URL
https://opencores.org/ocsvn/test_project/test_project/trunk
Subversion Repositories test_project
[/] [test_project/] [trunk/] [linux_sd_driver/] [Documentation/] [exception.txt] - Rev 62
Compare with Previous | Blame | View Log
Kernel level exception handling in Linux 2.1.8Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com>When a process runs in kernel mode, it often has to access usermode memory whose address has been passed by an untrusted program.To protect itself the kernel has to verify this address.In older versions of Linux this was done with theint verify_area(int type, const void * addr, unsigned long size)function (which has since been replaced by access_ok()).This function verified that the memory area starting at address'addr' and of size 'size' was accessible for the operation specifiedin type (read or write). To do this, verify_read had to look up thevirtual memory area (vma) that contained the address addr. In thenormal case (correctly working program), this test was successful.It only failed for a few buggy programs. In some kernel profilingtests, this normally unneeded verification used up a considerableamount of time.To overcome this situation, Linus decided to let the virtual memoryhardware present in every Linux-capable CPU handle this test.How does this work?Whenever the kernel tries to access an address that is currently notaccessible, the CPU generates a page fault exception and calls thepage fault handlervoid do_page_fault(struct pt_regs *regs, unsigned long error_code)in arch/i386/mm/fault.c. The parameters on the stack are set up bythe low level assembly glue in arch/i386/kernel/entry.S. The parameterregs is a pointer to the saved registers on the stack, error_codecontains a reason code for the exception.do_page_fault first obtains the unaccessible address from the CPUcontrol register CR2. If the address is within the virtual addressspace of the process, the fault probably occurred, because the pagewas not swapped in, write protected or something similar. However,we are interested in the other case: the address is not valid, thereis no vma that contains this address. In this case, the kernel jumpsto the bad_area label.There it uses the address of the instruction that caused the exception(i.e. regs->eip) to find an address where the execution can continue(fixup). If this search is successful, the fault handler modifies thereturn address (again regs->eip) and returns. The execution willcontinue at the address in fixup.Where does fixup point to?Since we jump to the contents of fixup, fixup obviously pointsto executable code. This code is hidden inside the user access macros.I have picked the get_user macro defined in include/asm/uaccess.h as anexample. The definition is somewhat hard to follow, so let's peek atthe code generated by the preprocessor and the compiler. I selectedthe get_user call in drivers/char/console.c for a detailed examination.The original code in console.c line 1405:get_user(c, buf);The preprocessor output (edited to become somewhat readable):({long __gu_err = - 14 , __gu_val = 0;const __typeof__(*( ( buf ) )) *__gu_addr = ((buf));if (((((0 + current_set[0])->tss.segment) == 0x18 ) ||(((sizeof(*(buf))) <= 0xC0000000UL) &&((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf)))))))do {__gu_err = 0;switch ((sizeof(*(buf)))) {case 1:__asm__ __volatile__("1: mov" "b" " %2,%" "b" "1\n""2:\n"".section .fixup,\"ax\"\n""3: movl %3,%0\n"" xor" "b" " %" "b" "1,%" "b" "1\n"" jmp 2b\n"".section __ex_table,\"a\"\n"" .align 4\n"" .long 1b,3b\n"".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ;break;case 2:__asm__ __volatile__("1: mov" "w" " %2,%" "w" "1\n""2:\n"".section .fixup,\"ax\"\n""3: movl %3,%0\n"" xor" "w" " %" "w" "1,%" "w" "1\n"" jmp 2b\n"".section __ex_table,\"a\"\n"" .align 4\n"" .long 1b,3b\n"".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err ));break;case 4:__asm__ __volatile__("1: mov" "l" " %2,%" "" "1\n""2:\n"".section .fixup,\"ax\"\n""3: movl %3,%0\n"" xor" "l" " %" "" "1,%" "" "1\n"" jmp 2b\n"".section __ex_table,\"a\"\n"" .align 4\n" " .long 1b,3b\n"".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err));break;default:(__gu_val) = __get_user_bad();}} while (0) ;((c)) = (__typeof__(*((buf))))__gu_val;__gu_err;});WOW! Black GCC/assembly magic. This is impossible to follow, so let'ssee what code gcc generates:> xorl %edx,%edx> movl current_set,%eax> cmpl $24,788(%eax)> je .L1424> cmpl $-1073741825,64(%esp)> ja .L1423> .L1424:> movl %edx,%eax> movl 64(%esp),%ebx> #APP> 1: movb (%ebx),%dl /* this is the actual user access */> 2:> .section .fixup,"ax"> 3: movl $-14,%eax> xorb %dl,%dl> jmp 2b> .section __ex_table,"a"> .align 4> .long 1b,3b> .text> #NO_APP> .L1423:> movzbl %dl,%esiThe optimizer does a good job and gives us something we can actuallyunderstand. Can we? The actual user access is quite obvious. Thanksto the unified address space we can just access the address in usermemory. But what does the .section stuff do?????To understand this we have to look at the final kernel:> objdump --section-headers vmlinux>> vmlinux: file format elf32-i386>> Sections:> Idx Name Size VMA LMA File off Algn> 0 .text 00098f40 c0100000 c0100000 00001000 2**4> CONTENTS, ALLOC, LOAD, READONLY, CODE> 1 .fixup 000016bc c0198f40 c0198f40 00099f40 2**0> CONTENTS, ALLOC, LOAD, READONLY, CODE> 2 .rodata 0000f127 c019a5fc c019a5fc 0009b5fc 2**2> CONTENTS, ALLOC, LOAD, READONLY, DATA> 3 __ex_table 000015c0 c01a9724 c01a9724 000aa724 2**2> CONTENTS, ALLOC, LOAD, READONLY, DATA> 4 .data 0000ea58 c01abcf0 c01abcf0 000abcf0 2**4> CONTENTS, ALLOC, LOAD, DATA> 5 .bss 00018e21 c01ba748 c01ba748 000ba748 2**2> ALLOC> 6 .comment 00000ec4 00000000 00000000 000ba748 2**0> CONTENTS, READONLY> 7 .note 00001068 00000ec4 00000ec4 000bb60c 2**0> CONTENTS, READONLYThere are obviously 2 non standard ELF sections in the generated objectfile. But first we want to find out what happened to our code in thefinal kernel executable:> objdump --disassemble --section=.text vmlinux>> c017e785 <do_con_write+c1> xorl %edx,%edx> c017e787 <do_con_write+c3> movl 0xc01c7bec,%eax> c017e78c <do_con_write+c8> cmpl $0x18,0x314(%eax)> c017e793 <do_con_write+cf> je c017e79f <do_con_write+db>> c017e795 <do_con_write+d1> cmpl $0xbfffffff,0x40(%esp,1)> c017e79d <do_con_write+d9> ja c017e7a7 <do_con_write+e3>> c017e79f <do_con_write+db> movl %edx,%eax> c017e7a1 <do_con_write+dd> movl 0x40(%esp,1),%ebx> c017e7a5 <do_con_write+e1> movb (%ebx),%dl> c017e7a7 <do_con_write+e3> movzbl %dl,%esiThe whole user memory access is reduced to 10 x86 machine instructions.The instructions bracketed in the .section directives are no longerin the normal execution path. They are located in a different sectionof the executable file:> objdump --disassemble --section=.fixup vmlinux>> c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax> c0199ffa <.fixup+10ba> xorb %dl,%dl> c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3>And finally:> objdump --full-contents --section=__ex_table vmlinux>> c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................> c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................> c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................or in human readable byte order:> c01aa7c4 c017c093 c0199fe0 c017c097 c017c099 ................> c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................^^^^^^^^^^^^^^^^^this is the interesting part!> c01aa7e4 c0180a08 c019a001 c0180a0a c019a004 ................What happened? The assembly directives.section .fixup,"ax".section __ex_table,"a"told the assembler to move the following code to the specifiedsections in the ELF object file. So the instructions3: movl $-14,%eaxxorb %dl,%dljmp 2bended up in the .fixup section of the object file and the addresses.long 1b,3bended up in the __ex_table section of the object file. 1b and 3bare local labels. The local label 1b (1b stands for next label 1backward) is the address of the instruction that might fault, i.e.in our case the address of the label 1 is c017e7a5:the original assembly code: > 1: movb (%ebx),%dland linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dlThe local label 3 (backwards again) is the address of the code to handlethe fault, in our case the actual value is c0199ff5:the original assembly code: > 3: movl $-14,%eaxand linked in vmlinux : > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eaxThe assembly code> .section __ex_table,"a"> .align 4> .long 1b,3bbecomes the value pair> c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................^this is ^this is1b 3bc017e7a5,c0199ff5 in the exception table of the kernel.So, what actually happens if a fault from kernel mode with no suitablevma occurs?1.) access to invalid address:> c017e7a5 <do_con_write+e1> movb (%ebx),%dl2.) MMU generates exception3.) CPU calls do_page_fault4.) do page fault calls search_exception_table (regs->eip == c017e7a5);5.) search_exception_table looks up the address c017e7a5 in theexception table (i.e. the contents of the ELF section __ex_table)and returns the address of the associated fault handle code c0199ff5.6.) do_page_fault modifies its own return address to point to the faulthandle code and returns.7.) execution continues in the fault handling code.8.) 8a) EAX becomes -EFAULT (== -14)8b) DL becomes zero (the value we "read" from user space)8c) execution continues at local label 2 (address of theinstruction immediately after the faulting user access).The steps 8a to 8c in a certain way emulate the faulting instruction.That's it, mostly. If you look at our example, you might ask whywe set EAX to -EFAULT in the exception handler code. Well, theget_user macro actually returns a value: 0, if the user access wassuccessful, -EFAULT on failure. Our original code did not test thisreturn value, however the inline assembly code in get_user tries toreturn -EFAULT. GCC selected EAX to return this value.NOTE:Due to the way that the exception table is built and needs to be ordered,only use exceptions for code in the .text section. Any other sectionwill cause the exception table to not be sorted correctly, and theexceptions will fail.
