URL
https://opencores.org/ocsvn/spacewire/spacewire/trunk
Subversion Repositories spacewire
[/] [spacewire/] [trunk/] [rtl/] [WB_COMI_HOCI.v] - Rev 24
Go to most recent revision | Compare with Previous | Blame | View Log
//File name=Module name=WB_COMI_HOCI 2005-3-18 btltz@mail.china.com btltz from CASIC,China //Description: SpaceWire WISHBONE interface for communication mem(COMI) and Host controller(HOCI) //Spec : Use Little Endian internal //Abbreviations: WB --- WISHBONE (SoC interconnection architecture) // COMI --- COmmunication Memory Interface // HOCI --- HOst Control Interface //Origin: WISHBONE Specification Revision B.3; SpaceWire Std - Draft-1 of ESTEC,ESA //-- TODO: //////////////////////////////////////////////////////////////////////////////////// // /*synthesis translate_off*/ `include "timescale.v" /*synthesis translate_on */ `define reset 1 // WISHBONE Style reset module WB_COMI_HOCI #(parameter CM_AW=16,CM_DW=32, H_DW=32,H_AW=5, // width==3 to select max 16 registers(include 2*3 transceiver FIFO) IOBUF_DW=9) ( // COMI interface(WISHBONE MASTER interface) to a "communication memory",a dpRAM output [CM_AW-1:0] CM_ADR_o, output [CM_DW-1:0] CM_DAT_o, //because some FPGA and ASIC devices do not support bi-directional signals so have not use "inout" output [3:0] CM_SEL_o, output CM_WE_o, //output CM_STB0_o, //output CM_STB1_o, output CM_STB_o, input [CM_DW-1:0] CM_DAT_i, input CM_ACK_i, // Pins to Support sharing a communication memory between 2 SpW interfaces. output COC_o, input COC_i, // note that memory circuit does not have a reset input. // HOCI interface(WISHBONE SLAVE interface) to host such as a uP output [H_DW-1:0] H_DAT_o, output [3:0] TGD_o, // data tag type output output reg H_ACK_o, output reg H_ERR_o, output reg H_RTY_o, input [H_AW-1:0] H_ADR_i, input [H_DW-1:0] H_DAT_i, input [3:0] H_TGD_i, // data tag type input input [3:0] H_SEL_i, input H_WE_i, input H_CYC_i, input H_STB_i, output reg H_INT_o, // TAG. interrupt request line // interface to 3 channels( CODEC + Glue Logic ) output wr_tx1buf_o, output [IOBUF_DW-1:0] tx1buf_data_o, input tx1buf_full_i, output wr_tx2buf_o, output [IOBUF_DW-1:0] tx2buf_data_o, input tx2buf_full_i, output wr_tx3buf_o, output [IOBUF_DW-1:0] tx3buf_data_o, input tx3buf_full_i, output rd_rx1buf_o, input [IOBUF_DW-1:0] rx1buf_data_i, input rx1buf_empty_i, input rx1buf_Afull_i, output rd_rx2buf_o, input [IOBUF_DW-1:0] rx2buf_data_i, input rx2buf_empty_i, input