i - (rom_words/2)) := to_unsigned(integer( round(y * scalefactor )), bits_per_uword); if verbose then report "i = " & integer'image(i) & " exact sin y = " & real'image(y) & " exact scaled y = " & real'image(y*scalefactor) & " rounded int s(i) = " & integer'image( to_integer(s(i-rom_words/2))) & " error = " & real'image(y*scalefactor - real(to_integer(s(i-rom_words/2)))) ; end if; end loop; return s; end function init_sin2; -- The 'constant' is important here. It tells the synthesizer that -- all the computations can be done at compile time. constant rom1: sintab := init_sin1(verbose, 2 ** (theta'length-2), sine'length-1); constant rom2: sintab := init_sin2(verbose, 2 ** (theta'length-2), sine'length-1); ---------------------------------------------------------------------------------------------------- -- -- convert phase input to ROM address. -- -- theta has an address range from 0 to a little less than 2 Pi. (full circle) -- "a little less than 2 pi" is represented as all ones. -- The look up table goes only from 0 to a little less than 1/2 Pi. (quarter circle) -- The two highest bits of theta determine only the quadrant -- and are implemented by address mirroring and sign change. -- address mirroring hi bits sine cosine -- 1st quarter wave 00 no yes -- 2nd quarter wave 01 yes no -- 3rd quarter wave 10 no yes -- 4th quarter wave 11 yes no function reduce_sin_address (theta: unsigned) return unsigned is variable quarterwave_address: unsigned(theta'high-2 downto 0); variable mirrored: boolean; variable forward_address: unsigned(theta'high-2 downto 0); variable backward_address: unsigned(theta'high-2 downto 0); constant verbose: boolean := false; begin -- the highest bit makes no difference on the abs. value of the sine -- it just negates the value if set. This is done on the output side -- after the ROM. mirrored := ((theta(theta'high) = '0') and (theta(theta'high-1) = '1')) -- 2nd quadr. or ((theta(theta'high) = '1') and (theta(theta'high-1) = '1')); -- 4th quadr. forward_address := theta(theta'high-2 downto 0); backward_address := unsigned(-1 -signed( theta(theta'high-2 downto 0))); if mirrored then quarterwave_address := backward_address; else quarterwave_address := forward_address; end if; if verbose then report "sin theta = " & integer'image(to_integer(theta)) & " forward: " & integer'image(to_integer(forward_address)) & " backward: " & integer'image(to_integer(backward_address)) & " Quarterwave address = " & integer'image(to_integer(quarterwave_address)) & " mirrored: " & boolean'image(mirrored); end if; return quarterwave_address; end reduce_sin_address; function reduce_cos_address (theta: unsigned) return unsigned is variable quarterwave_address: unsigned(theta'high-2 downto 0); variable mirrored: boolean; variable forward_address: unsigned(theta'high-2 downto 0); variable backward_address: unsigned(theta'high-2 downto 0); constant verbose: boolean := false; begin mirrored := ((theta(theta'high) = '0') and (theta(theta'high-1) = '0')) -- 1st quadr. or ((theta(theta'high) = '1') and (theta(theta'high-1) = '0')); -- 3th quadr. forward_address := theta(theta'high-2 downto 0); backward_address := unsigned(-1 -signed( theta(theta'high-2 downto 0))); if mirrored then quarterwave_address := backward_address; else quarterwave_address := forward_address; end if; if verbose then report "cos theta = " & integer'image(to_integer(theta)) & " forward: " & integer'image(to_integer(forward_address)) & " backward: " & integer'image(to_integer(backward_address)) & " Quarterwave address = " & integer'image(to_integer(quarterwave_address)) & " mirrored: " & boolean'image(mirrored); end if; return quarterwave_address; end reduce_cos_address; ---------------------------------------------------------------------------------------------------- BEGIN -- this assertion might be relaxed, but I see no justification -- for the extra testing. assert sine'length = cosine'length report "sincostab: sine and cosine length do not match: " & integer'image(sine'length) & " vs. " & integer'image(cosine'length) severity error; ---------------------------------------------------------------------------------------------------- -- -- input delay stage u_adr: entity work.unsigned_pipestage generic map ( n_stages => in_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => theta, o => piped_theta ); ---------------------------------------------------------------------------------------------------- -- propagate