URL
https://opencores.org/ocsvn/t6507lp/t6507lp/trunk
Subversion Repositories t6507lp
[/] [t6507lp/] [trunk/] [rtl/] [verilog/] [t6507lp_fsm.v] - Rev 61
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////// //// //// //// T6507LP IP Core //// //// //// //// This file is part of the T6507LP project //// //// http://www.opencores.org/cores/t6507lp/ //// //// //// //// Description //// //// 6507 FSM //// //// //// //// TODO: //// //// - Fix absolute indexed mode //// //// - Code the relative mode //// //// - Code the indexed indirect mode //// //// - Code the indirect indexed mode //// //// - Code the absolute indirect mode //// //// //// //// Author(s): //// //// - Gabriel Oshiro Zardo, gabrieloshiro@gmail.com //// //// - Samuel Nascimento Pagliarini (creep), snpagliarini@gmail.com //// //// //// //////////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// //////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t6507lp_fsm(clk_in, n_rst_in, alu_result, alu_status, data_in, address, control, data_out, alu_opcode, alu_a); input clk_in; input n_rst_in; input [7:0] alu_result; input [7:0] alu_status; input [7:0] data_in; output reg [12:0] address; output reg control; // one bit is enough? read = 0, write = 1 output reg [7:0] data_out; output reg [7:0] alu_opcode; output reg [7:0] alu_a; // FSM states localparam FETCH_OP = 4'b000; localparam FETCH_LOW = 4'b0001; localparam FETCH_HIGH = 4'b0010; localparam SET_PC = 4'b0011; localparam READ_EFFECTIVE = 4'b0100; localparam DO_OPERATION = 4'b0101; localparam WRITE_DUMMY = 4'b0110; localparam WRITE_EFFECTIVE = 4'b0110; localparam CALCULATE_INDEX = 4'b0111; localparam CHECK_FOR_PAGE_CROSS = 4'b1000; // OPCODES TODO: verify how this get synthesised `include "../T6507LP_Package.v" // control signals localparam MEM_READ = 1'b0; localparam MEM_WRITE = 1'b1; reg [12:0] pc; // program counter reg [7:0] sp; // stack pointer reg [7:0] ir; // instruction register reg [12:0] temp_add; // temporary address reg [7:0] temp_data; // temporary data reg [3:0] state, next_state; // current and next state registers // TODO: not sure if this will be 4 bits wide. as of march 9th this was 4bit wide. // wiring that simplifies the FSM logic reg absolute; reg absolute_indexed; reg accumulator; reg immediate; reg implied; reg indirect; reg relative; reg zero_page; reg zero_page_indexed; // regs that store the type of operation. again, this simplifies the FSM a lot. reg read; reg read_modify_write; reg write; reg jump; reg enable; wire [12:0] next_pc; assign next_pc = pc + 1'b1; always @ (posedge clk_in or negedge n_rst_in) begin if (n_rst_in == 1'b0) begin // TODO: all registers must assume default values pc <= {13{1'b0}}; // TODO: this is written somewhere. something about a reset vector. must be checked. sp <= 8'h00; // TODO: the default is not 0. maybe $0100 or something like that. must be checked. ir <= 8'h00; temp_add <= {13{1'b0}}; temp_data <= {8{1'b0}}; state <= FETCH_OP; //address <= {13{1'b0}}; //control <= 1'b0; //data_out <= {8{1'b0}}; //alu_opcode <= {8{1'b0}}; //alu_a <= {8{1'b0}}; end else begin state <= next_state; address <= pc; // this secures the pipelining will happen by default case (state) FETCH_OP: begin // this state is the simplest one. it is a simple fetch that must be done when the cpu was reset or // the last cycle was a memory write. pc <= next_pc; end FETCH_LOW: begin // in this state the opcode is already known so truly execution begins pc <= next_pc; ir <= data_in; // opcode must be saved in the instruction register. this