rx2buf_Afull_i, output rd_rx3buf_o, input [IOBUF_DW-1:0] rx3buf_data_i, input rx3buf_empty_i, input rx3buf_Afull_i, // global input signals input RST_i, CLK_i ); parameter DFLT_LOC_LOC = 16'h10; parameter DFLT_SPE = 40; parameter DFLT_CTR_TX = ; parameter DFLT_CTR_RX = ; parameter DFLT_WB_CTR = ; parameter DFLT_COMI_ACR = ; parameter DFLT_PKT_SIZE = 8; parameter DFLT_COMI_CH_SEL = 0; parameter ADDR_LOC_LOC = 4'h00; parameter ADDR_SPE1 = 4'h01; parameter ADDR_CTR_STA1 = 4'h02; parameter ADDR_SPE2 = 4'h03; parameter ADDR_CTR_STA2 = 4'h04; parameter ADDR_SPE3 = 4'h05; parameter ADDR_CTR_STA3 = 4'h06; parameter ADDR_WB_CTR = 4'h07; parameter ADDR_CH1T_FIFO = 4'h0A; parameter ADDR_CH1R_FIFO = 4'h0B; parameter ADDR_CH2T_FIFO = 4'h0C; parameter ADDR_CH2R_FIFO = 4'h0D; parameter ADDR_CH3T_FIFO = 4'h0E; parameter ADDR_CH3R_FIFO = 4'h0F; paremeter ADDR_CH1TXSE = 4'h11; parameter ADDR_CH1RXSE = 4'h12; parameter ADDR_CH2TXSE = 4'h13; parameter ADDR_CH2RXSE = 4'h14; parameter ADDR_CH3TXSE = 4'h15; parameter ADDR_CH3RXSE = 4'h16; parameter EOP = 9'b1_0000_0000; parameter EEP = 9'b1_0000_0001; parameter True = 1; parameter False = 0; //////////////////// // registers // `inculde "RegSpW.v" wire COMI_DIS = (COMI_ACR ==0); // disable COMI interface /////////////////////////////////////////////////////////////////////////////////////////////////////////// // WISHBONE memory interface form "COMI"( COmmunication Memory Interface ). // The mem may be a dpMEM which could be considered as "FASM":FPGA and ASIC Subset Model(asynchronous read). // reg [CM_AW-1:0] Agen_rx; // COMI receiver address generator reg [CM_AW-1:0] Agen_tx; // COMI transmitter address generator wire CM_wr_txbuf1, CM_wr_txbuf2, CM_wr_txbuf3; wire CM_rd_rxbuf1, CM_rd_rxbuf2, CM_rd_rxbuf3; /////// COMI autonomous accesses to the communication memory or read data to be transmitted ////////////// reg [1:0] gracnt_DI ; // granularity = 8 for WISHBONE 'DAT_I' reg ov_gra_DI; reg CM_STB_RD; always @(posedge CLK_i) if(CM_AB2TX_GO ==True) gracnt <= 0; else if(CM_STB_RD ==True) begin gracnt_DI <= gracnt_DI + 1; if(gracnt_DI==3) ov_gra_DI <= 1; else ov_gra_DI <= 0; end // read data to be transmitted always @(posedge CLK_i) if(reset) CM_STB_RD <= 0; else if( |CM_AB2TX_GO == 1) begin CM_AB2TX_GO <= 0; // clear first CM_RD_itl <= 1'b1; end else if( ( COMI_CH_SEL ==1 && Agen_tx ==CH1_TX_EAR || COMI_CH_SEL ==2 && Agen_tx ==CH2_TX_EAR || COMI_CH_SEL ==3 && Agen_tx ==Ch3_TX_EAR ) && CM_SEL_o[3] ==1'b1 ) CM_RD_itl <= 0; always @(posedge CLK_i) if(reset) CM_STB_RD <= 0; else if ( ( |CM_AB2TX_GO ==1 || CM_RD_itl ==1 ) && ( COMI_CH_SEL ==1 && tx1buf_full_i ==False || COMI_CH_SEL ==2 && tx2buf_full_i ==False || COMI_CH_SEL ==3 && tx3buf_full_i ==False ) ) CM_STB_RD <= 1; else CM_STB_RD <= 0; // Agen_tx always @(posedge CLK_i) if( |CM_AB2TX_GO == 1) // load 'Agen_tx' begin case(COMI_CH_SEL) // synthesis parallel_case full_case 2'b01 : Agen_tx <= CH1_TX_SAR; 2'b10 : Agen_tx <= CH2_TX_SAR; 2'b11 : Agen_tx <= CH3_TX_SAR; default : Agen_tx <= 'bx; endcase end else if( CM_STB_RD ==True // 1 clk latency after 'CM_AB2TX_GO' && ov_gra_DI ) Agen_tx <= Agen_tx + 1; assign CM_ADDR_o = Agen_tx; // address output assign CM_SEL_o = ( CM_STB_o ==1'b1 ) ? ( gracnt_DI ==0 ? 4'b0001 : ( gracnt_DI ==1 ? 4'b0010 : ( gracnt_DI ==2 ? 4'b0100 : ( gracnt_DI ==3 ? 4'b1000 : 4'hx ))) ) : 4'b'b0; // note i assume that the synthesis tool support to translate it to be parallel. Most tools do this now. assign CM_wr_txbuf1 = ( COMI_CH_SEL ==1 && CM_STB_RD ) ? 1'b1 : 1'b0; assign CM_wr_txbuf2 = ( COMI_CH_SEL ==2 && CM_STB_RD ) ? 1'b1 : 1'b0; assign CM_wr_txbuf3 = ( COMI_CH_SEL ==3 && CM_STB_RD ) ? 1'b1 : 1'b0; // write to the communication memory from RX FIFO reg [1:0] gracnt_DO; // granularity = 8 for WISHBONE 'DAT_O' reg ov_gra_DO, reg CM_STB_WR; reg CM_WE_itl; always @(posedge CLK_i) if(CM_RX2AB_GO ==True) gracnt_DO <= 0; else if(CM_STB_WR ==True) begin gracnt_DO <= gracnt_DO + 1; if(gracnt_DO==3) ov_gra_DO <= 1; else ov_gra_DO <= 0; end always @(posedge CLK_i) if(reset) begin CM_WE_itl <= 0; CM_R <= 0; end else if( |CM_AB2TX_GO == 1) begin CM_RX2AB_GO <= 0; // clear first CM_STB_WR <= 1; end else if( ( COMI_CH_SEL ==1 && Agen_rx ==CH1_RX_EAR || COMI_CH_SEL ==2 && Agen_rx ==CH2_RX_EAR || COMI_CH_SEL ==3 && Agen_rx ==Ch3_RX_EAR ) && CM_SEL_o[3] ==1'b1 ) begin CM_WE_itl <= 0; CM_STB_WR <= 0; always @(posedge CLK_i) if( |CM_RX2AB_GO == 1) // load 'Agen_tx' begin case(COMI_CH_SEL) // synthesis parallel_case full_case 2'b01 : Agen_rx <= CH1_RX_SAR; 2'b10 : Agen_rx <= CH2_RX_SAR; 2'b11 : Agen_rx <= CH3_RX_SAR; default : Agen_rx <= 'bx; endcase end else if( CM_STB_WR ==True // 1 clk latency after 'CM_AB2TX_GO' && ov_gra_DO ) Agen_rx <= Agen_rx + 1; assign CM_ADDR_o = Agen_tx; // address output assign CM_SEL_o = ( CM_STB_o ==1'b1 ) ? ( gracnt_DI ==0 ? 4'b0001 : ( gracnt_DI ==1 ? 4'b0010 : ( gracnt_DI ==2 ? 4'b0100 : ( gracnt_DI ==3 ? 