the information whether we will have to invert the output u_invs: entity work.sl_pipestage generic map ( n_stages => adr_pipe(pipestages) + rom_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => std_logic(piped_theta(piped_theta'high)), -- sine is neg. for 2nd half of cycle o => piped_invert_the_sin ); invert_the_cos <= std_logic(piped_theta(piped_theta'high) xor piped_theta(piped_theta'high-1)); u_invc: entity work.sl_pipestage generic map ( n_stages => adr_pipe(pipestages) + rom_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => invert_the_cos, o => piped_invert_the_cos ); ---------------------------------------------------------------------------------------------------- -- -- address folding with potential pipe stage -- ras <= reduce_sin_address(piped_theta); rac <= reduce_cos_address(piped_theta); u_pip_adrs: entity work.unsigned_pipestage generic map ( n_stages => adr_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => ras, o => pras ); u_pip_adrc: entity work.unsigned_pipestage generic map ( n_stages => adr_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => rac, o => prac ); -------------------------------------------------------------------------------- -- -- ROM access -- distrib_rom: if rom_pipe(pipestages) = 0 generate -- a distributed ROM if no latency is allowed begin piped_abs_sin <= rom1(to_integer(pras(pras'high-1 downto 0))) when pras(pras'high) = '0' else rom2(to_integer(pras(pras'high-1 downto 0))); piped_abs_cos <= rom1(to_integer(prac(prac'high-1 downto 0))) when prac(prac'high) = '0' else rom2(to_integer(prac(prac'high-1 downto 0))); end generate; block_rom: if rom_pipe(pipestages) > 0 generate signal rom_out1: unsigned(sine'high-1 downto 0); signal rom_out2: unsigned(sine'high-1 downto 0); signal abs_sin: unsigned(sine'high-1 downto 0); -- abs of sine at mux output signal abs_cos: unsigned(sine'high-1 downto 0); begin -- Xilinx XST 12.3 needs a clocked process to infer BlockRam/ROM. -- It does not see that it could generate block ROM if it propagated a pipestage. u_rom: process(clk) is begin if rising_edge(clk) then rom_out1 <= rom1(to_integer(pras(pras'high-1 downto 0))); rom_out2 <= rom2(to_integer(prac(prac'high-1 downto 0))); end if; end process; abs_sin <= rom_out1 when pras(pras'high) = '0' else rom_out2; abs_cos <= rom_out1 when prac(prac'high) = '0' else rom_out2; -- more rom pipeline stages when needed u_rom_dly_s: entity work.unsigned_pipestage generic map ( n_stages => rom_pipe(pipestages)-1 -- 0 is allowed. ) Port map ( clk => clk, ce => ce, rst => rst, i => abs_sin, o => piped_abs_sin ); u_rom_dly_c: entity work.unsigned_pipestage generic map ( n_stages => rom_pipe(pipestages)-1 ) Port map ( clk => clk, ce => ce, rst => rst, i => abs_cos, o => piped_abs_cos ); end generate; -------------------------------------------------------------------------------- -- -- conditional output inversion -- table entries are unsigned. Convert them to signed and make them one bit larger -- so that we have a home for the sign bit. sig_sin <= -signed(resize(piped_abs_sin, sine'length)) when piped_invert_the_sin = '1' else signed(resize(piped_abs_sin, sine'length)); sig_cos <= -signed(resize(piped_abs_cos, cosine'length)) when piped_invert_the_cos = '1' else signed(resize(piped_abs_cos, cosine'length)); u_os: entity work.signed_pipestage generic map ( n_stages => out_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => sig_sin, o => sine ); u_oc: entity work.signed_pipestage generic map ( n_stages => out_pipe(pipestages) ) Port map ( clk => clk, ce => ce, rst => rst, i => sig_cos, o => cosine ); END ARCHITECTURE rtl; ------------------------------------------------------------------------------- -- That could be driven further to 4 or even 8 phases, so that we could support -- downconverters for 4 and 8 lane GigaSample ADCs with polyphase filters to -- combine the lanes, without spending more on the ROM. It remains to be seen -- if the resulting routing congestion is worth the ROM bits conserved. -- But then, at these clock rates, the neccessary number of bits per bus shrinks -- because ADC makers have their own little problems, too ;-) -- And it has the potential drawback for very fast frequency chirps, that the -- instantaneous frequency jumps for groups of 8 samples at a time. -- (Ignore these musings if you are in math or robotics!)