URL
https://opencores.org/ocsvn/theia_gpu/theia_gpu/trunk
Subversion Repositories theia_gpu
[/] [theia_gpu/] [branches/] [beta_1.2/] [rtl/] [Collaterals/] [aDefinitions.v] - Rev 116
Go to most recent revision | Compare with Previous | Blame | View Log
/********************************************************************************** Theaia, Ray Cast Programable graphic Processing Unit. Copyright (C) 2009 Diego Valverde (diego.valverde.g@gmail.com) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ***********************************************************************************/ /******************************************************************************* Module Description: This module defines constants that are going to be used all over the code. By know you have may noticed that all constants are pre-compilation define directives. This is for simulation perfomance reasons mainly. *******************************************************************************/ `define MAX_CORES 4 //--------------------------------------------------------------------------------- //Verilog provides a `default_nettype none compiler directive. When //this directive is set, implicit data types are disabled, which will make any //undeclared signal name a syntax error.This is very usefull to avoid annoying //automatic 1 bit long wire declaration where you don't want them to be! `default_nettype none //The clock cycle `define CLOCK_CYCLE 5 `define CLOCK_PERIOD 10 //--------------------------------------------------------------------------------- //Defines the Scale. This very important because it sets the fixed point precsision. //The Scale defines the number bits that are used as the decimal part of the number. //The code has been written in such a way that allows you to change the value of the //Scale, so that it is possible to experimet with different scenarios. SCALE can be //no smaller that 1 and no bigger that WIDTH. `define SCALE 17 //The next 2 defines the length of the registers, buses and other structures, //do not change this valued unless you really know what you are doing (seriously!) `define WIDTH 32 `define WB_WIDTH 32 //width of wish-bone buses `define LONG_WIDTH 64 `define WB_SIMPLE_READ_CYCLE 0 `define WB_SIMPLE_WRITE_CYCLE 1 //--------------------------------------------------------------------------------- //Next are the constants that define the size of the instructions. //instructions are formed like this: // Tupe I: // Operand (of size INSTRUCTION_OP_LENGTH ) // DestinationAddr (of size DATA_ADDRESS_WIDTH ) // SourceAddrr1 (of size DATA_ADDRESS_WIDTH ) // SourceAddrr2 (of size DATA_ADDRESS_WIDTH ) //Type II: // Operand (of size INSTRUCTION_OP_LENGTH ) // DestinationAddr (of size DATA_ADDRESS_WIDTH ) // InmeadiateValue (of size WIDTH = DATA_ADDRESS_WIDTH * 2 ) //You can play around with the size of instuctions, but keep //in mind that Bits 3 and 4 of the Operand have a special meaning //that is used for the jump familiy of instructions (see Documentation). //Also the MSB of Operand is used by the decoder to distinguish //between Type I and Type II instructions. `define INSTRUCTION_WIDTH 64//55 `define INSTRUCTION_OP_LENGTH 16//7 `define INSTRUCTION_IMM_BITPOS 54 `define INSTRUCTION_IMM_BIT 6 //don't change this! //Defines the Lenght of Memory blocks `define DATA_ROW_WIDTH 96 `define DATA_ADDRESS_WIDTH 16 `define ROM_ADDRESS_WIDTH 16 `define ROM_ADDRESS_SEL_MASK `ROM_ADDRESS_WIDTH'h8000 //--------------------------------------------------------------------------------- //Defines the ucode memory entry point for the various ucode routines //Please keep this syntax ENTRYPOINT_ADDR_* because the perl script that //parses the user code expects this pattern in order to read in the tokens //Internal Entry points (default ROM Address) `define ENTRYPOINT_ADRR_INITIAL `ROM_ADDRESS_WIDTH'd0 //0 - This should always be zero `define ENTRYPOINT_ADRR_CPPU `ROM_ADDRESS_WIDTH'd29 //E `define ENTRYPOINT_ADRR_RGU `ROM_ADDRESS_WIDTH'd32 //11 `define ENTRYPOINT_ADRR_AABBIU `ROM_ADDRESS_WIDTH'd53 //21 `define ENTRYPOINT_ADRR_BIU `ROM_ADDRESS_WIDTH'd141 //79 `define ENTRYPOINT_ADRR_PSU `ROM_ADDRESS_WIDTH'd216 //C4 `define ENTRYPOINT_ADRR_PSU2 `ROM_ADDRESS_WIDTH'd232 //D4 `define ENTRYPOINT_ADRR_TCC `ROM_ADDRESS_WIDTH'd174 //9A `define ENTRYPOINT_ADRR_NPG `ROM_ADDRESS_WIDTH'd39 //18 //User Entry points (default ROM Address) `define ENTRYPOINT_ADRR_USERCONSTANTS `ROM_ADDRESS_WIDTH'd241 //DD `define ENTRYPOINT_ADRR_PIXELSHADER `ROM_ADDRESS_WIDTH'd243 //DF //Please keep this syntax ENTRYPOINT_INDEX_* because the perl script that //parses the user code expects this pattern in order to read in the tokens //Internal subroutines `define ENTRYPOINT_INDEX_INITIAL `ROM_ADDRESS_WIDTH'h8000 `define ENTRYPOINT_INDEX_CPPU `ROM_ADDRESS_WIDTH'h8001 `define ENTRYPOINT_INDEX_RGU `ROM_ADDRESS_WIDTH'h8002 `define ENTRYPOINT_INDEX_AABBIU `ROM_ADDRESS_WIDTH'h8003 `define ENTRYPOINT_INDEX_BIU `ROM_ADDRESS_WIDTH'h8004 `define ENTRYPOINT_INDEX_PSU `ROM_ADDRESS_WIDTH'h8005 `define ENTRYPOINT_INDEX_PSU2 `ROM_ADDRESS_WIDTH'h8006 `define ENTRYPOINT_INDEX_TCC `ROM_ADDRESS_WIDTH'h8007 `define ENTRYPOINT_INDEX_NPG `ROM_ADDRESS_WIDTH'h8008 //User defined subroutines `define ENTRYPOINT_INDEX_USERCONSTANTS `ROM_ADDRESS_WIDTH'h8009 `define ENTRYPOINT_INDEX_PIXELSHADER `ROM_ADDRESS_WIDTH'h800A `define USER_AABBIU_UCODE_ADDRESS `ROM_ADDRESS_WIDTH'b1000000000000000 //--------------------------------------------------------------------------------- //This handy little macro allows me to print stuff either to STDOUT or a file. //Notice that the compilation vairable DUMP_CODE must be set if you want to print //to a file. In XILINX right click 'Simulate Beahvioral Model' -> Properties and //under 'Speceify `define macro name and value' type 'DEBUG=1|DUMP_CODE=1' `ifdef DUMP_CODE `define LOGME $fwrite(ucode_file, `else `define LOGME $write( `endif //--------------------------------------------------------------------------------- `define RT_TRUE 48'b1 `define RT_FALSE 48'b0 //--------------------------------------------------------------------------------- `define GENERAL_PURPOSE_REG_ADDR_MASK `DATA_ADDRESS_WIDTH'h1F `define VOID `DATA_ADDRESS_WIDTH'd0 //0000 //** Control register bits **// `define CR_EN_LIGHTS 0 `define CR_EN_TEXTURE 1 `define CR_USER_AABBIU 2 /** Swapping registers **/ //** Configuration Registers **// `define CREG_LIGHT_INFO `DATA_ADDRESS_WIDTH'd0 `define CREG_CAMERA_POSITION `DATA_ADDRESS_WIDTH'd1 `define CREG_PROJECTION_WINDOW_MIN `DATA_ADDRESS_WIDTH'd2 `define CREG_PROJECTION_WINDOW_MAX `DATA_ADDRESS_WIDTH'd3 `define CREG_RESOLUTION `DATA_ADDRESS_WIDTH'd4 `define CREG_TEXTURE_SIZE `DATA_ADDRESS_WIDTH'd5 `define CREG_PIXEL_2D_INITIAL_POSITION `DATA_ADDRESS_WIDTH'd6 `define CREG_PIXEL_2D_FINAL_POSITION `DATA_ADDRESS_WIDTH'd7 `define CREG_FIRST_LIGTH `DATA_ADDRESS_WIDTH'd8 `define CREG_FIRST_LIGTH_DIFFUSE `DATA_ADDRESS_WIDTH'd8 //OK, so from address 0x06 to 0x0F is where the lights are,watch out values are harcoded //for now!! (look in ROM.v for hardcoded values!!!) //Don't change the order of the registers. CREG_V* and CREG_UV* registers //need to be in that specific order for the triangle fetcher to work //correctly! `define CREG_AABBMIN `DATA_ADDRESS_WIDTH'd42 `define CREG_AABBMAX `DATA_ADDRESS_WIDTH'd43 `define CREG_V0 `DATA_ADDRESS_WIDTH'd44 //002a `define CREG_UV0 `DATA_ADDRESS_WIDTH'd45 //002b `define CREG_V1 `DATA_ADDRESS_WIDTH'd46 //002c `define CREG_UV1 `DATA_ADDRESS_WIDTH'd47 //002d `define CREG_V2 `DATA_ADDRESS_WIDTH'd48 //002e `define CREG_UV2 `DATA_ADDRESS_WIDTH'd49 //002f `define CREG_TRI_DIFFUSE `DATA_ADDRESS_WIDTH'd50 //0030 `define CREG_TEX_COLOR1 `DATA_ADDRESS_WIDTH'd53 `define CREG_TEX_COLOR2 `DATA_ADDRESS_WIDTH'd54 `define CREG_TEX_COLOR3 `DATA_ADDRESS_WIDTH'd55 `define CREG_TEX_COLOR4 `DATA_ADDRESS_WIDTH'd56 `define CREG_TEX_COLOR5 `DATA_ADDRESS_WIDTH'd57 `define CREG_TEX_COLOR6 `DATA_ADDRESS_WIDTH'd58 `define CREG_TEX_COLOR7 `DATA_ADDRESS_WIDTH'd59 /** Non-Swapping registers **/ // ** User Registers **// //General Purpose registers, the user may put what ever he/she //wants in here... `define C1 `DATA_ADDRESS_WIDTH'd64 `define C2 `DATA_ADDRESS_WIDTH'd65 `define C3 `DATA_ADDRESS_WIDTH'd66 `define C4 `DATA_ADDRESS_WIDTH'd67 `define C5 `DATA_ADDRESS_WIDTH'd68 `define C6 `DATA_ADDRESS_WIDTH'd69 `define C7 `DATA_ADDRESS_WIDTH'd70 `define R1 `DATA_ADDRESS_WIDTH'd71 `define R2 `DATA_ADDRESS_WIDTH'd72 `define R3 `DATA_ADDRESS_WIDTH'd73 `define R4 `DATA_ADDRESS_WIDTH'd74 `define R5 `DATA_ADDRESS_WIDTH'd75 `define R6 `DATA_ADDRESS_WIDTH'd76 `define R7 `DATA_ADDRESS_WIDTH'd77 `define R8 `DATA_ADDRESS_WIDTH'd78 `define R9 `DATA_ADDRESS_WIDTH'd79 `define R10 `DATA_ADDRESS_WIDTH'd80 `define R11 `DATA_ADDRESS_WIDTH'd81 `define R12 `DATA_ADDRESS_WIDTH'd82 //** Internal Registers **// `define CREG_PROJECTION_WINDOW_SCALE `DATA_ADDRESS_WIDTH'd83 `define CREG_UNORMALIZED_DIRECTION `DATA_ADDRESS_WIDTH'd84 `define CREG_RAY_DIRECTION `DATA_ADDRESS_WIDTH'd85 `define CREG_E1_LAST `DATA_ADDRESS_WIDTH'd86 `define CREG_E2_LAST `DATA_ADDRESS_WIDTH'd87 `define CREG_T `DATA_ADDRESS_WIDTH'd88 `define CREG_P `DATA_ADDRESS_WIDTH'd89 `define CREG_Q `DATA_ADDRESS_WIDTH'd90 `define CREG_UV0_LAST `DATA_ADDRESS_WIDTH'd91 `define CREG_UV1_LAST `DATA_ADDRESS_WIDTH'd92 `define CREG_UV2_LAST `DATA_ADDRESS_WIDTH'd93 `define CREG_TRI_DIFFUSE_LAST `DATA_ADDRESS_WIDTH'd94 `define CREG_LAST_t `DATA_ADDRESS_WIDTH'd95 `define CREG_LAST_u `DATA_ADDRESS_WIDTH'd96 `define CREG_LAST_v `DATA_ADDRESS_WIDTH'd97 `define CREG_COLOR_ACC `DATA_ADDRESS_WIDTH'd98 `define CREG_t `DATA_ADDRESS_WIDTH'd99 `define CREG_E1 `DATA_ADDRESS_WIDTH'd100 `define CREG_E2 `DATA_ADDRESS_WIDTH'd101 `define CREG_DELTA `DATA_ADDRESS_WIDTH'd102 `define CREG_u `DATA_ADDRESS_WIDTH'd103 `define CREG_v `DATA_ADDRESS_WIDTH'd104 `define CREG_H1 `DATA_ADDRESS_WIDTH'd105 `define CREG_H2 `DATA_ADDRESS_WIDTH'd106 `define CREG_H3 `DATA_ADDRESS_WIDTH'd107 `define CREG_PIXEL_PITCH `DATA_ADDRESS_WIDTH'd108 `define CREG_LAST_COL `DATA_ADDRESS_WIDTH'd109 //the last valid column, simply CREG_RESOLUTIONX - 1 `define CREG_TEXTURE_COLOR `DATA_ADDRESS_WIDTH'd110 `define CREG_PIXEL_2D_POSITION `DATA_ADDRESS_WIDTH'd111 `define CREG_TEXWEIGHT1 `DATA_ADDRESS_WIDTH'd112 `define CREG_TEXWEIGHT2 `DATA_ADDRESS_WIDTH'd113 `define CREG_TEXWEIGHT3 `DATA_ADDRESS_WIDTH'd114 `define CREG_TEXWEIGHT4 `DATA_ADDRESS_WIDTH'd115 //** Ouput registers **// `define OREG_PIXEL_COLOR `DATA_ADDRESS_WIDTH'd128 `define OREG_TEX_COORD1 `DATA_ADDRESS_WIDTH'd129 `define OREG_TEX_COORD2 `DATA_ADDRESS_WIDTH'd130 `define OREG_ADDR_O `DATA_ADDRESS_WIDTH'd131 //------------------------------------------------------------- //*** Instruction