URL
https://opencores.org/ocsvn/sparc64soc/sparc64soc/trunk
Subversion Repositories sparc64soc
[/] [sparc64soc/] [trunk/] [T1-CPU/] [exu/] [sparc_exu_rml_cwp.v] - Rev 8
Go to most recent revision | Compare with Previous | Blame | View Log
// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: sparc_exu_rml_cwp.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ //////////////////////////////////////////////////////////////////////// /* // Module Name: sparc_exu_rml_cwp // Description: Register management logic. Contains CWP, CANSAVE, CANRESTORE // and other window management registers. Generates RF related traps // and switches the global registers to alternate globals. All the registers // are written in the W stage (there is no bypassing so they must // swap out) and will either get a new value generated by a window management // Instruction or by a WRPS instruction. The following traps can be generated: // Fill: restore with canrestore == 0 // clean_window: save with cleanwin-canrestore == 0 // spill: flushw with cansave != nwindows -2 or // save with cansave == 0 // It is assumed that the contents of the new window will get squashed // on a clean_window or fill trap so the save or restore gets executed // normally. Spill traps or WRCWPs mean that all 16 windowed registers // must be saved and restored (a 4 cycle operation). */ module sparc_exu_rml_cwp (/*AUTOARG*/ // Outputs rml_ecl_cwp_d, rml_ecl_cwp_e, exu_tlu_cwp0_w, exu_tlu_cwp1_w, exu_tlu_cwp2_w, exu_tlu_cwp3_w, rml_irf_cwpswap_tid_e, old_cwp_e, new_cwp_e, swap_locals_ins, swap_outs, exu_tlu_spill, exu_tlu_spill_wtype, exu_tlu_spill_other, exu_tlu_spill_tid, rml_ecl_swap_done, exu_tlu_cwp_cmplt, exu_tlu_cwp_cmplt_tid, exu_tlu_cwp_retry, oddwin_w, // Inputs clk, se, reset, rst_tri_en, rml_ecl_wtype_e, rml_ecl_other_e, exu_tlu_spill_e, tlu_exu_cwpccr_update_m, tlu_exu_cwp_retry_m, tlu_exu_cwp_m, thr_d, ecl_rml_thr_m, ecl_rml_thr_w, tid_e, next_cwp_w, next_cwp_e, cwp_wen_w, save_e, restore_e, ifu_exu_flushw_e, ecl_rml_cwp_wen_e, full_swap_e, rml_kill_w, next_cwp ) ; input clk; input se; input reset; input rst_tri_en; input [2:0] rml_ecl_wtype_e; input rml_ecl_other_e; input exu_tlu_spill_e; input tlu_exu_cwpccr_update_m; input tlu_exu_cwp_retry_m; input [2:0] tlu_exu_cwp_m; // for switching cwp on return from trap input [3:0] thr_d; input [3:0] ecl_rml_thr_m; input [3:0] ecl_rml_thr_w; input [1:0] tid_e; input [2:0] next_cwp_w; input [2:0] next_cwp_e; input cwp_wen_w; input save_e; input restore_e; input ifu_exu_flushw_e; input ecl_rml_cwp_wen_e; input full_swap_e; input rml_kill_w; output [2:0] rml_ecl_cwp_d; output [2:0] rml_ecl_cwp_e; output [2:0] exu_tlu_cwp0_w; output [2:0] exu_tlu_cwp1_w; output [2:0] exu_tlu_cwp2_w; output [2:0] exu_tlu_cwp3_w; output [1:0] rml_irf_cwpswap_tid_e; output [2:0] old_cwp_e; output [2:0] new_cwp_e; output swap_locals_ins; output swap_outs; output exu_tlu_spill; output [2:0] exu_tlu_spill_wtype; output exu_tlu_spill_other; output [1:0] exu_tlu_spill_tid; output [3:0] rml_ecl_swap_done; output exu_tlu_cwp_cmplt; output [1:0] exu_tlu_cwp_cmplt_tid; output exu_tlu_cwp_retry; output [3:0] oddwin_w; output [11:0] next_cwp; wire can_swap; wire swapping; wire just_swapped; wire full_swap_m; wire full_swap_w; wire [3:0] swap_done_next_cycle; wire [3:0] swap_sel_input; wire [3:0] swap_sel_tlu; wire [3:0] swap_keep_value; wire [2:0] trap_old_cwp_m; wire tlu_cwp_no_change; wire [2:0] tlu_cwp_xor; wire cwp_cmplt_next; wire [1:0] cwp_cmplt_tid_next; wire cwp_retry_next; wire cwp_fastcmplt_m; wire cwp_fastcmplt_w; wire cwpccr_update_w; wire valid_tlu_swap_w; wire [2:0] tlu_exu_cwp_w; wire tlu_exu_cwp_retry_w; wire [3:0] swap_thr; wire [1:0] swap_tid; wire [3:0] swap_req_vec; wire kill_swap_slot_w; wire [3:0] thr_e; wire [1:0] swap_slot0_state; wire [1:0] swap_slot1_state; wire [1:0] swap_slot2_state; wire [1:0] swap_slot3_state; wire [1:0] swap_slot0_state_valid; wire [1:0] swap_slot1_state_valid; wire [1:0] swap_slot2_state_valid; wire [1:0] swap_slot3_state_valid; wire [1:0] next_slot0_state; wire [1:0] next_slot1_state; wire [1:0] next_slot2_state; wire [1:0] next_slot3_state; wire [3:0] swap_keep_state; wire [3:0] swap_next_state; wire [1:0] swap_state; wire [3:0] next_swap_thr; wire [12:0] swap_data; wire [12:0] tlu_swap_data; wire [12:0] swap_input_data; wire [12:0] next_slot0_data; wire [12:0] next_slot1_data; wire [12:0] next_slot2_data; wire [12:0] next_slot3_data; wire [12:0] swap_slot0_data; wire [12:0] swap_slot1_data; wire [12:0] swap_slot2_data; wire [12:0] swap_slot3_data; wire new_cwp_sel_swap; wire [2:0] old_swap_cwp; wire [2:0] new_swap_cwp; // wires for cwp register wire [2:0] cwp_thr0; wire [2:0] cwp_thr1; wire [2:0] cwp_thr2; wire [2:0] cwp_thr3; wire [2:0] cwp_thr0_next; wire [2:0] cwp_thr1_next; wire [2:0] cwp_thr2_next; wire [2:0] cwp_thr3_next; wire cwp_wen_thr0_w; wire cwp_wen_thr1_w; wire cwp_wen_thr2_w; wire cwp_wen_thr3_w; wire [3:0] cwp_wen_tlu_w; wire [3:0] cwp_wen_spill; wire [2:0] spill_cwp; wire [3:0] cwp_wen_l; wire [2:0] old_cwp_w; wire spill_next; wire [1:0] spill_tid_next; wire spill_other_next; wire [2:0] spill_wtype_next; // decode thr_e assign thr_e[0] = ~tid_e[1] & ~tid_e[0]; assign thr_e[1] = ~tid_e[1] & tid_e[0]; assign thr_e[2] = tid_e[1] & ~tid_e[0]; assign thr_e[3] = tid_e[1] & tid_e[0]; ///////////////////////////////// // CWP output to IRF ///////////////////////////////// // Output current_d thr on saves or restores mux2ds #(2) irf_thr_mux(.dout(rml_irf_cwpswap_tid_e[1:0]), .in0(tid_e[1:0]), .in1(swap_tid[1:0]), .sel0(~can_swap), .sel1(can_swap)); // Output cwp_e for save, restore, flushw // and swap_cwp from queue for swap restores (default) // Need to have an incremented cwp for swap of outs assign old_swap_cwp[2:0] = swap_data[2:0]; assign new_swap_cwp[2:0] = swap_data[5:3]; assign new_cwp_sel_swap = can_swap; assign new_cwp_e[2:0] = (new_cwp_sel_swap)? new_swap_cwp[2:0]: next_cwp_e[2:0]; assign old_cwp_e[2:0] = (new_cwp_sel_swap)? old_swap_cwp[2:0]: rml_ecl_cwp_e[2:0]; ///////////////////////////////// // CWP register ///////////////////////////////// assign exu_tlu_cwp0_w[2:0] = cwp_thr0[2:0]; assign exu_tlu_cwp1_w[2:0] = cwp_thr1[2:0]; assign exu_tlu_cwp2_w[2:0] = cwp_thr2[2:0]; assign exu_tlu_cwp3_w[2:0] = cwp_thr3[2:0]; mux4ds #(3) mux_cwp_old_w(.dout(old_cwp_w[2:0]), .sel0(ecl_rml_thr_w[0]), .sel1(ecl_rml_thr_w[1]), .sel2(ecl_rml_thr_w[2]), .sel3(ecl_rml_thr_w[3]), .in0(cwp_thr0[2:0]), .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), .in3(cwp_thr3[2:0])); // Output selection for reg mux4ds #(3) mux_cwp_out_d(.dout(rml_ecl_cwp_d[2:0]), .sel0(thr_d[0]), .sel1(thr_d[1]), .sel2(thr_d[2]), .sel3(thr_d[3]), .in0(cwp_thr0[2:0]), .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), .in3(cwp_thr3[2:0])); mux4ds #(3) mux_cwp_out_e(.dout(rml_ecl_cwp_e[2:0]), .sel0(thr_e[0]), .sel1(thr_e[1]), .sel2(thr_e[2]), .sel3(thr_e[3]), .in0(cwp_thr0[2:0]), .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), .in3(cwp_thr3[2:0])); mux4ds #(3) mux_cwp_trap(.dout(trap_old_cwp_m[2:0]), .sel0(ecl_rml_thr_m[0]), .sel1(ecl_rml_thr_m[1]), .sel2(ecl_rml_thr_m[2]), .sel3(ecl_rml_thr_m[3]), .in0(cwp_thr0[2:0]), .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), .in3(cwp_thr3[2:0])); ////////////////////////////////////// // Storage of cwp ////////////////////////////////////// // enable input for each thread assign cwp_wen_spill[3:0] = swap_thr[3:0] & {4{spill_next}}; assign cwp_wen_thr0_w = ((ecl_rml_thr_w[0] & cwp_wen_w)) & ~cwp_wen_spill[0]; assign cwp_wen_thr1_w = ((ecl_rml_thr_w[1] & cwp_wen_w)) & ~cwp_wen_spill[1]; assign cwp_wen_thr2_w = ((ecl_rml_thr_w[2] & cwp_wen_w)) & ~cwp_wen_spill[2]; assign cwp_wen_thr3_w = ((ecl_rml_thr_w[3] & cwp_wen_w)) & ~cwp_wen_spill[3]; assign cwp_wen_tlu_w[3:0] = ecl_rml_thr_w[3:0] & {4{valid_tlu_swap_w}} & ~cwp_wen_spill & {~cwp_wen_thr3_w,~cwp_wen_thr2_w,~cwp_wen_thr1_w,~cwp_wen_thr0_w}; assign cwp_wen_l[3:0] = ~(cwp_wen_tlu_w[3:0] | cwp_wen_spill[3:0] | {cwp_wen_thr3_w,cwp_wen_thr2_w, cwp_wen_thr1_w,cwp_wen_thr0_w}); // oddwin_w is the new value of cwp[0] assign oddwin_w[3:0] = {cwp_thr3_next[0],cwp_thr2_next[0],cwp_thr1_next[0],cwp_thr0_next[0]}; assign next_cwp={cwp_thr3_next,cwp_thr2_next,cwp_thr1_next,cwp_thr0_next}; // mux