URL
https://opencores.org/ocsvn/theia_gpu/theia_gpu/trunk
Subversion Repositories theia_gpu
[/] [theia_gpu/] [branches/] [icarus_version/] [rtl/] [Theia.v] - Rev 214
Go to most recent revision | Compare with Previous | Blame | View Log
`timescale 1ns / 1ps `include "aDefinitions.v" `ifdef VERILATOR `include "Theia_Core.v" `endif /********************************************************************************** Theia, Ray Cast Programable graphic Processing Unit. Copyright (C) 2010 Diego Valverde (diego.valverde.g@gmail.com) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ***********************************************************************************/ //--------------------------------------------------------------------------- module THEIA ( input wire CLK_I, //Input clock input wire RST_I, //Input reset //Theia Interfaces input wire MST_I, //Master signal, THEIA enters configuration mode //when this gets asserted (see documentation) //Wish Bone Interface input wire [`WB_WIDTH-1:0] DAT_I, //Input data bus (Wishbone) input wire ACK_I, //Input ack output wire ACK_O, //Output ack input wire [`WB_WIDTH-1:0] ADR_I, //Input address input wire WE_I, //Input write enable input wire STB_I, //Strobe signal, see wishbone documentation input wire CYC_I, //Bus cycle signal, see wishbone documentation input wire [1:0] TGA_I, //Input address tag, see THEAI documentation input wire [`MAX_CORES-1:0] SEL_I, //The WishBone Master uses this signal to configure a specific core (TBD, not sure is needed) input wire [`MAX_CORES-1:0] RENDREN_I, input wire [`MAX_CORE_BITS-1:0] OMBSEL_I, //Output memory bank select input wire [`WB_WIDTH-1:0] OMADR_I, //Output adress (relative to current bank) output wire [`WB_WIDTH-1:0] OMEM_O, //Output data bus (Wishbone) input wire [`WB_WIDTH-1:0] TMDAT_I, input wire [`WB_WIDTH-1:0] TMADR_I, input wire TMWE_I, input wire [`MAX_TMEM_BANKS-1:0] TMSEL_I, //Control Register input wire [15:0] CREG_I, output wire HDL_O, input wire STDONE_I, input wire HDA_I, input wire HDLACK_I, output wire RCOMMIT_O, output wire DONE_O ); wire [`MAX_TMEM_BANKS-1:0] wTMemWriteEnable; SELECT_1_TO_N # ( `MAX_TMEM_BANKS, `MAX_TMEM_BANKS ) TMWE_SEL ( .Sel(TMSEL_I), .En(TMWE_I), .O(wTMemWriteEnable) ); wire [`MAX_CORES-1:0] wDone; wire [`MAX_CORES-1:0] wBusGranted,wBusRequest; //wire [`WB_WIDTH-1:0] wDAT_O[`MAX_CORES-1:0]; //wire [`WB_WIDTH-1:0] wADR_O[`MAX_CORES-1:0]; //wire [1:0] wTGA_O[`MAX_CORES-1:0]; wire [`MAX_CORE_BITS-1:0] wBusSelect; //wire [`MAX_CORES-1:0] wSTB_O; //wire [`MAX_CORES-1:0] wWE_O; wire [`MAX_CORES-1:0]wACK_O; wire wOMem_WE[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wOMEM_Address[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wOMEM_Dat[`MAX_CORES-1:0]; wire [`MAX_CORES-1:0] wSTB_I; wire [`MAX_CORES-1:0] wMST_I; wire [`MAX_CORES-1:0] wACK_I; wire [`MAX_CORES-1:0] wCYC_I; wire [1:0] wTGA_I[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wTMEM_Data; wire [`WB_WIDTH-1:0] wTMEM_Address[`MAX_CORES-1:0]; wire [`WB_WIDTH-1:0] wTMEM_ReadAddr; wire [`MAX_CORES-1:0] wTMEM_Resquest; wire [`MAX_CORES-1:0] wTMEM_Granted; //CROSS-BAR wires wire [(`MAX_TMEM_BANKS*`WB_WIDTH)-1:0] wCrossBarDataRow; //Horizontal grid Buses comming from each bank wire [(`MAX_CORES*`WB_WIDTH)-1:0] wCrossBarDataCollumn; //Vertical grid buses comming from each core. wire [(`MAX_CORES*`WB_WIDTH)-1:0] wCrossBarAdressCollumn; //Vertical grid buses comming from each core. (physical addr). wire [`WB_WIDTH-1:0] wTMemReadAdr[`MAX_CORES-1:0]; //Horizontal