URL
https://opencores.org/ocsvn/theia_gpu/theia_gpu/trunk
Subversion Repositories theia_gpu
[/] [theia_gpu/] [branches/] [gpu_4_cores/] [rtl/] [GPU/] [TOP/] [Theia.v] - Rev 214
Go to most recent revision | Compare with Previous | Blame | View Log
`timescale 1ns / 1ps `include "aDefinitions.v" //--------------------------------------------------------------------------- module THEIA ( input wire CLK_I, //Input clock input wire RST_I, //Input reset //Theia Interfaces input wire MST_I, //Master signal, THEIA enters configuration mode //when this gets asserted (see documentation) //Wish Bone Interface input wire [`WB_WIDTH-1:0] DAT_I, //Input data bus (Wishbone) //output wire [`WB_WIDTH-1:0] DAT_O, //Output data bus (Wishbone) input wire ACK_I, //Input ack output wire ACK_O, //Output ack //output wire [`WB_WIDTH-1:0] ADR_O, //Output address input wire [`WB_WIDTH-1:0] ADR_I, //Input address //output wire WE_O, //Output write enable input wire WE_I, //Input write enable //output wire STB_O, //Strobe signal, see wishbone documentation input wire STB_I, //Strobe signal, see wishbone documentation //output wire CYC_O, //Bus cycle signal, see wishbone documentation input wire CYC_I, //Bus cycle signal, see wishbone documentation //output wire [1:0] TGC_O, //Bus cycle tag, see THEAI documentation input wire [1:0] TGA_I, //Input address tag, see THEAI documentation //output wire [1:0] TGA_O, //Output address tag, see THEAI documentation //input wire [1:0] TGC_I, //Bus cycle tag, see THEAI documentation input wire [`MAX_CORES-1:0] SEL_I, //The WishBone Master uses this signal to configure a specific core (TBD, not sure is needed) input wire [`MAX_CORES-1:0] RENDREN_I, input wire [`MAX_CORE_BITS-1:0] OMBSEL_I, //Output memory bank select input wire [`WB_WIDTH-1:0] OMADR_I, //Output adress (relative to current bank) output wire [`WB_WIDTH-1:0] OMEM_O, //Output data bus (Wishbone) input wire [`WB_WIDTH-1:0] TMDAT_I, input wire [`WB_WIDTH-1:0] TMADR_I, input wire TMWE_I, input wire [`MAX_TMEM_BANKS-1:0] TMSEL_I, //Control Register input wire [15:0] CREG_I, output wire GRDY_O, input wire STDONE_I, input wire HDA_I, input wire GACK_I, output wire RCOMMIT_O, output wire DONE_O ); wire [`MAX_TMEM_BANKS-1:0] wTMemWriteEnable; SELECT_1_TO_N # ( `MAX_TMEM_BANKS, `MAX_TMEM_BANKS ) TMWE_SEL ( .Sel(TMSEL_I), .En(TMWE_I), .O(wTMemWriteEnable) ); wire [`MAX_CORES-1:0] wDone; wire [`MAX_CORES-1:0] wBusGranted,wBusRequest; //wire [`WB_WIDTH-1:0] wDAT_O[`MAX_CORES-1:0]; //wire [`WB_WIDTH-1:0] wADR_O[`MAX_CORES-1:0]; //wire [1:0] wTGA_O[`MAX_CORES-1:0]; wire [`MAX_CORE_BITS-1:0] wBusSelect; //wire [`MAX_CORES-1:0] wSTB_O; //wire [`MAX_CORES-1:0] wWE_O; wire [`MAX_CORES-1:0]wACK_O; wire wOMem_WE[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wOMEM_Address[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wOMEM_Dat[`MAX_CORES-1:0]; wire [`MAX_CORES-1:0] wSTB_I; wire [`MAX_CORES-1:0] wMST_I; wire [`MAX_CORES-1:0] wACK_I; wire [`MAX_CORES-1:0] wCYC_I; wire [1:0] wTGA_I[`MAX_CORES-1:0]; //wire [`MAX_CORES-1:0] wTMEM_ACK_I; wire [`WB_WIDTH-1:0] wTMEM_Data; wire [`WB_WIDTH-1:0] wTMEM_Address[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wTMEM_ReadAddr; //wire [`MAX_CORES-1:0] wTMEM_STB_O; wire [`MAX_CORES-1:0] wTMEM_Resquest; wire [`MAX_CORES-1:0] wTMEM_Granted; //CROSS-BAR cables wire [`WB_WIDTH-1:0] wCrossBarDataRow[`MAX_TMEM_BANKS-1:0]; //Horizontal grid Buses comming from each bank wire [`WB_WIDTH-1:0] wCrossBarDataCollumn[`MAX_CORES-1:0]; //Vertical grid buses comming from each core. wire [`WB_WIDTH-1:0] wTMemReadAdr[`MAX_CORES-1:0]; //Horizontal grid Buses comming from each core (virtual