between new and current value mux4ds #(3) cwp_next0_mux(.dout(cwp_thr0_next[2:0]), .in0(cwp_thr0[2:0]), .in1(next_cwp_w[2:0]), .in2(tlu_exu_cwp_w[2:0]), .in3(spill_cwp[2:0]), .sel0(cwp_wen_l[0]), .sel1(cwp_wen_thr0_w), .sel2(cwp_wen_tlu_w[0]), .sel3(cwp_wen_spill[0])); mux4ds #(3) cwp_next1_mux(.dout(cwp_thr1_next[2:0]), .in0(cwp_thr1[2:0]), .in1(next_cwp_w[2:0]), .in2(tlu_exu_cwp_w[2:0]), .in3(spill_cwp[2:0]), .sel0(cwp_wen_l[1]), .sel1(cwp_wen_thr1_w), .sel2(cwp_wen_tlu_w[1]), .sel3(cwp_wen_spill[1])); mux4ds #(3) cwp_next2_mux(.dout(cwp_thr2_next[2:0]), .in0(cwp_thr2[2:0]), .in1(next_cwp_w[2:0]), .in2(tlu_exu_cwp_w[2:0]), .in3(spill_cwp[2:0]), .sel0(cwp_wen_l[2]), .sel1(cwp_wen_thr2_w), .sel2(cwp_wen_tlu_w[2]), .sel3(cwp_wen_spill[2])); mux4ds #(3) cwp_next3_mux(.dout(cwp_thr3_next[2:0]), .in0(cwp_thr3[2:0]), .in1(next_cwp_w[2:0]), .in2(tlu_exu_cwp_w[2:0]), .in3(spill_cwp[2:0]), .sel0(cwp_wen_l[3]), .sel1(cwp_wen_thr3_w), .sel2(cwp_wen_tlu_w[3]), .sel3(cwp_wen_spill[3])); // store new value dff_s #(3) dff_cwp_thr0(.din(cwp_thr0_next[2:0]), .clk(clk), .q(cwp_thr0[2:0]), .se(se), .si(), .so()); dff_s #(3) dff_cwp_thr1(.din(cwp_thr1_next[2:0]), .clk(clk), .q(cwp_thr1[2:0]), .se(se), .si(), .so()); dff_s #(3) dff_cwp_thr2(.din(cwp_thr2_next[2:0]), .clk(clk), .q(cwp_thr2[2:0]), .se(se), .si(), .so()); dff_s #(3) dff_cwp_thr3(.din(cwp_thr3_next[2:0]), .clk(clk), .q(cwp_thr3[2:0]), .se(se), .si(), .so()); //////////////////////////////////////////// // Queue for full window swaps //////////////////////////////////////////// // A full swap of the current window requires a 2 cycle operation. // Each cycle must make sure that // there isn't another instruction trying to save or restore on top of it. // The same thread also cannot issue a swap to irf in back-to-back cycles. // Data is stored as follows: // 2:0 - CWP // 5:3 - NewCWP // 6 - !WRCWP/SPILL // 7 - Trap return // 8 - OTHER (for spill trap) // 11:9- WTYPE (for spill trap) // 12 - Retry (for trap return) dff_s full_swap_e2m(.din(full_swap_e), .clk(clk), .q(full_swap_m), .se(se), .si(), .so()); dff_s full_swap_m2w(.din(full_swap_m), .clk(clk), .q(full_swap_w), .se(se), .si(), .so()); assign swap_input_data = {1'b0, rml_ecl_wtype_e[2:0], rml_ecl_other_e, 1'b0, exu_tlu_spill_e, next_cwp_e[2:0],rml_ecl_cwp_e[2:0]}; assign tlu_swap_data = {tlu_exu_cwp_retry_w, 4'b0, 1'b1, 1'b0, tlu_exu_cwp_w[2:0], old_cwp_w[2:0]}; assign swap_sel_input[3:0] = thr_e[3:0] & {4{full_swap_e}}; assign swap_sel_tlu[3:0] = ecl_rml_thr_w[3:0] & {4{cwpccr_update_w}} & ~swap_sel_input[3:0]; assign swap_keep_value[3:0] = ~(swap_sel_tlu[3:0] | swap_sel_input[3:0]); assign swap_keep_state[3:0] = ~(swap_sel_tlu[3:0] | swap_sel_input[3:0]) & ~(swap_thr[3:0] & {4{can_swap}}); assign