URL
https://opencores.org/ocsvn/thor/thor/trunk
Subversion Repositories thor
[/] [thor/] [trunk/] [FT64v5/] [rtl/] [twoway/] [FT64.v] - Rev 49
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================ // __ // \\__/ o\ (C) 2017-2018 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // FT64.v // Features include: // - 16/32/48 bit instructions // - vector instruction set, // - SIMD instructions // - data width of 64 bits // - 32 general purpose registers // - 32 floating point registers // - 32 vector registers, length 63 // - powerful branch prediction // - branch target buffer (BTB) // - return address predictor (RSB) // - bus interface unit // - instruction and data caches // - asynchronous logic loops for issue and branch miss // re-written for synchronous operation, not as elegant // but required for operation in an FPGA // - fine-grained simultaneous multi-threading (SMT) // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // Approx. 100,000 LUTs. 160,000 LC's. // ============================================================================ // `include "FT64_config.vh" `include "FT64_defines.vh" module FT64(hartid, rst, clk_i, clk4x, tm_clk_i, irq_i, vec_i, bte_o, cti_o, cyc_o, stb_o, ack_i, err_i, we_o, sel_o, adr_o, dat_o, dat_i, ol_o, pcr_o, pcr2_o, exv_i, rdv_i, wrv_i, icl_o, sr_o, cr_o, rbi_i, signal_i); input [63:0] hartid; input rst; input clk_i; input clk4x; input tm_clk_i; input [3:0] irq_i; input [7:0] vec_i; output reg [1:0] bte_o; output reg [2:0] cti_o; output reg cyc_o; output reg stb_o; input ack_i; input err_i; output reg we_o; output reg [7:0] sel_o; output reg [`ABITS] adr_o; output reg [63:0] dat_o; input [63:0] dat_i; output reg [1:0] ol_o; output [31:0] pcr_o; output [63:0] pcr2_o; input exv_i; input rdv_i; input wrv_i; output reg icl_o; output reg cr_o; output reg sr_o; input rbi_i; input [31:0] signal_i; parameter TM_CLKFREQ = 20000000; parameter QENTRIES = `QENTRIES; parameter RSTPC = 32'hFFFC0100; parameter BRKPC = 32'hFFFC0000; `ifdef SUPPORT_SMT parameter PREGS = 256; // number of physical registers - 1 parameter AREGS = 256; // number of architectural registers `else parameter PREGS = 128; parameter AREGS = 128; `endif parameter RBIT = 11; parameter DEBUG = 1'b0; parameter NMAP = QENTRIES; parameter BRANCH_PRED = 1'b0; parameter SUP_TXE = 1'b0; parameter SUP_VECTOR = 1; parameter DBW = 64; parameter ABW = 32; parameter AMSB = ABW-1; parameter NTHREAD = 1; reg [3:0] i; integer n; integer j; genvar g; parameter TRUE = 1'b1; parameter FALSE = 1'b0; // Memory access sizes parameter byt = 3'd0; parameter wyde = 3'd1; parameter tetra = 3'd2; parameter octa = 3'd3; // IQ states parameter IQS_IDLE = 2'd0; parameter IQS_AGEN = 2'd1; parameter IQS_LDDONE = 2'd2; parameter IQS_S3 = 2'd3; wire clk; BUFG uclkb1 ( .I(clk_i), .O(clk) ); wire dc_ack; wire acki = ack_i|dc_ack; wire [RBIT:0] Ra0, Ra1; wire [RBIT:0] Rb0, Rb1; wire [RBIT:0] Rc0, Rc1; wire [RBIT:0] Rt0, Rt1; wire [63:0] rfoa0,rfob0,rfoc0,rfoc0a; wire [63:0] rfoa1,rfob1,rfoc1,rfoc1a; `ifdef SUPPORT_SMT wire [7:0] Ra0s = {Ra0[7:0]}; wire [7:0] Ra1s = {Ra1[7:0]}; wire [7:0] Rb0s = {Rb0[7:0]}; wire [7:0] Rb1s = {Rb1[7:0]}; wire [7:0] Rc0s = {Rc0[7:0]}; wire [7:0] Rc1s = {Rc1[7:0]}; wire [7:0] Rt0s = {Rt0[7:0]}; wire [7:0] Rt1s = {Rt1[7:0]}; `else wire [6:0] Ra0s = {Ra0[7],Ra0[5:0]}; wire [6:0] Ra1s = {Ra1[7],Ra1[5:0]}; wire [6:0] Rb0s = {Rb0[7],Rb0[5:0]}; wire [6:0] Rb1s = {Rb1[7],Rb1[5:0]}; wire [6:0] Rc0s = {Rc0[7],Rc0[5:0]}; wire [6:0] Rc1s = {Rc1[7],Rc1[5:0]}; wire [6:0] Rt0s = {Rt0[7],Rt0[5:0]}; wire [6:0] Rt1s = {Rt1[7],Rt1[5:0]}; /* wire [5:0] Ra0s = {Ra0[5:0]}; wire [5:0] Ra1s = {Ra1[5:0]}; wire [5:0] Rb0s = {Rb0[5:0]}; wire [5:0] Rb1s = {Rb1[5:0]}; wire [5:0] Rc0s = {Rc0[5:0]}; wire [5:0] Rc1s = {Rc1[5:0]}; wire [5:0] Rt0s = {Rt0[5:0]}; wire [5:0] Rt1s = {Rt1[5:0]}; */ `endif reg [63:0] ds [0:NTHREAD]; reg [63:0] ss [0:NTHREAD]; reg [63:0] ptrmask [0:NTHREAD]; reg [63:0] ptrkey = " OBJECT"; reg [63:0] wbrcd; reg [PREGS-1:0] rf_v; reg [4:0] rf_source[0:AREGS-1]; initial begin for (n = 0; n < AREGS; n = n + 1) rf_source[n] = 5'd0; end wire [`ABITS] pc0; wire [`ABITS] pc1; wire [`ABITS] pc2; reg excmiss; reg [`ABITS] excmisspc; reg excthrd; reg exception_set; reg rdvq; // accumulated read violation reg errq; // accumulated err_i input status reg exvq; // Vector reg [5:0] vqe0, vqe1; // vector element being queued reg [5:0] vqet0, vqet1; reg [7:0] vl; // vector length reg [63:0] vm [0:7]; // vector mask registers reg [1:0] m2; reg [31:0] wb_merges; // CSR's reg [63:0] cr0; wire snr = cr0[17]; // sequence number reset wire dce = cr0[30]; // data cache enable wire bpe = cr0[32]; // branch predictor enable wire ctgtxe = cr0[33]; reg [63:0] pmr; wire id1_available = pmr[0]; wire id2_available = pmr[1]; wire id3_available = pmr[2]; wire alu0_available = pmr[8]; wire alu1_available = pmr[9]; wire fpu1_available = pmr[16]; wire fpu2_available = pmr[17]; wire mem1_available = pmr[24]; wire mem2_available = pmr[25]; wire mem3_available = pmr[26]; wire fcu_available = pmr[32]; // Simply setting this flag to zero should strip out almost all the logic // associated SMT. `ifdef SUPPORT_SMT wire thread_en = cr0[16]; `else wire thread_en = 1'b0; `endif wire vechain = cr0[18]; reg [7:0] fcu_timeout; reg [63:0] tick; reg [63:0] wc_time; reg [31:0] pcr; reg [63:0] pcr2; assign pcr_o = pcr; assign pcr2_o = pcr2; reg [63:0] aec; reg [15:0] cause[0:15]; `ifdef SUPPORT_SMT reg [`ABITS] epc [0:NTHREAD]; reg [`ABITS] epc0 [0:NTHREAD]; reg [`ABITS] epc1 [0:NTHREAD]; reg [`ABITS] epc2 [0:NTHREAD]; reg [`ABITS] epc3 [0:NTHREAD]; reg [`ABITS] epc4 [0:NTHREAD]; reg [`ABITS] epc5 [0:NTHREAD]; reg [`ABITS] epc6 [0:NTHREAD]; reg [`ABITS] epc7 [0:NTHREAD]; reg [`ABITS] epc8 [0:NTHREAD]; // exception pc and stack reg [63:0] mstatus [0:NTHREAD]; // machine status wire [3:0] im = mstatus[0][3:0]; wire [1:0] ol [0:NTHREAD]; wire [1:0] dl [0:NTHREAD]; assign ol[0] = mstatus[0][5:3]; // operating level assign dl[0] = mstatus[0][21:20]; wire [7:0] cpl [0:NTHREAD]; assign cpl[0] = mstatus[0][13:6]; // current privilege level wire [5:0] rgs [0:NTHREAD]; assign rgs[0] = mstatus[0][19:14]; assign ol[1] = mstatus[1][5:3]; // operating level assign cpl[1] = mstatus[1][13:6]; // current