addr). wire [`WB_WIDTH-1:0] wCrossBarAdressCollumn[`MAX_CORES-1:0]; //Vertical grid buses comming from each core. (physical addr). wire [`WB_WIDTH-1:0] wCrossBarAddressRow[`MAX_TMEM_BANKS-1:0]; //Horizontal grid Buses comming from each bank. wire wCORE_2_TMEM__Req[`MAX_CORES-1:0]; wire [`MAX_TMEM_BANKS -1:0] wBankReadRequest[`MAX_CORES-1:0]; wire [`MAX_CORES-1:0] wBankReadGranted[`MAX_TMEM_BANKS-1:0]; wire wTMEM_2_Core__Grant[`MAX_CORES-1:0]; wire[`MAX_CORE_BITS-1:0] wCurrentCoreSelected[`MAX_TMEM_BANKS-1:0]; //wire [`WB_WIDTH-1:0] wTMEM_2_Core_Data[`MAX_CORES-1:0]; //Vertical grid Buses going to each core. wire[7:0] wCoreBankSelect[`MAX_CORES-1:0]; wire [`MAX_CORES-1:0] wGRDY_O; wire [`MAX_CORES-1:0] wGReady; wire [`MAX_CORES-1:0] wRCOMMIT_O; wire [`MAX_CORES-1:0] wRCommited; assign RCOMMIT_O = wRCommited[0] & wRCommited[1] & wRCommited[2] & wRCommited[3]; assign GRDY_O = wGReady[0] & wGReady[1] & wGReady[2] & wGReady[3]; //---------------------------------------------------------------- //The next secuencial logic just AND all the wDone signals //I know that it would be much more elgant to just do parallel: //assign DONE_O = wDone[0] & wDone[1] & ... & wDone[MAX_CORES-1]; //However, I don't know how to achieve this with 'generate' statements //So coding a simple loop instead /* always @ (posedge CLK_I) begin : AND_DONE_SIGNALS integer k; DONE_O = wDone[0]; for (k=0;k<=`MAX_CORES;k=k+1) DONE_O=DONE_O & wDone[k+1]; end */ assign DONE_O = wDone[0] & wDone[1] & wDone[2] & wDone[3]; //Replace this by a counter?? //---------------------------------------------------------------- Module_BusArbitrer ARB1 ( .Clock( CLK_I ), .Reset( RST_I ), .iRequest( wBusRequest ), .oGrant( wBusGranted ), .oBusSelect( wBusSelect ) ); //---------------------------------------------------------------- // assign DAT_O = wDAT_O[ wBusSelect ]; // assign TGA_O = wTGA_O[ wBusSelect ]; // assign ADR_O = wADR_O[ wBusSelect ]; // assign STB_O = wSTB_O[ wBusSelect ]; // assign WE_O = wWE_O[ wBusSelect ]; assign ACK_O = wACK_O[ wBusSelect]; wire [`WB_WIDTH-1:0] wDataOut[`MAX_CORES-1:0]; assign OMEM_O = wDataOut[ OMBSEL_I ]; genvar i; generate for (i = 0; i < `MAX_CORES; i = i +1) begin : CORE assign wMST_I[i] = (SEL_I[i]) ? MST_I : 0; assign wSTB_I[i] = (SEL_I[i]) ? STB_I : 0; assign wCYC_I[i] = (SEL_I[i]) ? CYC_I : 0; assign wTGA_I[i] = (SEL_I[i]) ? TGA_I : 0; THEIACORE CTHEIA ( .CLK_I( CLK_I ), .RST_I( RST_I ), .RENDREN_I( RENDREN_I[i] ), //Slave signals .ADR_I( ADR_I ), .WE_I( WE_I ), .STB_I( wSTB_I[i] ), .ACK_I( ACK_I ), .CYC_I( wCYC_I[i] ), .MST_I( wMST_I[i] ), .TGA_I( wTGA_I[i] ), .CREG_I( CREG_I ), //Master Signals //.WE_O ( wWE_O[i] ), //.STB_O( wSTB_O[i] ), .ACK_O( wACK_O[i] ), // .DAT_O( wDAT_O[i] ), //.ADR_O( wADR_O[i] ), .CYC_O( wBusRequest[i] ), .GNT_I( wBusGranted[i] ), //.TGA_O( wTGA_O[i] ), `ifdef DEBUG .iDebug_CoreID( i ), `endif .OMEM_WE_O( wOMem_WE[i] ), .OMEM_ADR_O( wOMEM_Address[i] ), .OMEM_DAT_O( wOMEM_Dat[i] ), .TMEM_DAT_I( wCrossBarDataCollumn[i] ), .TMEM_ADR_O( wTMemReadAdr[i] ), .TMEM_CYC_O( wCORE_2_TMEM__Req[i] ), .TMEM_GNT_I( wTMEM_2_Core__Grant[i] ), .GRDY_O( wGRDY_O[i] ), .STDONE_I( STDONE_I ), .RCOMMIT_O( wRCOMMIT_O[i] ), .HDA_I( HDA_I ), //Other .DAT_I( DAT_I ), .DONE_O( wDone[i] ) ); UPCOUNTER_POSEDGE # (1) UP_RCOMMIT ( .Clock( CLK_I ), .Reset( RST_I | GACK_I ), .Initial( 1'b0 ), .Enable( wRCOMMIT_O[i] ), .Q(wRCommited[i]) ); UPCOUNTER_POSEDGE # (1) UP_GREADY ( .Clock( CLK_I ), .Reset( RST_I | GACK_I ), .Initial( 1'b0 ), .Enable( wGRDY_O[i] ), .Q(wGReady[i]) ); RAM_SINGLE_READ_PORT # ( `WB_WIDTH, `WB_WIDTH, 500000 ) OMEM //10k mem ( .Clock( CLK_I ), .iWriteEnable( wOMem_WE[i] ), .iWriteAddress( wOMEM_Address[i] ), .iDataIn( wOMEM_Dat[i] ), .iReadAddress0( OMADR_I ), .oDataOut0( wDataOut[i] ) ); //If there are "n" banks, memory location "X" would reside in bank number X mod n. //X mod 2^n == X & (2^n - 1) assign wCoreBankSelect[i] = (wTMemReadAdr[i] & (`MAX_TMEM_BANKS-1)); //Each core has 1 bank request slot //Each slot has MAX_TMEM_BANKS bits. Only 1 bit can //be 1 at any given point in time. All bits zero means, //we are not requesting to read from any memory bank. SELECT_1_TO_N # ( 8, 4 ) READDRQ ( .Sel(wCoreBankSelect[ i]), .En(wCORE_2_TMEM__Req[i]), .O(wBankReadRequest[i]) ); //The address coming from the core is virtual adress, meaning it assumes linear //address space, however, since memory is interleaved in a n-way memory we transform //virtual adress into physical adress (relative to the bank) like this //fadr = vadr / n = vadr >> log2(n) assign wCrossBarAdressCollumn[i] = (wTMemReadAdr[i] >> ((`MAX_TMEM_BANKS)/2)); //Connect the granted signal to Arbiter of the Bank we want to read from assign wTMEM_2_Core__Grant[i] = wBankReadGranted[wCoreBankSelect[i]][i]; //Connect the request signal to Arbiter of the Bank we want to read from //assign wBankReadRequest[wCoreBankSelect[i]][i] = wCORE_2_TMEM__Req[i]; end endgenerate ////////////// CROSS-BAR INTERCONECTION////////////////////////// genvar Core,Bank; generate for (Bank = 0; Bank < `MAX_TMEM_BANKS; Bank = Bank + 1) begin : BANK //The memory bank itself RAM_SINGLE_READ_PORT # ( `WB_WIDTH, `WB_WIDTH, 50000 ) TMEM ( .Clock( CLK_I ), .iWriteEnable( wTMemWriteEnable[Bank] ), .iWriteAddress( TMADR_I ), .iDataIn( TMDAT_I ), .iReadAddress0( wCrossBarAddressRow[Bank] ), //Connect to the Row of the grid .oDataOut0( wCrossBarDataRow[Bank] ) //Connect to the Row of the grid ); //Arbiter will Round-Robin Cores attempting to read from the same Bank //at a given point in time wire [`MAX_CORES-1:0] wBankReadGrantedDelay[`MAX_TMEM_BANKS-1:0]; Module_BusArbitrer ARB_TMEM ( .Clock( CLK_I ), .Reset( RST_I ), .iRequest( {wBankReadRequest[3][Bank],wBankReadRequest[2][Bank],wBankReadRequest[1][Bank],wBankReadRequest[0][Bank]}),//wBankReadRequest[Bank] ), //The cores requesting to read from this Bank .oGrant( wBankReadGrantedDelay[Bank] ), //The bit of the core granted to read from this Bank .oBusSelect( wCurrentCoreSelected[Bank] ) //The index of the core granted to read from this Bank ); FFD_POSEDGE_SYNCRONOUS_RESET # ( `MAX_CORES ) FFD_GNT ( .Clock(CLK_I), .Reset(RST_I), .Enable( 1'b1 ), .D(wBankReadGrantedDelay[Bank]), .Q(wBankReadGranted[Bank]) ); //Create the Cross-Bar interconnection grid now, rows are coonected to the memory banks, //while collumns are connected to the cores, 2 or more cores can not read from the same //bank at any given point in time for (Core = 0; Core < `MAX_CORES; Core = Core + 1) begin: CORE_CONNECT //Connect the Data Collum of this core to the Data Row of current bank, only if the Core is looking for data stored in this bank assign wCrossBarDataCollumn[ Core ] = ( wCoreBankSelect[ Core ] == Bank ) ? wCrossBarDataRow[ Bank ] : `WB_WIDTH'bz; //Connect the Address Row of this Bank to the Address Column of the core, only if the Arbiter selected this core for reading assign wCrossBarAddressRow[ Bank ] = ( wCurrentCoreSelected[ Bank ] == Core ) ? wCrossBarAdressCollumn[Core]: `WB_WIDTH'bz; end end endgenerate ////////////// CROSS-BAR INTERCONECTION////////////////////////// //---------------------------------------------------------------- endmodule //---------------------------------------------------------------------------
Go to most recent revision | Compare with Previous | Blame | View Log