is not necessary for the IMP and ACC modes. end FETCH_HIGH: begin pc <= next_pc; temp_add <= {5'b00000, data_in}; // data from previous cycle (lowbyte) is ready and must be saved end SET_PC: begin pc <= {data_in[4:0], temp_add[7:0]}; end READ_EFFECTIVE: begin if (zero_page) begin temp_add <= {5'b00000, data_in}; // this is necessary for the write_effective state address <= {5'b00000, data_in}; end else if (zero_page_indexed) begin temp_add <= {5'b00000, alu_result}; // this is necessary for the write_effective state address <= {5'b00000, alu_result}; end else begin temp_add[12:8] <= data_in; address <= {data_in[4:0], temp_add[7:0]}; end end DO_OPERATION, CALCULATE_INDEX: begin end WRITE_DUMMY: begin //if (zero_page) begin // i believe this works fine address <= temp_add; //control <= WRITE; // just for compatibility //alu_opcode <= ir; //alu_a <= data_in; end WRITE_EFFECTIVE: begin if (zero_page) begin address <= temp_add; end else if (zero_page_indexed) begin address <= {5'b00000, alu_result}; end else begin // maybe this could be rearenged for better synth if (write) begin address <= {data_in[4:0], temp_add[7:0]}; end else begin address <= temp_add; end end //data_out <= alu_result; //control <= WRITE; end CHECK_FOR_PAGE_CROSS: begin temp_add[12:8] <= data_in; address <= {data_in[4:0], temp_add[7:0]}; end default: begin state <= FETCH_OP; // TODO: this prevents the system from halting but may trigger strange behavior. $finish("UNKNOWN STATE!"); // TODO: check if synth really ignores this line. Otherwise wrap it with a `ifdef end endcase end end always @(posedge clk_in) begin // combinational block that handles the outputs enable <= 1'b0; control <= MEM_READ; alu_opcode <= 8'h00; alu_a <= 8'h00; data_out <= 8'h00; case (state) FETCH_OP, SET_PC, READ_EFFECTIVE: begin //enable = 0; end FETCH_LOW: begin if (accumulator || implied) begin // the ALU must be used enable <= 1'b1; alu_opcode <= data_in; end end FETCH_HIGH: begin if (immediate || write || absolute_indexed) begin enable <= 1'b1; alu_opcode <= ir; alu_a <= data_in; end end DO_OPERATION, CALCULATE_INDEX: begin enable <= 1'b1; alu_opcode <= ir; alu_a <= data_in; end WRITE_DUMMY: begin //if (zero_page) begin // i believe this works fine control <= MEM_WRITE; // just for compatibility data_out <= data_in; // just for compatibility alu_opcode <= ir; alu_a <= data_in; end WRITE_EFFECTIVE: begin control <= MEM_WRITE; data_out <= alu_result; end endcase end always @ (*) begin // this is the next_state always next_state = FETCH_OP; // this should avoid latch inferring begin case (state) FETCH_OP: begin next_state = FETCH_LOW; end FETCH_LOW: begin if (accumulator || implied) begin next_state = FETCH_OP; // not sure end else if (zero_page) begin // zero page behaves exactly as absolute except that it has only the first fetch if (read || read_modify_write) begin next_state = READ_EFFECTIVE; end else if (write) begin next_state = WRITE_EFFECTIVE; end end else if (zero_page_indexed) begin next_state = CALCULATE_INDEX; end else begin next_state = FETCH_HIGH; end end FETCH_HIGH: begin if (immediate) begin next_state = FETCH_LOW; end else if (absolute) begin if (jump) begin next_state = SET_PC; end else if (read || read_modify_write) begin // TODO: verify if this should stay like this // (LDA, LDX, LDY, EOR, AND, ORA, ADC, SBC, CMP, BIT, LAX, NOP) reads // (ASL, LSR, ROL, ROR, INC, DEC, SLO, SRE, RLA, RRA, ISB, DCP) modifs // (STA, STX, STY, SAX) writes next_state = READ_EFFECTIVE; end else if (write) begin next_state = WRITE_EFFECTIVE; end