Set *** //The order of the instrucitons is important here!. Don't change //it unles you know what you are doing. For example all the 'SET' //family of instructions have the MSB bit in 1. This means that //if you add an instruction and the MSB=1, this instruction will treated //as type II (see manual) meaning the second 32bit argument is expected to be //an inmediate value instead of a register address! //Another example is that in the JUMP family Bits 3 and 4 have a special //meaning: b4b3 = 01 => X jump type, b4b3 = 10 => Y jump type, finally //b4b3 = 11 means Z jump type. //All this is just to tell you: Don't play with these values! // *** Type I Instructions (OP DST REG1 REG2) *** `define NOP `INSTRUCTION_OP_LENGTH'b0_000000 //0 `define ADD `INSTRUCTION_OP_LENGTH'b0_000001 //1 `define SUB `INSTRUCTION_OP_LENGTH'b0_000010 //2 `define DIV `INSTRUCTION_OP_LENGTH'b0_000011 //3 `define MUL `INSTRUCTION_OP_LENGTH'b0_000100 //4 `define MAG `INSTRUCTION_OP_LENGTH'b0_000101 //5 //`define NOP `INSTRUCTION_OP_LENGTH'b0_000110 //6 `define COPY `INSTRUCTION_OP_LENGTH'b0_000111 //7 `define JGX `INSTRUCTION_OP_LENGTH'b0_001_000 //8 `define JLX `INSTRUCTION_OP_LENGTH'b0_001_001 //9 `define JEQX `INSTRUCTION_OP_LENGTH'b0_001_010 //10 - A `define JNEX `INSTRUCTION_OP_LENGTH'b0_001_011 //11 - B `define JGEX `INSTRUCTION_OP_LENGTH'b0_001_100 //12 - C `define JLEX `INSTRUCTION_OP_LENGTH'b0_001_101 //13 - D `define INC `INSTRUCTION_OP_LENGTH'b0_001_110 //14 - E `define ZERO `INSTRUCTION_OP_LENGTH'b0_001_111 //15 - F `define JGY `INSTRUCTION_OP_LENGTH'b0_010_000 //16 `define JLY `INSTRUCTION_OP_LENGTH'b0_010_001 //17 `define JEQY `INSTRUCTION_OP_LENGTH'b0_010_010 //18 `define JNEY `INSTRUCTION_OP_LENGTH'b0_010_011 //19 `define JGEY `INSTRUCTION_OP_LENGTH'b0_010_100 //20 `define JLEY `INSTRUCTION_OP_LENGTH'b0_010_101 //21 `define CROSS `INSTRUCTION_OP_LENGTH'b0_010_110 //22 `define DOT `INSTRUCTION_OP_LENGTH'b0_010_111 //23 `define JGZ `INSTRUCTION_OP_LENGTH'b0_011_000 //24 `define JLZ `INSTRUCTION_OP_LENGTH'b0_011_001 //25 `define JEQZ `INSTRUCTION_OP_LENGTH'b0_011_010 //26 `define JNEZ `INSTRUCTION_OP_LENGTH'b0_011_011 //27 `define JGEZ `INSTRUCTION_OP_LENGTH'b0_011_100 //28 `define JLEZ `INSTRUCTION_OP_LENGTH'b0_011_101 //29 //The next instruction is for simulation debug only //not to be synthetized! Pretty much behaves the same //as a NOP, only that prints the register value to //a log file called 'Registers.log' `ifdef DEBUG `define DEBUG_PRINT `INSTRUCTION_OP_LENGTH'b0_011_110 //30 `endif `define MULP `INSTRUCTION_OP_LENGTH'b0_011_111 //31 R1.z = S1.x * S1.y `define MOD `INSTRUCTION_OP_LENGTH'b0_100_000 //32 R = MODULO( S1,S2 ) `define