swap_next_state[3:0] = ~(swap_sel_tlu[3:0] | swap_sel_input[3:0]) & (swap_thr[3:0] & {4{can_swap}}); mux3ds #(13) slot0_data_mux(.dout(next_slot0_data[12:0]), .in0(swap_input_data[12:0]), .in1(tlu_swap_data[12:0]), .in2(swap_slot0_data[12:0]), .sel0(swap_sel_input[0]), .sel1(swap_sel_tlu[0]), .sel2(swap_keep_value[0])); mux3ds #(13) slot1_data_mux(.dout(next_slot1_data[12:0]), .in0(swap_input_data[12:0]), .in1(tlu_swap_data[12:0]), .in2(swap_slot1_data[12:0]), .sel0(swap_sel_input[1]), .sel1(swap_sel_tlu[1]), .sel2(swap_keep_value[1])); mux3ds #(13) slot2_data_mux(.dout(next_slot2_data[12:0]), .in0(swap_input_data[12:0]), .in1(tlu_swap_data[12:0]), .in2(swap_slot2_data[12:0]), .sel0(swap_sel_input[2]), .sel1(swap_sel_tlu[2]), .sel2(swap_keep_value[2])); mux3ds #(13) slot3_data_mux(.dout(next_slot3_data[12:0]), .in0(swap_input_data[12:0]), .in1(tlu_swap_data[12:0]), .in2(swap_slot3_data[12:0]), .sel0(swap_sel_input[3]), .sel1(swap_sel_tlu[3]), .sel2(swap_keep_value[3])); // Muxes for slot state. // There are 2 possible states: // No swap done (01) // Swap locals/ins done (10) mux4ds #(2) slot0_state_mux(.dout(next_slot0_state[1:0]), .in0(2'b10), .in1({1'b0, valid_tlu_swap_w}), .in2(swap_slot0_state_valid[1:0]), .in3({swap_slot0_state_valid[0], 1'b0}), .sel0(swap_sel_input[0]), .sel1(swap_sel_tlu[0]), .sel2(swap_keep_state[0]), .sel3(swap_next_state[0])); mux4ds #(2) slot1_state_mux(.dout(next_slot1_state[1:0]), .in0(2'b10), .in1({1'b0, valid_tlu_swap_w}), .in2(swap_slot1_state_valid[1:0]), .in3({swap_slot1_state_valid[0], 1'b0}), .sel0(swap_sel_input[1]), .sel1(swap_sel_tlu[1]), .sel2(swap_keep_state[1]), .sel3(swap_next_state[1])); mux4ds #(2) slot2_state_mux(.dout(next_slot2_state[1:0]), .in0(2'b10), .in1({1'b0, valid_tlu_swap_w}), .in2(swap_slot2_state_valid[1:0]), .in3({swap_slot2_state_valid[0], 1'b0}), .sel0(swap_sel_input[2]), .sel1(swap_sel_tlu[2]), .sel2(swap_keep_state[2]), .sel3(swap_next_state[2])); mux4ds #(2) slot3_state_mux(.dout(next_slot3_state[1:0]), .in0(2'b10), .in1({1'b0, valid_tlu_swap_w}), .in2(swap_slot3_state_valid[1:0]), .in3({swap_slot3_state_valid[0], 1'b0}), .sel0(swap_sel_input[3]), .sel1(swap_sel_tlu[3]), .sel2(swap_keep_state[3]), .sel3(swap_next_state[3])); // The kill is only assessed in w1 because back to back swaps are not allowed. // This means that a swap cannot start in the M or W stage. assign kill_swap_slot_w = rml_kill_w & full_swap_w; assign swap_slot0_state_valid[1:0] = {(swap_slot0_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[0])), (swap_slot0_state[0])}; assign swap_slot1_state_valid[1:0] = {(swap_slot1_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[1])), (swap_slot1_state[0])}; assign