4'b1000 : 4'hx ))) ) : 4'b'b0; assign CM_WE_o = CM_WE_itl; // default 'CM_WE_o' is 'read'(low level) assign CM_DAT_o = (); assign CM_STB_o = CM_STB_RD || CM_STB_WR; function [31:0] SEL_RX2CM_SRC; // From Channel ? to COMI; COMI only access FIFOs. input [1:0] COMI_CH_SEL; input [8:0] rxbuf1_data_i; input [8:0] rxbuf2_data_i; input [8:0] rxbuf3_data_i; begin case(COMI_CH_SEL) // synthesis parallel_case 2'b01 : SEL_RX2CM_SRC[31:0] = { rxbuf1_data_i[7:0], rxbuf1_data_i[7:0], rxbuf1_data_i[7:0], rxbuf1_data_i[7:0] }; 2'b10 : SEL_RX2CM_SRC[31:0] = { rxbuf2_data_i[7:0], rxbuf2_data_i[7:0], rxbuf2_data_i[7:0], rxbuf2_data_i[7:0] }; 2'b11 : SEL_RX2CM_SRC[31:0] = { rxbuf3_data_i[7:0], rxbuf3_data_i[7:0], rxbuf3_data_i[7:0], rxbuf3_data_i[7:0] }; default : SEL_RX2CM_SRC[31:0] = 32'hxxxx; end endfunction ////////////end channel sel///////// /////////////////////////////////////////////////////////////////////////////////////////////////////////// // WISHBONE Slave to form "HOCI"( HOst Control Interface ). // The host may be a uP, FPGA, etc. // /*reg [31:0] H_SLV_LATCH; // latch HOCI WISHBONE Slave DAT&TGD input always @(posedge CLK_i) if( H_CYC_i && H_WE_i && H_STB_i ) begin case(H_SEL_i) // synthesis parallel_case 4'b0001 : H_SLV_LATCH[7:0] <= H_DAT_i[7:0]; 4'b0010 : H_SLV_LATCH[15:8] <= H_DAT_i[15:8]; 4'b0100 : H_SLV_LATCH[23:16] <= H_DAT_i[23:16]; 4'b1000 : H_SLV_LATCH[31:24] <= H_DAT_i[31:24]; default : H_SLV_LATCH <= 'bx; end */ reg H_wr_txbuf1, H_wr_txbuf2, H_wr_txbuf3; reg H_rd_rxbuf1, H_rd_rxbuf2, H_rd_rxbuf3; ////////////////////// HOCI Write SpW registers ///////////////////////////////// always @(posedge CLK_i) begin if(RST_i==`reset) begin LOC_LOC <= DFLT_LOC_LOC; SPE_CTL1 <= DFLT_SPE ; SPE_CTL2 <= DFLT_SPE ; SPE_CTL3 <= DFLT_SPE ; CTL_TX1 <= DFLT_CTR_TX; CTL_RX1 <= DFLT_CTR_RX; CTL_TX2 <= DFLT_CTR_TX; CTL_RX2 <= DFLT_CTR_RX; CTL_TX3 <= DFLT_CTR_TX; CTL_RX3 <= DFLT_CTR_RX; WB_CTR <= DFLT_WB_CTR; COMI_ACR <= DFLT_COMI_ACR; COMI_CH_SEL <= DFLT_COMI_CH_SEL; end else if( H_CYC_i && H_WE_i && H_STB_i ) // Write begin case( {H_ADR_i, H_SEL_i} ) // synthesis full_case parallel_case // here full_case directive to substitute long default assignment {ADDR_LOC_LOC, 4'b0001} : LOC_LOC <= H_DAT_i[ 7:0]; {ADDR_LOC_LOC, 4'b0010} : LOC_LOC <= H_DAT_i[15:8]; {ADDR_SPE1, 4'b0001} : SPE_CTL1[7:0] <= H_DAT_i[ 7:0]; {ADDR_SPE1, 4'b0010} : SPE_CTL1[15:8] <= H_DAT_i[15:8]; // write to status register results no effect {ADDR_CTR_STA1,4'b0001} : CTL_RX1 <= H_DAT_i[ 7:0]; {ADDR_CTR_STA1,4'b0010} : CTL_TX1 <= H_DAT_i[15:8]; {ADDR_SPE2, 4'b0001} : SPE_CTL2[7:0] <= H_DAT_i[ 7:0]; {ADDR_SPE2, 4'b0010} : SPE_CTL2[15:8] <= H_DAT_i[15:8]; {ADDR_CTR_STA2,4'b0001} : CTL_RX2 <= H_DAT_i[ 7:0]; {ADDR_CTR_STA2,4'b0010} : CTL_TX2 <= H_DAT_i[15:8]; {ADDR_SPE3 ,4'b0001} : SPE_CTL3[7:0] <= H_DAT_i[ 7:0]; {ADDR_SPE3 ,4'b0010} : SPE_CTL3[15:8] <= H_DAT_i[15:8]; {ADDR_CTR_STA3,4'b0001} : CTL_RX3 <= H_DAT_i[ 7:0]; {ADDR_CTR_STA3,4'b0010} : CTL_TX3 <= H_DAT_i[15:8]; {ADDR_WB_CTR, 4'b0001} : begin COMI_CH_SEL <= H_DAT_i[ 7:6]; CM_AB2TX_GO <= H_DAT_i[ 3:2]; CM_RX2AB_GO <= H_DAT_i[ 1:0]; end {ADDR_WB_CTR, 4'b0010} : PKT_SIZE <= H_DAT_i[15:14]; {ADDR_WB_CTR, 4'b0100} : COMI_ACR <= H_DAT_i[23:20]; {ADDR_WB_CTR, 4'b1000} : WB_CTR <= H_DAT_i[31:30]; /*writing FIFO is not performed here*/ {ADDR_CH1TXSE, 4'b0001} : CH1_TX_SAR[ 7:0] <= H_DAT_i[7:0]; {ADDR_CH1TXSE, 4'b0010} : CH1_TX_SAR[15:8] <= H_DAT_i[15:8]; {ADDR_CH1TXSE, 4'b0100} : CH1_TX_SAR[23:16] <= H_DAT_i[23:16]; {ADDR_CH1TXSE, 4'b1000} : CH1_TX_SAR[31:24] <= H_DAT_i[31:24]; {ADDR_CH1RXSE, 4'b0001} : CH1_RX_SAR[ 7:0] <= H_DAT_i[7:0]; {ADDR_CH1RXSE, 4'b0010} : CH1_RX_SAR[15:8] <= H_DAT_i[15:8]; {ADDR_CH1RXSE, 4'b0100} : CH1_RX_SAR[23:16] <= H_DAT_i[23:16]; {ADDR_CH1RXSE, 4'b1000} : CH1_RX_SAR[31:24] <= H_DAT_i[31:24]; {ADDR_CH2TXSE, 4'b0001} : CH2_TX_SAR[ 7:0] <= H_DAT_i[7:0]; {ADDR_CH2TXSE, 4'b0010} : CH2_TX_SAR[15:8] <= H_DAT_i[15:8]; {ADDR_CH2TXSE, 4'b0100} : CH2_TX_SAR[23:16] <= H_DAT_i[23:16]; {ADDR_CH2TXSE, 4'b1000} : CH2_TX_SAR[31:24] <= H_DAT_i[31:24]; {ADDR_CH2RXSE, 4'b0001} : CH2_RX_SAR[ 7:0] <= H_DAT_i[7:0]; {ADDR_CH2RXSE, 4'b0010} : CH2_RX_SAR[15:8] <= H_DAT_i[15:8]; {ADDR_CH2RXSE, 4'b0100} : CH2_RX_SAR[23:16] <= H_DAT_i[23:16]; {ADDR_CH2RXSE, 4'b1000} : CH2_RX_SAR[31:24] <= H_DAT_i[31:24]; {ADDR_CH3TXSE, 4'b0001} : CH3_TX_SAR[ 7:0] <= H_DAT_i[7:0]; {ADDR_CH3TXSE, 4'b0010} : CH3_TX_SAR[15:8] <= H_DAT_i[15:8]; {ADDR_CH3TXSE, 4'b0100} : CH3_TX_SAR[23:16] <= H_DAT_i[23:16]; {ADDR_CH3TXSE, 4'b1000} : CH3_TX_SAR[31:24] <= H_DAT_i[31:24]; {ADDR_CH3RXSE, 4'b0001} : CH3_RX_SAR[ 7:0] <= H_DAT_i[7:0]; {ADDR_CH3RXSE, 4'b0010} : CH3_RX_SAR[15:8] <= H_DAT_i[15:8]; {ADDR_CH3RXSE, 4'b0100} : CH3_RX_SAR[23:16] <= H_DAT_i[23:16]; {ADDR_CH3RXSE, 4'b1000} : CH3_RX_SAR[31:24] <= H_DAT_i[31:24]; default: $display("Warning : missing write objective. h%, h%", H_ADR_i, H_SEL_i); endcase end end // end always @... /////////////////////////// HOCI