grid Buses comming from each core (virtual addr). wire [`WB_WIDTH-1:0] wCrossBarAddressRow[`MAX_TMEM_BANKS-1:0]; //Horizontal grid Buses comming from each bank. wire wCORE_2_TMEM__Req[`MAX_CORES-1:0]; wire [`MAX_TMEM_BANKS -1:0] wBankReadRequest[`MAX_CORES-1:0]; wire [`MAX_CORES-1:0] wBankReadGranted[`MAX_TMEM_BANKS-1:0]; wire wTMEM_2_Core__Grant[`MAX_CORES-1:0]; wire[`MAX_CORE_BITS-1:0] wCurrentCoreSelected[`MAX_TMEM_BANKS-1:0]; wire[`WIDTH-1:0] wCoreBankSelect[`MAX_CORES-1:0]; wire [`MAX_CORES-1:0] wHDL_O; wire [`MAX_CORES-1:0] wHostDataLatched; wire [`MAX_CORES-1:0] wRCOMMIT_O; wire [`MAX_CORES-1:0] wRCommited; assign RCOMMIT_O = wRCommited[0] & wRCommited[1] & wRCommited[2] & wRCommited[3]; assign HDL_O = wHostDataLatched[0] & wHostDataLatched[1] & wHostDataLatched[2] & wHostDataLatched[3]; assign DONE_O = wDone[0] & wDone[1] & wDone[2] & wDone[3]; //---------------------------------------------------------------- Module_BusArbitrer ARB1 ( .Clock( CLK_I ), .Reset( RST_I ), .iRequest( wBusRequest ), .oGrant( wBusGranted ), .oBusSelect( wBusSelect ) ); //---------------------------------------------------------------- wire wMaskedACK_O; assign wMaskedACK_O = ( (SEL_I & wACK_O) != `MAX_CORES'b0) ? 1'b1 : 1'b0; assign ACK_O = ( MST_I ) ? wMaskedACK_O : wACK_O[ wBusSelect]; wire [`WB_WIDTH-1:0] wDataOut[`MAX_CORES-1:0]; assign OMEM_O = wDataOut[ OMBSEL_I ]; genvar i; generate for (i = 0; i < `MAX_CORES; i = i +1) begin : CORE assign wMST_I[i] = (SEL_I[i]) ? MST_I : 0; assign wSTB_I[i] = (SEL_I[i]) ? STB_I : 0; assign wCYC_I[i] = (SEL_I[i]) ? CYC_I : 0; assign wTGA_I[i] = (SEL_I[i]) ? TGA_I : 0; THEIACORE CTHEIA ( .CLK_I( CLK_I ), .RST_I( RST_I ), .RENDREN_I( RENDREN_I[i] ), //Slave signals .ADR_I( ADR_I ), .WE_I( WE_I ), .STB_I( wSTB_I[i] ), .ACK_I( ACK_I ), .CYC_I( wCYC_I[i] ), .MST_I( wMST_I[i] ), .TGA_I( wTGA_I[i] ), .CREG_I( CREG_I ), //Master Signals .ACK_O( wACK_O[i] ), .CYC_O( wBusRequest[i] ), .GNT_I( wBusGranted[i] ), `ifdef DEBUG .iDebug_CoreID( i ), `endif .OMEM_WE_O( wOMem_WE[i] ), .OMEM_ADR_O( wOMEM_Address[i] ), .OMEM_DAT_O( wOMEM_Dat[i] ), .TMEM_DAT_I( wCrossBarDataCollumn[ (i*`WB_WIDTH)+:`WB_WIDTH ] ), .TMEM_ADR_O( wTMemReadAdr[i] ), .TMEM_CYC_O( wCORE_2_TMEM__Req[i] ), .TMEM_GNT_I( wTMEM_2_Core__Grant[i] ), .HDA_I( HDA_I ), //Host data available .HDL_O( wHDL_O[i] ), //Host data Latched .HDLACK_I( ~HDL_O ), //Host data Latched ACK .STDONE_I( STDONE_I ), .RCOMMIT_O( wRCOMMIT_O[i] ), //Other .DAT_I( DAT_I ), .DONE_O( wDone[i] ) ); UPCOUNTER_POSEDGE # (1) UP_RCOMMIT ( .Clock( CLK_I ), .Reset( RST_I | HDLACK_I ), .Initial( 1'b0 ), .Enable( wRCOMMIT_O[i] ), .Q(wRCommited[i]) ); UPCOUNTER_POSEDGE # (1) UP_GREADY ( .Clock( CLK_I ), .Reset( RST_I | HDLACK_I ), .Initial( 1'b0 ), .Enable( wHDL_O[i] ), .Q(wHostDataLatched[i]) ); RAM_SINGLE_READ_PORT # ( `WB_WIDTH, `WB_WIDTH, 250000 ) OMEM //500000 ) OMEM ( .Clock( CLK_I ), .iWriteEnable( wOMem_WE[i] ), .iWriteAddress( wOMEM_Address[i] ), .iDataIn( wOMEM_Dat[i] ), .iReadAddress0( OMADR_I ), .oDataOut0( wDataOut[i] ) ); MUXFULLPARALELL_GENERIC # (`WB_WIDTH,`MAX_TMEM_BANKS,`MAX_TMEM_BITS) MUXG1 ( .in_bus( wCrossBarDataRow ), .sel( wCoreBankSelect[ i ][0+:`MAX_TMEM_BITS] ), .out( wCrossBarDataCollumn[ (i*`WB_WIDTH)+:`WB_WIDTH ] ) ); //If there are "n" banks, memory location "X" would reside in bank number X mod n. //X mod 2^n == X & (2^n - 1) assign wCoreBankSelect[i] = (wTMemReadAdr[i] & (`MAX_TMEM_BANKS-1)); //Each core has 1 bank request slot //Each slot has MAX_TMEM_BANKS