end else if (absolute_indexed) begin next_state = CHECK_FOR_PAGE_CROSS; end end SET_PC, DO_OPERATION: begin next_state = FETCH_LOW; end READ_EFFECTIVE: begin if (read) begin next_state = DO_OPERATION; end else if (read_modify_write) begin next_state = WRITE_DUMMY; end end WRITE_EFFECTIVE: begin next_state = FETCH_OP; end CALCULATE_INDEX: begin if (read || read_modify_write) begin next_state = READ_EFFECTIVE; end else if (write) begin next_state = WRITE_EFFECTIVE; end end CHECK_FOR_PAGE_CROSS: begin if (alu_status[V] == 1'b0) begin // check the overflow bit if (read || read_modify_write) begin next_state = READ_EFFECTIVE; end else begin next_state = WRITE_EFFECTIVE; end end else begin // TODO: this is totally uncertain. absolute indexed mode must be reviewed if (read || read_modify_write) begin next_state = DO_OPERATION; end else begin next_state = WRITE_EFFECTIVE; end end end //end endcase end end // this always block is responsible for updating the address mode always @ (*) begin // TODO: the sensitivity may not be correct absolute = 1'b0; absolute_indexed = 1'b0; accumulator = 1'b0; immediate = 1'b0; implied = 1'b0; indirect = 1'b0; relative = 1'b0; zero_page = 1'b0; zero_page_indexed = 1'b0; read = 1'b0; read_modify_write = 1'b0; write = 1'b0; jump = 1'b0; if (state == FETCH_LOW) begin // TODO: does this works? case (data_in) BRK_IMP, CLC_IMP, CLD_IMP, CLI_IMP, CLV_IMP, DEX_IMP, DEY_IMP, INX_IMP, INY_IMP, NOP_IMP, PHA_IMP, PHP_IMP, PLA_IMP, PLP_IMP, RTI_IMP, RTS_IMP, SEC_IMP, SED_IMP, SEI_IMP, TAX_IMP, TAY_IMP, TSX_IMP, TXA_IMP, TXS_IMP, TYA_IMP: begin implied = 1'b1; end ASL_ACC, LSR_ACC, ROL_ACC, ROR_ACC: begin accumulator = 1'b1; end ADC_IMM, AND_IMM, CMP_IMM, CPX_IMM, CPY_IMM, EOR_IMM, LDA_IMM, LDX_IMM, LDY_IMM, ORA_IMM, SBC_IMM: begin immediate = 1'b1; end ADC_ZPG, AND_ZPG, ASL_ZPG, BIT_ZPG, CMP_ZPG, CPX_ZPG, CPY_ZPG, DEC_ZPG, EOR_ZPG, INC_ZPG, LDA_ZPG, LDX_ZPG, LDY_ZPG, LSR_ZPG, ORA_ZPG, ROL_ZPG, ROR_ZPG, SBC_ZPG, STA_ZPG, STX_ZPG, STY_ZPG: begin zero_page = 1'b1; end ADC_ZPX, AND_ZPX, ASL_ZPX, CMP_ZPX, DEC_ZPX, EOR_ZPX, INC_ZPX, LDA_ZPX, LDY_ZPX, LSR_ZPX, ORA_ZPX, ROL_ZPX, ROR_ZPX, SBC_ZPX, STA_ZPX, LDX_ZPY, STX_ZPY, STY_ZPX: begin zero_page_indexed = 1'b1; end BCC_REL, BCS_REL, BEQ_REL, BMI_REL, BNE_REL, BPL_REL, BVC_REL, BVS_REL: begin relative = 1'b1; end ADC_ABS, AND_ABS, ASL_ABS, BIT_ABS, CMP_ABS, CPX_ABS, CPY_ABS, DEC_ABS, EOR_ABS, INC_ABS, JMP_ABS, JSR_ABS, LDA_ABS, LDX_ABS, LDY_ABS, LSR_ABS, ORA_ABS, ROL_ABS, ROR_ABS, SBC_ABS, STA_ABS, STX_ABS, STY_ABS: begin absolute = 1'b1; end ADC_ABX, AND_ABX, ASL_ABX, CMP_ABX, DEC_ABX, EOR_ABX, INC_ABX, LDA_ABX, LDY_ABX, LSR_ABX, ORA_ABX, ROL_ABX, ROR_ABX, SBC_ABX, STA_ABX, ADC_ABY, AND_ABY, CMP_ABY, EOR_ABY, LDA_ABY, LDX_ABY, ORA_ABY, SBC_ABY, STA_ABY: begin absolute_indexed = 1'b1; end ADC_IDX, AND_IDX, CMP_IDX, EOR_IDX, LDA_IDX, ORA_IDX, SBC_IDX, STA_IDX, ADC_IDY, AND_IDY, CMP_IDY, EOR_IDY, LDA_IDY, ORA_IDY, SBC_IDY, STA_IDY: begin // all these opcodes are 8'hX1; TODO: optimize this indirect = 1'b1; end endcase if (data_in == JMP_ABS || data_in == JMP_IND) begin // the opcodes are 8'h4C and 8'h6C jump = 1'b1; end // if (data_in == ) /*LDA_IMM = 8'hA9, LDA_ZPG = 8'hA5, LDA_ZPX = 8'hB5, LDA_ABS = 8'hAD, LDA_ABX = 8'hBD, LDA_ABY = 8'hB9, LDA_IDX = 8'hA1, LDA_IDY = 8'hB1; LDX_IMM = 8'hA2, LDX_ZPG = 8'hA6, LDX_ZPY = 8'hB6, LDX_ABS = 8'hAE, LDX_ABY = 8'hBE; LDY_IMM = 8'hA0, LDY_ZPG = 8'hA4, LDY_ZPX = 8'hB4, LDY_ABS = 8'hAC, LDY_ABX = 8'hBC; */ end end endmodule
Go to most recent revision | Compare with Previous | Blame | View Log