read registers//////////////////////////////////// // Read SpW registers - include FIFOs of RX/TX always @(*) if( H_CYC_i && !H_WE_i && H_STB_i ) // Read begin case (H_ADR_i) // synthesis parallel_case ADDR_SPE1 : H_DAT_o = SPE_CTL1; ADDR_CTR_STA1 : H_DAT_o = { STA_TX1, STA_RX1, CTL_TX1, CTL_RX1 }; ADDR_SPE2 : H_DAT_o = SPE_CTL2; ADDR_CTR_STA2 : H_DAT_o = { STA_TX2, STA_RX2, CTL_TX2, CTL_RX2 }; ADDR_SPE3 : H_DAT_o = SPE_CTL3; ADDR_CTR_STA3 : H_DAT_o = { STA_TX3, STA_RX3, CTL_TX3, CTL_RX3 }; ADDR_WB_CTR : H_DAT_o = { WB_CTR, COMI_ACR, PKT_SIZE, COMI_CH_SEL }; ADDR_CH1R_FIFO : H_DAT_o = { rxbuf1_data_i[7:0], rxbuf1_data_i[7:0], rxbuf1_data_i[7:0], rxbuf1_data_i[7:0] }; ADDR_CH2R_FIFO : H_DAT_o = { rxbuf2_data_i[7:0], rxbuf2_data_i[7:0], rxbuf2_data_i[7:0], rxbuf2_data_i[7:0] }; ADDR_CH3R_FIFO : H_DAT_o = { rxbuf3_data_i[7:0], rxbuf3_data_i[7:0], rxbuF3_data_i[7:0], rxbuf3_data_i[7:0] }; ADDR_CH1TXSE : H_DAT_o = { CH1_TX_SAR, CH1_TX_EAR }; ADDR_CH1RXSE : H_DAT_o = { CH1_RX_SAR, CH1_RX_EAR }; ADDR_CH2TXSE : H_DAT_o = { CH2_TX_SAR, CH2_TX_EAR }; ADDR_CH2RXSE : H_DAT_o = { CH2_RX_SAR, CH2_RX_EAR }; ADDR_CH3TXSE : H_DAT_o = { CH3_TX_SAR, CH3_TX_EAR }; ADDR_CH3RXSE : H_DAT_o = { CH3_RX_SAR, CH3_RX_EAR }; default : H_DAT_o = 32'hxxxx; endcase end /////////////////////////// // LET'S TALK ABOUT FIFO // /////////////////////////// /////////////////////// "H_ACK_o" and Write/read TX/RX FIFO ///////////////////// always @(*) begin H_ACK_o = 1'b0; // set default value H_RTY_o = 1'b0; if( H_CYC_i && H_WE_i && H_STB_i ) // if write begin {H_wr_tx1buf, H_wr_tx2buf, H_wr_tx3buf} = 0; // set default value H_ACK_o = 1; // write to regs exclude FIFO is always permitted case(H_ADR_i) // synthesis parallel_case ADDR_CH1T_FIFO : begin if(tx1buf_full_i ==False) H_wr_tx1buf = 1'b1; if(tx1buf_full_i ==True) begin H_ACK_o = 1'b0; H_RTY_o = 1'b1; end end ADDR_CH2T_FIFO : begin if(tx32buf_full_i ==False) H_wr_tx2buf = 1'b1; if(tx2buf_full_i ==True) begin H_ACK_o = 1'b0; H_RTY_o = 1'b1; end end ADDR_CH3T_FIFO : begin if(tx3buf_full_i ==False) H_wr_tx3buf = 1'b1; if(tx3buf_full_i ==True) begin H_ACK_o = 1'b0; H_RTY_o = 1'b1; end end default: begin {H_rd_rx1buf, H_rd_rx2buf, H_rd_rx3buf} = 3'bx; H_ACK_o = 1'bx; end endcase end else if( H_CYC_i && !H_WE_i && H_STB_i ) // if read begin {H_rd_rx1buf, H_rd_rx2buf, H_rd_rx3buf} = 0; // set default value H_ACK_o = 1; // read to regs exclude FIFO is always permitted case(H_ADR_i) // synthesis parallel_case