swap_slot2_state_valid[1:0] = {(swap_slot2_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[2])), (swap_slot2_state[0])}; assign swap_slot3_state_valid[1:0] = {(swap_slot3_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[3])), (swap_slot3_state[0])}; // Flops for cwp_swap data dffr_s #(15) slot0_data_dff(.din({next_slot0_state[1:0], next_slot0_data[12:0]}), .clk(clk), .q({swap_slot0_state[1:0], swap_slot0_data[12:0]}), .rst(reset), .se(se), .si(), .so()); dffr_s #(15) slot1_data_dff(.din({next_slot1_state[1:0], next_slot1_data[12:0]}), .clk(clk), .q({swap_slot1_state[1:0], swap_slot1_data[12:0]}), .rst(reset), .se(se), .si(), .so()); dffr_s #(15) slot2_data_dff(.din({next_slot2_state[1:0], next_slot2_data[12:0]}), .clk(clk), .q({swap_slot2_state[1:0], swap_slot2_data[12:0]}), .rst(reset), .se(se), .si(), .so()); dffr_s #(15) slot3_data_dff(.din({next_slot3_state[1:0], next_slot3_data[12:0]}), .clk(clk), .q({swap_slot3_state[1:0], swap_slot3_data[12:0]}), .rst(reset), .se(se), .si(), .so()); //////////////////////////// // Control for queue output // ========================== // The queue results go into a flop // so that they can meet timing. //////////////////////////// assign swap_req_vec[0] = (swap_slot0_state[1] | swap_slot0_state[0]); assign swap_req_vec[1] = (swap_slot1_state[1] | swap_slot1_state[0]); assign swap_req_vec[2] = (swap_slot2_state[1] | swap_slot2_state[0]); assign swap_req_vec[3] = (swap_slot3_state[1] | swap_slot3_state[0]); sparc_exu_rndrob cwp_output_queue(// Outputs .grant_vec(next_swap_thr[3:0]), // Inputs .clk(clk), .reset(reset), .se(se), .req_vec(swap_req_vec[3:0]), .advance(can_swap)); dff_s #(4) dff_swap_thr(.din(next_swap_thr[3:0]), .clk(clk), .q(swap_thr[3:0]), .se(se), .si(), .so()); assign swap_tid[1] = swap_thr[3] | swap_thr[2]; assign swap_tid[0] = swap_thr[3] | swap_thr[1]; // make selects one hot wire [3:0] swap_sel; assign swap_sel[0] = ~(swap_thr[1] | swap_thr[2] | swap_thr[3]) | rst_tri_en; assign swap_sel[3:1] = swap_thr[3:1] & {3{~rst_tri_en}}; mux4ds #(15) cwp_output_mux(.dout({swap_state[1:0], swap_data[12:0]}), .in0({swap_slot0_state[1:0], swap_slot0_data[12:0]}), .in1({swap_slot1_state[1:0], swap_slot1_data[12:0]}), .in2({swap_slot2_state[1:0], swap_slot2_data[12:0]}), .in3({swap_slot3_state[1:0], swap_slot3_data[12:0]}), .sel0(swap_sel[0]), .sel1(swap_sel[1]), .sel2(swap_sel[2]), .sel3(swap_sel[3])); // To prevent back to back swap requests on the same thread, the queue cannot swap // 2 cycles in a row. Also swaps can't start in M or W to allow flush to be checked dffr_s can_swap_flop(.din(swapping), .clk(clk), .q(just_swapped), .rst(reset), .se(se), .si(), .so()); assign can_swap = ~(save_e | restore_e | ifu_exu_flushw_e | ecl_rml_cwp_wen_e | just_swapped); assign