URL
https://opencores.org/ocsvn/test_project/test_project/trunk
Subversion Repositories test_project
[/] [test_project/] [trunk/] [linux_sd_driver/] [Documentation/] [ramdisk.txt] - Rev 62
Compare with Previous | Blame | View Log
Using the RAM disk block device with Linux------------------------------------------Contents:1) Overview2) Kernel Command Line Parameters3) Using "rdev -r"4) An Example of Creating a Compressed RAM Disk1) Overview-----------The RAM disk driver is a way to use main system memory as a block device. Itis required for initrd, an initial filesystem used if you need to load modulesin order to access the root filesystem (see Documentation/initrd.txt). It canalso be used for a temporary filesystem for crypto work, since the contentsare erased on reboot.The RAM disk dynamically grows as more space is required. It does this by usingRAM from the buffer cache. The driver marks the buffers it is using as dirtyso that the VM subsystem does not try to reclaim them later.The RAM disk supports up to 16 RAM disks by default, and can be reconfiguredto support an unlimited number of RAM disks (at your own risk). Just changethe configuration symbol BLK_DEV_RAM_COUNT in the Block drivers config menuand (re)build the kernel.To use RAM disk support with your system, run './MAKEDEV ram' from the /devdirectory. RAM disks are all major number 1, and start with minor number 0for /dev/ram0, etc. If used, modern kernels use /dev/ram0 for an initrd.The new RAM disk also has the ability to load compressed RAM disk images,allowing one to squeeze more programs onto an average installation orrescue floppy disk.2) Kernel Command Line Parameters---------------------------------ramdisk_size=N==============This parameter tells the RAM disk driver to set up RAM disks of N k size. Thedefault is 4096 (4 MB) (8192 (8 MB) on S390).ramdisk_blocksize=N===================This parameter tells the RAM disk driver how many bytes to use per block. Thedefault is 1024 (BLOCK_SIZE).3) Using "rdev -r"------------------The usage of the word (two bytes) that "rdev -r" sets in the kernel image isas follows. The low 11 bits (0 -> 10) specify an offset (in 1 k blocks) of upto 2 MB (2^11) of where to find the RAM disk (this used to be the size). Bit14 indicates that a RAM disk is to be loaded, and bit 15 indicates whether aprompt/wait sequence is to be given before trying to read the RAM disk. Sincethe RAM disk dynamically grows as data is being written into it, a size fieldis not required. Bits 11 to 13 are not currently used and may as well be zero.These numbers are no magical secrets, as seen below:./arch/i386/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF./arch/i386/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000./arch/i386/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000Consider a typical two floppy disk setup, where you will have thekernel on disk one, and have already put a RAM disk image onto disk #2.Hence you want to set bits 0 to 13 as 0, meaning that your RAM diskstarts at an offset of 0 kB from the beginning of the floppy.The command line equivalent is: "ramdisk_start=0"You want bit 14 as one, indicating that a RAM disk is to be loaded.The command line equivalent is: "load_ramdisk=1"You want bit 15 as one, indicating that you want a prompt/keypresssequence so that you have a chance to switch floppy disks.The command line equivalent is: "prompt_ramdisk=1"Putting that together gives 2^15 + 2^14 + 0 = 49152 for an rdev word.So to create disk one of the set, you would do:/usr/src/linux# cat arch/i386/boot/zImage > /dev/fd0/usr/src/linux# rdev /dev/fd0 /dev/fd0/usr/src/linux# rdev -r /dev/fd0 49152If you make a boot disk that has LILO, then for the above, you would use:append = "ramdisk_start=0 load_ramdisk=1 prompt_ramdisk=1"Since the default start = 0 and the default prompt = 1, you could use:append = "load_ramdisk=1"4) An Example of Creating a Compressed RAM Disk----------------------------------------------To create a RAM disk image, you will need a spare block device toconstruct it on. This can be the RAM disk device itself, or anunused disk partition (such as an unmounted swap partition). For thisexample, we will use the RAM disk device, "/dev/ram0".Note: This technique should not be done on a machine with less than 8 MBof RAM. If using a spare disk partition instead of /dev/ram0, then thisrestriction does not apply.a) Decide on the RAM disk size that you want. Say 2 MB for this example.Create it by writing to the RAM disk device. (This step is not currentlyrequired, but may be in the future.) It is wise to zero out thearea (esp. for disks) so that maximal compression is achieved forthe unused blocks of the image that you are about to create.dd if=/dev/zero of=/dev/ram0 bs=1k count=2048b) Make a filesystem on it. Say ext2fs for this example.mke2fs -vm0 /dev/ram0 2048c) Mount it, copy the files you want to it (eg: /etc/* /dev/* ...)and unmount it again.d) Compress the contents of the RAM disk. The level of compressionwill be approximately 50% of the space used by the files. Unusedspace on the RAM disk will compress to almost nothing.dd if=/dev/ram0 bs=1k count=2048 | gzip -v9 > /tmp/ram_image.gze) Put the kernel onto the floppydd if=zImage of=/dev/fd0 bs=1kf) Put the RAM disk image onto the floppy, after the kernel. Use an offsetthat is slightly larger than the kernel, so that you can put another(possibly larger) kernel onto the same floppy later without overlappingthe RAM disk image. An offset of 400 kB for kernels about 350 kB insize would be reasonable. Make sure offset+size of ram_image.gz isnot larger than the total space on your floppy (usually 1440 kB).dd if=/tmp/ram_image.gz of=/dev/fd0 bs=1k seek=400g) Use "rdev" to set the boot device, RAM disk offset, prompt flag, etc.For prompt_ramdisk=1, load_ramdisk=1, ramdisk_start=400, one wouldhave 2^15 + 2^14 + 400 = 49552.rdev /dev/fd0 /dev/fd0rdev -r /dev/fd0 49552That is it. You now have your boot/root compressed RAM disk floppy. Someusers may wish to combine steps (d) and (f) by using a pipe.--------------------------------------------------------------------------Paul Gortmaker 12/95Changelog:----------10-22-04 : Updated to reflect changes in command line options, removeobsolete references, general cleanup.James Nelson (james4765@gmail.com)12-95 : Original Document
