URL
https://opencores.org/ocsvn/thor/thor/trunk
Subversion Repositories thor
[/] [thor/] [trunk/] [FT64v5/] [rtl/] [fpUnit/] [fpMul.v] - Rev 51
Compare with Previous | Blame | View Log
`timescale 1ns / 1ps // ============================================================================ // __ // \\__/ o\ (C) 2006-2018 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // fpMul.v // - floating point multiplier // - two cycle latency // - can issue every clock cycle // - parameterized width // - IEEE 754 representation // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // Floating Point Multiplier / Divider // // This multiplier/divider handles denormalized numbers. // The output format is of an internal expanded representation // in preparation to be fed into a normalization unit, then // rounding. Basically, it's the same as the regular format // except the mantissa is doubled in size, the leading two // bits of which are assumed to be whole bits. // // // Floating Point Multiplier // // Properties: // +-inf * +-inf = -+inf (this is handled by exOver) // +-inf * 0 = QNaN // // 1 sign number // 8 exponent // 48 mantissa // // ============================================================================ module fpMul (clk, ce, a, b, o, sign_exe, inf, overflow, underflow); parameter WID = 128; localparam MSB = WID-1; localparam EMSB = WID==128 ? 14 : WID==96 ? 14 : WID==80 ? 14 : WID==64 ? 10 : WID==52 ? 10 : WID==48 ? 11 : WID==44 ? 10 : WID==42 ? 10 : WID==40 ? 9 : WID==32 ? 7 : WID==24 ? 6 : 4; localparam FMSB = WID==128 ? 111 : WID==96 ? 79 : WID==80 ? 63 : WID==64 ? 51 : WID==52 ? 39 : WID==48 ? 34 : WID==44 ? 31 : WID==42 ? 29 : WID==40 ? 28 : WID==32 ? 22 : WID==24 ? 15 : 9; localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction localparam EX = FX + 1 + EMSB + 1 + 1 - 1; input clk; input ce; input [WID:1] a, b; output [EX:0] o; output sign_exe; output inf; output overflow; output underflow; reg [EMSB:0] xo1; // extra bit for sign reg [FX:0] mo1; // constants wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones // The following is the value for an exponent of zero, with the offset // eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc. wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent // The following is a template for a quiet nan. (MSB=1) wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}}; // variables reg [FX:0] fract1,fract1a; wire [FX:0] fracto; wire [EMSB+2:0] ex1; // sum of exponents wire [EMSB :0] ex2; // Decompose the operands wire sa, sb; // sign bit wire [EMSB:0] xa, xb; // exponent bits wire [FMSB+1:0] fracta, fractb; wire a_dn, b_dn; // a/b is denormalized wire aNan, bNan, aNan1, bNan1; wire az, bz; wire aInf, bInf, aInf1, bInf1; // ----------------------------------------------------------- // First clock // - decode the input operands // - derive basic information // - calculate exponent // - calculate fraction // ----------------------------------------------------------- fpDecomp #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) ); fpDecomp #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) ); // Compute the sum of the exponents. // correct the exponent for denormalized operands // adjust the sum by the exponent offset (subtract 127) // mul: ex1 = xa + xb, result should always be < 1ffh assign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias; generate if (WID==80) begin reg [31:0] p00,p01,p02,p03; reg [31:0] p10,p11,p12,p13; reg [31:0] p20,p21,p22,p23; reg [31:0] p30,p31,p32,p33; always @(posedge clk) if (ce) begin p00 <= fracta[15: 0] * fractb[15: 0]; p01 <= fracta[31:16] * fractb[15: 0]; p02 <= fracta[47:32] * fractb[15: 0]; p03 <= fracta[63:48] * fractb[15: 0]; p10 <= fracta[15: 0] * fractb[31:16]; p11 <= fracta[31:16] * fractb[31:16]; p12 <= fracta[47:32] * fractb[31:16]; p13 <= fracta[63:48] * fractb[31:16]; p20 <= fracta[15: 0] * fractb[47:32]; p21 <= fracta[31:16] * fractb[47:32]; p22 <= fracta[47:32] * fractb[47:32]; p23 <= fracta[63:48] * fractb[47:32]; p30 <= fracta[15: 0] * fractb[63:48]; p31 <= fracta[31:16] * fractb[63:48]; p32 <= fracta[47:32] * fractb[63:48]; p33 <= fracta[63:48] * fractb[63:48]; fract1 <= {p03,48'b0} + {p02,32'b0} + {p01,16'b0} + p00 + {p13,64'b0} + {p12,48'b0} + {p11,32'b0} + {p10,16'b0} + {p23,80'b0} + {p22,64'b0} + {p21,48'b0} + {p20,32'b0} + {p33,96'b0} + {p32,80'b0} + {p31,64'b0} + {p30,48'b0} ; end end else if (WID==64) begin reg [35:0] p00,p01,p02; reg [35:0] p10,p11,p12; reg [35:0] p20,p21,p22; always @(posedge clk) if (ce) begin p00 <= fracta[17: 0] * fractb[17: 0]; p01 <= fracta[35:18] * fractb[17: 0]; p02 <= fracta[52:36] * fractb[17: 0]; p10 <= fracta[17: 0] * fractb[35:18]; p11 <= fracta[35:18] * fractb[35:18]; p12 <= fracta[52:36] * fractb[35:18]; p20 <= fracta[17: 0] * fractb[52:36]; p21 <= fracta[35:18] * fractb[52:36]; p22 <= fracta[52:36] * fractb[52:36]; fract1 <= {p02,36'b0} + {p01,18'b0} + p00 + {p12,54'b0} + {p11,36'b0} + {p10,18'b0} + {p22,72'b0} + {p21,54'b0} + {p20,36'b0} ; end end else if (WID==32) begin reg [23:0] p00,p01,p02; reg [23:0] p10,p11,p12; reg [23:0] p20,p21,p22; always @(posedge clk) if (ce) begin p00 <= fracta[11: 0] * fractb[11: 0]; p01 <= fracta[23:12] * fractb[11: 0]; p10 <= fracta[11: 0] * fractb[23:12]; p11 <= fracta[23:12] * fractb[23:12]; fract1 <= {p11,p00} + {p01,12'b0} + {p10,12'b0}; end end else begin always @(posedge clk) if (ce) begin fract1a <= fracta * fractb; fract1 <= fract1a; end end endgenerate // Status wire under1, over1; wire under = ex1[EMSB+2]; // exponent underflow wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2]; delay2 #(EMSB+1) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) ); delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) ); delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) ); delay2 u6 (.clk(clk), .ce(ce), .i(under), .o(under1) ); delay2 u7 (.clk(clk), .ce(ce), .i(over), .o(over1) ); // determine when a NaN is output wire qNaNOut; wire [WID-1:0] a1,b1; delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) ); delay2 u14 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) ); delay2 u15 (.clk(clk), .ce(ce), .i(bNan), .o(bNan1) ); delay2 #(WID) u16 (.clk(clk), .ce(ce), .i(a), .o(a1) ); delay2 #(WID) u17 (.clk(clk), .ce(ce), .i(b), .o(b1) ); // ----------------------------------------------------------- // Second clock // - correct xponent and mantissa for exceptional conditions // ----------------------------------------------------------- wire so1; delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay! always @(posedge clk) if (ce) casez({qNaNOut|aNan1|bNan1,aInf1,bInf1,over1,under1}) 5'b1????: xo1 = infXp; // qNaN - infinity * zero 5'b01???: xo1 = infXp; // 'a' infinite 5'b001??: xo1 = infXp; // 'b' infinite 5'b0001?: xo1 = infXp; // result overflow 5'b00001: xo1 = ex2[EMSB:0];//0; // underflow default: xo1 = ex2[EMSB:0]; // situation normal endcase always @(posedge clk) if (ce) casez({aNan1,bNan1,qNaNOut,aInf1,bInf1,over1}) 6'b1?????: mo1 = {1'b1,a1[FMSB:0],{FMSB+1{1'b0}}}; 6'b01????: mo1 = {1'b1,b1[FMSB:0],{FMSB+1{1'b0}}}; 6'b001???: mo1 = {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero 6'b0001??: mo1 = 0; // mul inf's 6'b00001?: mo1 = 0; // mul inf's 6'b000001: mo1 = 0; // mul overflow default: mo1 = fract1; endcase delay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) ); delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) ); delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) ); delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) ); assign o = {so1,xo1,mo1}; endmodule // Multiplier with normalization and rounding. module fpMulnr(clk, ce, a, b, o, rm, sign_exe, inf, overflow, underflow); parameter WID=32; localparam MSB = WID-1; localparam EMSB = WID==128 ? 14 : WID==96 ? 14 : WID==80 ? 14 : WID==64 ? 10 : WID==52 ? 10 : WID==48 ? 11 : WID==44 ? 10 : WID==42 ? 10 : WID==40 ? 9 : WID==32 ? 7 : WID==24 ? 6 : 4; localparam FMSB = WID==128 ? 111 : WID==96 ? 79 : WID==80 ? 63 : WID==64 ? 51 : WID==52 ? 39 : WID==48 ? 34 : WID==44 ? 31 : WID==42 ? 29 : WID==40 ? 28 : WID==32 ? 22 : WID==24 ? 15 : 9; localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction localparam EX = FX + 1 + EMSB + 1 + 1 - 1; input clk; input ce; input [MSB:0] a, b; output [MSB:0] o; input [2:0] rm; output sign_exe; output inf; output overflow; output underflow; wire [EX:0] o1; wire sign_exe1, inf1, overflow1, underflow1; wire [MSB+3:0] fpn0; fpMul #(WID) u1 (clk, ce, a, b, o1, sign_exe1, inf1, overflow1, underflow1); fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) ); fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) ); delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe)); delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf)); delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow)); delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow)); endmodule