FRAC `INSTRUCTION_OP_LENGTH'b0_100_001 //33 R =FractionalPart( S1 ) `define INTP `INSTRUCTION_OP_LENGTH'b0_100_010 //34 R =IntergerPart( S1 ) `define NEG `INSTRUCTION_OP_LENGTH'b0_100_011 //35 R = -S1 `define DEC `INSTRUCTION_OP_LENGTH'b0_100_100 //36 R = S1-- `define XCHANGEX `INSTRUCTION_OP_LENGTH'b0_100_101 // R.x = S2.x, R.y = S1.y, R.z = S1.z `define XCHANGEY `INSTRUCTION_OP_LENGTH'b0_100_110 // R.x = S1.x, R.y = S2.y, R.z = S1.z `define XCHANGEZ `INSTRUCTION_OP_LENGTH'b0_100_111 // R.x = S1.x, R.y = S1.y, R.z = S2.z `define IMUL `INSTRUCTION_OP_LENGTH'b0_101_000 // R = INTEGER( S1 * S2 ) `define UNSCALE `INSTRUCTION_OP_LENGTH'b0_101_001 // R = S1 >> SCALE `define RESCALE `INSTRUCTION_OP_LENGTH'b0_101_010 // R = S1 << SCALE `define INCX `INSTRUCTION_OP_LENGTH'b0_101_011 // R.X = S1.X + 1 `define INCY `INSTRUCTION_OP_LENGTH'b0_101_100 // R.Y = S1.Y + 1 `define INCZ `INSTRUCTION_OP_LENGTH'b0_101_101 // R.Z = S1.Z + 1 //*** Type II Instructions (OP DST REG1 IMM) *** `define RETURN `INSTRUCTION_OP_LENGTH'b1_000000 //64 0x40 `define SETX `INSTRUCTION_OP_LENGTH'b1_000001 //65 0x41 `define SETY `INSTRUCTION_OP_LENGTH'b1_000010 //66 `define SETZ `INSTRUCTION_OP_LENGTH'b1_000011 //67 `define SWIZZLE3D `INSTRUCTION_OP_LENGTH'b1_000100 //68 `define JMP `INSTRUCTION_OP_LENGTH'b1_011000 //56 //------------------------------------------------------------- `define SWIZZLE_XXX 32'd0 `define SWIZZLE_YYY 32'd1 `define SWIZZLE_ZZZ 32'd2 `define SWIZZLE_XYY 32'd3 `define SWIZZLE_XXY 32'd4 `define SWIZZLE_XZZ 32'd5 `define SWIZZLE_XXZ 32'd6 `define SWIZZLE_YXX 32'd7 `define SWIZZLE_YYX 32'd8 `define SWIZZLE_YZZ 32'd9 `define SWIZZLE_YYZ 32'd10 `define SWIZZLE_ZXX 32'd11 `define SWIZZLE_ZZX 32'd12 `define SWIZZLE_ZYY 32'd13 `define SWIZZLE_ZZY 32'd14 `define SWIZZLE_XZX 32'd15 `define SWIZZLE_XYX 32'd16 `define SWIZZLE_YXY 32'd17 `define SWIZZLE_YZY 32'd18 `define SWIZZLE_ZXZ 32'd19 `define SWIZZLE_ZYZ 32'd20 `define SWIZZLE_YXZ 32'd21 //`define REG_BUS_OWNED_BY_BCU 0 //0000 `define REG_BUS_OWNED_BY_NULL 0 //0010 `define REG_BUS_OWNED_BY_GFU 1 //0001 `define REG_BUS_OWNED_BY_UCODE 2 //0011 `define OP_WIDTH `INSTRUCTION_OP_LENGTH `define INST_WIDTH 5 `define MULTIPLICATION 0 `define DIVISION 1 `define ENABLE_ALU_AB 3'b001 `define ENABLE_ALU_CD 3'b010 `define ENABLE_ALU_EF 3'b100 `define ALU_CONTROL_IS_NULL 0 `define ALU_CONTROL_IS_RGU 1 `define ALU_CONTROL_IS_AABBIU 2 `define ALU_CONTROL_IS_CPPU 3 `define UCODE_CONTROL_IS_CU 0 `define UCODE_CONTROL_IS_IFU 1 `define FLOATING_POINT_WIDTH 32 `define FIXED_POINT_WIDTH 32//128 `define IEEE754_BIAS 127 `define NORMAL_EXIT 0 `define DIVISION_BY_ZERO 1 `define NULL 0 `define RAY_TYPE_I 1 `define RAY_TYPE_II 