swap_locals_ins = can_swap & swap_state[0]; assign swap_outs = can_swap & swap_state[1]; assign swapping = (can_swap & |swap_state[1:0]) | full_swap_e | full_swap_m; /////////////////////////////////// // Signals for completion of swaps /////////////////////////////////// assign spill_next = swap_data[6] & ~swap_data[7] & swap_outs; assign spill_tid_next[1:0] = swap_tid[1:0]; //assign exu_tlu_spill_ttype[8:0] = {3'b010, swap_data[8], swap_data[11:9], 2'b00}; assign spill_other_next = swap_data[8]; assign spill_wtype_next[2:0] = swap_data[11:9]; dff_s #(7) spill_dff(.din({spill_next,spill_tid_next[1:0], spill_other_next, spill_wtype_next[2:0]}), .q({exu_tlu_spill,exu_tlu_spill_tid[1:0], exu_tlu_spill_other, exu_tlu_spill_wtype[2:0]}), .clk(clk), .se(se), .si(), .so()); assign spill_cwp[2:0] = swap_data[5:3]; /* -----\/----- EXCLUDED -----\/----- dff_s #(3) spill_cwp_dff(.din(swap_data[5:3]), .clk(clk), .q(spill_cwp[2:0]), .se(se), .si(), .so()); -----/\----- EXCLUDED -----/\----- */ assign swap_done_next_cycle[3] = (swap_outs & ~swap_data[6] & ~swap_data[7] & swap_tid[1] & swap_tid[0]); assign swap_done_next_cycle[2] = (swap_outs & ~swap_data[6] & ~swap_data[7] & swap_tid[1] & ~swap_tid[0]); assign swap_done_next_cycle[1] = (swap_outs & ~swap_data[6] & ~swap_data[7] & ~swap_tid[1] & swap_tid[0]); assign swap_done_next_cycle[0] = (swap_outs & ~swap_data[6] & ~swap_data[7] & ~swap_tid[1] & ~swap_tid[0]); dff_s #(4) swap_done_dff(.din(swap_done_next_cycle[3:0]), .clk(clk), .q(rml_ecl_swap_done[3:0]), .se(se), .si(), .so()); dff_s #(4) cwp_cmplt_dff(.din({cwp_cmplt_next, cwp_cmplt_tid_next[1:0], cwp_retry_next}), .q({exu_tlu_cwp_cmplt,exu_tlu_cwp_cmplt_tid[1:0], exu_tlu_cwp_retry}), .clk(clk), .si(), .so(), .se(se)); assign cwp_cmplt_next = swap_outs & swap_data[7]; assign cwp_cmplt_tid_next[1:0] = swap_tid[1:0]; assign cwp_retry_next = swap_data[12]; assign tlu_cwp_xor[2:0] = trap_old_cwp_m[2:0] ^ tlu_exu_cwp_m[2:0]; assign tlu_cwp_no_change = ~(tlu_cwp_xor[2] | tlu_cwp_xor[1] | tlu_cwp_xor[0]); assign cwp_fastcmplt_m = tlu_exu_cwpccr_update_m & tlu_cwp_no_change; dff_s fastcmplt_dff(.din(cwp_fastcmplt_m), .clk(clk), .q(cwp_fastcmplt_w), .se(se), .si(), .so()); /////////////////////////////////////////////////////////// // Pipe along tlu_exu_done/retry so inst_vld can be caught /////////////////////////////////////////////////////////// dff_s #(5) tlu_data_dff(.q({cwpccr_update_w,tlu_exu_cwp_w[2:0],tlu_exu_cwp_retry_w}), .din({tlu_exu_cwpccr_update_m,tlu_exu_cwp_m[2:0],tlu_exu_cwp_retry_m}), .clk(clk), .se(se), .si(), .so()); assign valid_tlu_swap_w = cwpccr_update_w & ~rml_kill_w & ~cwp_fastcmplt_w; endmodule // sparc_exu_rml_cwp
Go to most recent revision | Compare with Previous | Blame | View Log