bits. Only 1 bit can //be 1 at any given point in time. All bits zero means, //we are not requesting to read from any memory bank. SELECT_1_TO_N # ( `WIDTH, `MAX_TMEM_BANKS ) READDRQ ( .Sel(wCoreBankSelect[ i]), .En(wCORE_2_TMEM__Req[i]), .O(wBankReadRequest[i]) ); //The address coming from the core is virtual adress, meaning it assumes linear //address space, however, since memory is interleaved in a n-way memory we transform //virtual adress into physical adress (relative to the bank) like this //fadr = vadr / n = vadr >> log2(n) assign wCrossBarAdressCollumn[(i*`WB_WIDTH)+:`WB_WIDTH] = (wTMemReadAdr[i] >> `MAX_CORE_BITS); //Connect the granted signal to Arbiter of the Bank we want to read from assign wTMEM_2_Core__Grant[i] = wBankReadGranted[wCoreBankSelect[i]][i]; //Connect the request signal to Arbiter of the Bank we want to read from //assign wBankReadRequest[wCoreBankSelect[i]][i] = wCORE_2_TMEM__Req[i]; end endgenerate ////////////// CROSS-BAR INTERCONECTION////////////////////////// genvar Core,Bank; generate for (Bank = 0; Bank < `MAX_TMEM_BANKS; Bank = Bank + 1) begin : BANK //The memory bank itself RAM_SINGLE_READ_PORT # ( `WB_WIDTH, `WB_WIDTH, 50000 ) TMEM ( .Clock( CLK_I ), .iWriteEnable( wTMemWriteEnable[Bank] ), .iWriteAddress( TMADR_I ), .iDataIn( TMDAT_I ), .iReadAddress0( wCrossBarAddressRow[Bank] ), //Connect to the Row of the grid .oDataOut0( wCrossBarDataRow[(`WB_WIDTH*Bank)+:`WB_WIDTH] ) //Connect to the Row of the grid ); //Arbiter will Round-Robin Cores attempting to read from the same Bank //at a given point in time wire [`MAX_CORES-1:0] wBankReadGrantedDelay[`MAX_TMEM_BANKS-1:0]; Module_BusArbitrer ARB_TMEM ( .Clock( CLK_I ), .Reset( RST_I ), .iRequest( {wBankReadRequest[3][Bank],wBankReadRequest[2][Bank],wBankReadRequest[1][Bank],wBankReadRequest[0][Bank]}), .oGrant( wBankReadGrantedDelay[Bank] ), //The bit of the core granted to read from this Bank .oBusSelect( wCurrentCoreSelected[Bank] ) //The index of the core granted to read from this Bank ); FFD_POSEDGE_SYNCRONOUS_RESET # ( `MAX_CORES ) FFD_GNT ( .Clock(CLK_I), .Reset(RST_I), .Enable( 1'b1 ), .D(wBankReadGrantedDelay[Bank]), .Q(wBankReadGranted[Bank]) ); MUXFULLPARALELL_GENERIC # (`WB_WIDTH,`MAX_CORES,`MAX_CORE_BITS) MUXG2 ( .in_bus( wCrossBarAdressCollumn ), .sel( wCurrentCoreSelected[ Bank ] ), .out( wCrossBarAddressRow[ Bank ] ) ); //Create the Cross-Bar interconnection grid now, rows are coonected to the memory banks, //while collumns are connected to the cores, 2 or more cores can not read from the same //bank at any given point in time //for (Core = 0; Core < `MAX_CORES; Core = Core + 1) //begin: CORE_CONNECT //`ifndef VERILATOR //Connect the Data Collum of this core to the Data Row of current bank, only if the Core is looking for data stored in this bank // assign wCrossBarDataCollumn[ Core ] = ( wCoreBankSelect[ Core ] == Bank ) ? wCrossBarDataRow[ Bank ] : `WB_WIDTH'bz; //Connect the Address Row of this Bank to the Address Column of the core, only if the Arbiter selected this core for reading //assign wCrossBarAddressRow[ Bank ] = ( wCurrentCoreSelected[ Bank ] == Core ) ? wCrossBarAdressCollumn[Core]: `WB_WIDTH'bz; //`endif //end end endgenerate ////////////// CROSS-BAR INTERCONECTION////////////////////////// //---------------------------------------------------------------- endmodule //---------------------------------------------------------------------------
Go to most recent revision | Compare with Previous | Blame | View Log