2 `define RAY_TYPE_III 3 //Scheduler commands `define SCHEDULER_NULL_COMMAND 0 `define REG_SELECTOR_WIDTH 5 //Main state machine control values `define READ_CONFIGURATION_DATA 2 `define WRITE_NO_HIT 20 //Control values for BusUnitInterface `define INITIAL_PROTOCOL_STATE 0 `define GET_NEXT_CONFIGURATION_PACKET 4 `define READ_COMMAND_DATA 5 `define WAIT_FOR_CONTROL_UNIT_COMMAND 6 `define READ_COMMAND 7 `define GET_NEXT_DATA_PACKET 8 `define IDLE 9 `define READ_CONFIGURATION_DATA_FROM_BUS 10 `define READ_TASK_DATA_FROM_BUS 12 `define WRITE_TASK_RESULTS_TO_BUS 13 `define ACK_LAST_GO_IDLE 14 `define REQUEST_BUS_FOR_WRITE_OPERATION 23 `define WAIT_FOR_BUS_WRITE_PERMISSION 24 `define WRITE_DATA_TO_BUS 25 `define ACK_BUS_READ_OPERATION 26 `define WAIT_FOR_NEXT_DATA_PACKET 27 `define BCU_READ_LANES 28 `define CONFIGURATION_3LANE_DATA_PACKET 12 `define BCU_WAIT_FOR_RAM_WRITE 29 `define BCU_READ_DATA_LANE_C 30 `define BCU_READ_DATA_LANE_D 31 `define BCU_WRITE_LAST_LANE_TO_RAM 32 `define BCU_WRITE_NO_HIT_TO_BUS 33 `define BCU_ACK_BUS_WRITE_DATA 34 `define BCU_REQUEST_COLOR_ACC_FROM_RAM 35 `define BCU_READ_COLOR_ACC_FROM_RAM 36 `define WAIT_FOR_CONTROL_UNIT_ACK 37 `define BCU_REQUEST_COLOR_FROM_RAM 38 `define BCU_RAM_READ_DELAY 39 `define BCU_READ_COLOR_FROM_RAM 40 `define FETCH_GEOMETRY 1 //Controlo values for RGU `define RG_AFTER_RESET_STATE 1 `define RG_WAIT_FOR_CONTROL_UNIT_COMMAND 2 `define EXECUTE_TASK_STEP1 3 `define EXECUTE_TASK_STEP2 4 `define EXECUTE_TASK_STEP3 5 `define EXECUTE_TASK_STEP4 6 `define EXECUTE_TASK_STEP5 7 //Cnotrol values for GFU `define REQUSET_PARENT_CUBE 5 `define FETCH_CUBE_STAGE_I 6 `define FETCH_CUBE_STAGE_I_ACK 7 `define FETCH_CUBE_STAGE_II 8 `define FETCH_CUBE_STAGE_II_ACK 9 `define TRIGGER_CUBE_INTERSECTION_UNIT 10 //Control values for AABBIU `define RAY_INSIDE_BOX_TEST 5 `define WAIT_FOR_T_DIVISION_RESULTS 6 `define CALCULE_AABB_INTERSECTION 7 `define WAIT_FOR_T_MULTIPLICATION_RESULTS 8 `define CALCULATE_AABB_HIT 9 `define AABB_WRITE_RESULTS 10 //RegisterFileVariables `define AGENT_WRITING_VALUE_TO_REGISTER_BUS 1 `define AGENT_READING_VALUE_FROM_REGISTER_BUS 0 //Division State Machine Constants `define INITIAL_DIVISION_STATE 6'd1 `define DIVISION_REVERSE_LAST_ITERATION 6'd2 `define PRE_CALCULATE_REMAINDER 6'd3 `define CALCULATE_REMAINDER 6'd4 `define WRITE_DIVISION_RESULT 6'd5 //Square Root State Machine Constants `define SQUARE_ROOT_LOOP 1 `define WRITE_SQUARE_ROOT_RESULT 2 //Multiplication State Machine Constants `define MULTIPLCATION_LOOP 1 `define WRITE_MULTIPLCATION_RESULT 2 //------------------------------------ //endmodule
Go to most recent revision | Compare with Previous | Blame | View Log