ADDR_CH1R_FIFO : begin if(rx1buf_empty_i ==False) H_rd_rx1buf = 1'b1; if( rx1buf_empty_i ==True && rxbuf1_data_i[8] == 1'b1 )// if EOP/EEP, continue read but discard value read begin H_ACK_o = 1'b0; H_RTY_o = 1'b1; end end ADDR_CH2R_FIFO : begin if(rx2buf_empty_i ==False) H_rd_rx2buf = 1'b1; if(rx2buf_empty_i ==True) && rxbuf2_data_i[8] == 1'b1 )// if EOP/EEP, continue read but discard value read begin H_ACK_o = 1'b0; H_RTY_o = 1'b1; end end ADDR_CH3R_FIFO : begin if(rx3buf_empty_i ==False) H_rd_rx3buf = 1'b1; if(rx3buf_empty_i ==True) && rxbuf3_data_i[8] == 1'b1 )// if EOP/EEP, continue read but discard value read begin H_ACK_o = 1'b0; H_RTY_o = 1'b1; end end defult : begin {H_rd_rx1buf, H_rd_rx2buf, H_rd_rx3buf} = 3'bx; H_ACK_o = 1'bx; end endcase end end // end always @... assign txbuf1_data_o = ADD_CH1_EOP ? EOP : SEL_TXDAT_SRC(COMI_DIS, H_DAT_i, H_SEL_i, CM_DAT_i, CM_SEL_o ); assign txbuf2_data_o = ADD_CH2_EOP ? EOP : SEL_TXDAT_SRC(COMI_DIS, H_DAT_i, H_SEL_i, CM_DAT_i, CM_SEL_o ); assign txbuf3_data_o = ADD_Ch3_EOP ? EOP : SEL_TXDAT_SRC(COMI_DIS, H_DAT_i, H_SEL_i, CM_DAT_i, CM_SEL_o ); function [7:0] SEL_TXDAT_SRC; // COMI or HOCI to TX FIFO input COMI_DIS; input [31:0] H_DAT_i; input [3:0] H_SEL_i; input [31:0] CM_DAT_i; input [3:0] CM_SEL_o; begin if (COMI_DIS ==True) SEL_TXDAT_SRC = SEL_H2TX_SRC(H_SEL_i, H_DAT_i); else if (COMI_DIS ==FALSE) SEL_TXDAT_SRC = SEL_CM2TX_SRC(CM_SEL_o, CM_DAT_i); end endfunction ///////// byte sel ////////// function [7:0] SEL_H2TX_SRC; // Which byte from HOCI to TX FIFO; input [3:0] H_SEL_i; input [31:0] H_DAT_i; begin case (H_SEL_i) // synthesis parallel_case 4'b0001 : SEL_TXDAT_SRC = H_DAT_i[ 7: 0]; 4'b0010 : SEL_TXDAT_SRC = H_DAT_i[15: 8]; 4'b0100 : SEL_TXDAT_SRC = H_DAT_i[23:16]; 4'b1000 : SEL_TXDAT_SRC = H_DAT_i[31:24]; default : SEL_TXDAT_SRC = 8'hxx; endcase end endfunction function [7:0] SEL_CM2TX_SRC; // Which byte from COMI to TX FIFO; COMI only access FIFOs. input [3:0] CM_SEL_o; input [31:0] CM_DAT_i; begin case (CM_SEL_o) // synthesis parallel_case 4'b0001 : SEL_CM2TX_SRC = CM_DAT_i[ 7: 0]; 4'b0010 : SEL_CM2TX_SRC = CM_DAT_i[15: 8]; 4'b0100 : SEL_CM2TX_SRC = CM_DAT_i[23:16]; 4'b1000 : SEL_CM2TX_SRC = CM_DAT_i[31:24]; default : SEL_CM2TX_SRC = 8'hxx; endcase end ////////end byte sel////////// ////////////////////////////// End Write/read FIFOs of RX/TX /////////////////////////////// endmodule
Go to most recent revision | Compare with Previous | Blame | View Log