privilege level assign rgs[1] = mstatus[1][19:14]; assign dl[1] = mstatus[1][21:20]; reg [15:0] ol_stack [0:NTHREAD]; reg [31:0] im_stack [0:NTHREAD]; reg [63:0] pl_stack [0:NTHREAD]; reg [63:0] rs_stack [0:NTHREAD]; reg [63:0] fr_stack [0:NTHREAD]; wire mprv = mstatus[0][55]; wire [5:0] fprgs = mstatus[0][25:20]; //assign ol_o = mprv ? ol_stack[0][2:0] : ol[0]; wire vca = mstatus[0][32]; // vector chaining active `else reg [`ABITS] epc ; reg [`ABITS] epc0 ; reg [`ABITS] epc1 ; reg [`ABITS] epc2 ; reg [`ABITS] epc3 ; reg [`ABITS] epc4 ; reg [`ABITS] epc5 ; reg [`ABITS] epc6 ; reg [`ABITS] epc7 ; reg [`ABITS] epc8 ; // exception pc and stack reg [63:0] mstatus ; // machine status wire [3:0] im = mstatus[3:0]; wire [1:0] ol ; wire [1:0] dl; assign ol = mstatus[5:3]; // operating level assign dl = mstatus[21:20]; wire [7:0] cpl ; assign cpl = mstatus[13:6]; // current privilege level wire [5:0] rgs ; assign rgs = mstatus[19:14]; reg [15:0] ol_stack ; reg [31:0] im_stack ; reg [63:0] pl_stack ; reg [63:0] rs_stack ; reg [63:0] fr_stack ; wire mprv = mstatus[55]; wire [5:0] fprgs = mstatus[25:20]; //assign ol_o = mprv ? ol_stack[2:0] : ol; wire vca = mstatus[32]; // vector chaining active `endif reg [63:0] tcb; reg [`ABITS] badaddr[0:15]; reg [`ABITS] tvec[0:7]; reg [63:0] sema; reg [63:0] vm_sema; reg [63:0] cas; // compare and swap reg [63:0] ve_hold; reg isCAS, isAMO, isInc, isSpt, isRMW; reg [`QBITS] casid; reg [`ABITS] sbl, sbu; reg [4:0] regLR = 5'd29; reg [2:0] fp1_rm; reg fp1_inexe; reg fp1_dbzxe; reg fp1_underxe; reg fp1_overxe; reg fp1_invopxe; reg fp1_giopxe; reg fp1_nsfp = 1'b0; reg fp1_fractie; reg fp1_raz; reg fp1_neg; reg fp1_pos; reg fp1_zero; reg fp1_inf; reg fp1_inex; // inexact exception reg fp1_dbzx; // divide by zero exception reg fp1_underx; // underflow exception reg fp1_overx; // overflow exception reg fp1_giopx; // global invalid operation exception reg fp1_sx; // summary exception reg fp1_swtx; // software triggered exception reg fp1_gx; reg fp1_invopx; reg fp1_infzerox; reg fp1_zerozerox; reg fp1_subinfx; reg fp1_infdivx; reg fp1_NaNCmpx; reg fp1_cvtx; reg fp1_sqrtx; reg fp1_snanx; reg [2:0] fp2_rm; reg fp2_inexe; reg fp2_dbzxe; reg fp2_underxe; reg fp2_overxe; reg fp2_invopxe; reg fp2_giopxe; reg fp2_nsfp = 1'b0; reg fp2_fractie; reg fp2_raz; reg fp2_neg; reg fp2_pos; reg fp2_zero; reg fp2_inf; reg fp2_inex; // inexact exception reg fp2_dbzx; // divide by zero exception reg fp2_underx; // underflow exception reg fp2_overx; // overflow exception reg fp2_giopx; // global invalid operation exception reg fp2_sx; // summary exception reg fp2_swtx; // software triggered exception reg fp2_gx; reg fp2_invopx; reg fp2_infzerox; reg fp2_zerozerox; reg fp2_subinfx; reg fp2_infdivx; reg fp2_NaNCmpx; reg fp2_cvtx; reg fp2_sqrtx; reg fp2_snanx; wire [31:0] fp1_status = { fp1_rm, fp1_inexe, fp1_dbzxe, fp1_underxe, fp1_overxe, fp1_invopxe, fp1_nsfp, fp1_fractie, fp1_raz, 1'b0, fp1_neg, fp1_pos, fp1_zero, fp1_inf, fp1_swtx, fp1_inex, fp1_dbzx, fp1_underx, fp1_overx, fp1_giopx, fp1_gx, fp1_sx, fp1_cvtx, fp1_sqrtx, fp1_NaNCmpx, fp1_infzerox, fp1_zerozerox, fp1_infdivx, fp1_subinfx, fp1_snanx }; wire [31:0] fp2_status = { fp2_rm, fp2_inexe, fp2_dbzxe, fp2_underxe, fp2_overxe, fp2_invopxe, fp2_nsfp, fp2_fractie, fp2_raz, 1'b0, fp2_neg, fp2_pos, fp2_zero, fp2_inf, fp2_swtx, fp2_inex, fp2_dbzx, fp2_underx, fp2_overx, fp2_giopx, fp2_gx, fp2_sx, fp2_cvtx, fp2_sqrtx, fp2_NaNCmpx, fp2_infzerox, fp2_zerozerox, fp2_infdivx, fp2_subinfx, fp2_snanx }; reg [63:0] fpu1_csr; wire [5:0] fp1_rgs = fpu1_csr[37:32]; //reg [25:0] m[0:8191]; reg [3:0] panic; // indexes the message structure reg [128:0] message [0:15]; // indexed by panic wire int_commit; reg StatusHWI; reg [47:0] insn0, insn1, insn2; wire [47:0] insn0a, insn1a, insn1b, insn2a, insn2b; reg tgtq; // Only need enough bits in the seqnence number to cover the instructions in // the queue plus an extra count for skipping on branch misses. In this case // that would be four bits minimum (count 0 to 8). reg [31:0] seq_num; reg [31:0] seq_num1; wire [63:0] rdat0,rdat1,rdat2; reg [63:0] xdati; reg canq1, canq2; reg queued1; reg queued2; reg queuedNop; reg [47:0] codebuf[0:63]; reg [7:0] setpred; // instruction queue (ROB) reg [31:0] iqentry_sn [0:QENTRIES-1]; // instruction sequence number reg [QENTRIES-1:0] iqentry_v; // entry valid? -- this should be the first bit reg [QENTRIES-1:0] iqentry_iv; // instruction is valid reg [4:0] iqentry_is [0:QENTRIES-1]; // source of instruction reg [QENTRIES-1:0] iqentry_out; // instruction has been issued to an ALU ... reg [QENTRIES-1:0] iqentry_done; // instruction result valid reg [QENTRIES-1:0] iqentry_cmt; reg [QENTRIES-1:0] iqentry_thrd; // which thread the instruction is in reg [QENTRIES-1:0] iqentry_pt; // predict taken reg [QENTRIES-1:0] iqentry_bt; // branch-taken (used only for branches) reg [QENTRIES-1:0] iqentry_agen; // address-generate ... signifies that address is ready (only for LW/SW) reg [1:0] iqentry_state [0:QENTRIES-1]; reg [QENTRIES-1:0] iqentry_alu = 8'h00; // alu type instruction reg [QENTRIES-1:0] iqentry_alu0; // only valid on alu #0 reg [QENTRIES-1:0] iqentry_fpu; // floating point instruction reg [QENTRIES-1:0] iqentry_fc; // flow control instruction reg [QENTRIES-1:0] iqentry_canex = 8'h00; // true if it's an instruction that can exception reg [QENTRIES-1:0] iqentry_load; // is a memory load instruction reg [QENTRIES-1:0] iqentry_preload; // is a memory preload instruction reg [QENTRIES-1:0] iqentry_ldcmp; reg [QENTRIES-1:0] iqentry_mem; // touches memory: 1 if LW/SW reg [QENTRIES-1:0] iqentry_memndx; // indexed memory operation reg [QENTRIES-1:0] iqentry_rmw; // memory RMW op reg [QENTRIES-1:0] iqentry_memdb; reg [QENTRIES-1:0] iqentry_memsb; reg [QENTRIES-1:0] iqentry_rtop; reg [QENTRIES-1:0] iqentry_sei; reg [QENTRIES-1:0] iqentry_aq; // memory aquire reg [QENTRIES-1:0] iqentry_rl; // memory release reg [QENTRIES-1:0] iqentry_shft48; reg [QENTRIES-1:0] iqentry_jmp; // changes control flow: 1 if BEQ/JALR reg [QENTRIES-1:0] iqentry_br; // Bcc (for predictor) reg [QENTRIES-1:0] iqentry_sync; // sync instruction reg [QENTRIES-1:0] iqentry_fsync; reg [QENTRIES-1:0] iqentry_rfw = 8'h00; // writes to register file reg [7:0] iqentry_we [0:QENTRIES-1]; // enable strobe reg [63:0] iqentry_res [0:QENTRIES-1]; // instruction result reg [47:0] iqentry_instr[0:QENTRIES-1]; // instruction opcode reg [2:0] iqentry_insln[0:QENTRIES-1]; // instruction length reg [7:0] iqentry_exc [0:QENTRIES-1]; // only for branches ... indicates a HALT instruction reg [RBIT:0] iqentry_tgt [0:QENTRIES-1]; // Rt field or ZERO -- this is the instruction's target (if any) reg [7:0] iqentry_vl [0:QENTRIES-1]; reg [5:0] iqentry_ven [0:QENTRIES-1]; // vector element number reg [63:0] iqentry_a0 [0:QENTRIES-1]; // argument 0 (immediate) reg [63:0] iqentry_a1 [0:QENTRIES-1]; // argument 1 reg iqentry_a1_v [0:QENTRIES-1]; // arg1 valid reg [4:0] iqentry_a1_s [0:QENTRIES-1]; // arg1 source (iq entry # with top bit representing ALU/DRAM bus) reg [63:0] iqentry_a2 [0:QENTRIES-1]; // argument 2 reg iqentry_a2_v [0:QENTRIES-1]; // arg2 valid reg [4:0] iqentry_a2_s [0:QENTRIES-1]; // arg2 source (iq entry # with top bit representing ALU/DRAM bus) reg [63:0] iqentry_a3 [0:QENTRIES-1]; // argument 3 reg iqentry_a3_v [0:QENTRIES-1]; // arg3 valid reg [4:0] iqentry_a3_s [0:QENTRIES-1]; // arg3 source (iq entry # with top bit representing ALU/DRAM bus) reg [`ABITS] iqentry_pc [0:QENTRIES-1]; // program counter for this instruction reg [RBIT:0] iqentry_Ra [0:QENTRIES-1]; reg [RBIT:0] iqentry_Rb [0:QENTRIES-1]; reg [RBIT:0] iqentry_Rc [0:QENTRIES-1]; // debugging //reg [4:0] iqentry_ra [0:7]; // Ra initial begin for (n = 0; n < QENTRIES; n = n + 1) iqentry_a1_s[n] = 5'd0; iqentry_a2_s[n] = 5'd0; iqentry_a3_s[n] = 5'd0; end wire [QENTRIES-1:0] iqentry_source = 8'h00; reg [QENTRIES-1:0] iqentry_imm; wire [QENTRIES-1:0] iqentry_memready; wire [QENTRIES-1:0] iqentry_memopsvalid; reg [QENTRIES-1:0] memissue = 8'h00; reg [1:0] missued; integer last_issue; reg [QENTRIES-1:0] iqentry_memissue; wire [QENTRIES-1:0] iqentry_stomp; reg [3:0] stompedOnRets; reg [QENTRIES-1:0] iqentry_alu0_issue; reg [QENTRIES-1:0] iqentry_alu1_issue; reg [QENTRIES-1:0] iqentry_alu2_issue; reg [QENTRIES-1:0] iqentry_id1issue; reg [QENTRIES-1:0] iqentry_id2issue; reg [QENTRIES-1:0] iqentry_id3issue; reg [1:0] iqentry_mem_islot [0:QENTRIES-1]; reg [QENTRIES-1:0] iqentry_fcu_issue; reg [QENTRIES-1:0] iqentry_fpu1_issue; reg [QENTRIES-1:0] iqentry_fpu2_issue; wire [PREGS-1:1] livetarget; wire [PREGS-1:1] iqentry_0_livetarget; wire [PREGS-1:1] iqentry_1_livetarget; wire [PREGS-1:1] iqentry_2_livetarget; wire [PREGS-1:1] iqentry_3_livetarget; wire [PREGS-1:1] iqentry_4_livetarget; wire [PREGS-1:1] iqentry_5_livetarget; wire [PREGS-1:1] iqentry_6_livetarget; wire [PREGS-1:1] iqentry_7_livetarget; wire [PREGS-1:1] iqentry_0_latestID; wire [PREGS-1:1] iqentry_1_latestID; wire [PREGS-1:1] iqentry_2_latestID; wire [PREGS-1:1] iqentry_3_latestID; wire [PREGS-1:1] iqentry_4_latestID; wire [PREGS-1:1] iqentry_5_latestID; wire [PREGS-1:1] iqentry_6_latestID; wire [PREGS-1:1] iqentry_7_latestID; wire [PREGS-1:1] iqentry_0_cumulative; wire [PREGS-1:1] iqentry_1_cumulative; wire [PREGS-1:1] iqentry_2_cumulative; wire [PREGS-1:1] iqentry_3_cumulative; wire [PREGS-1:1] iqentry_4_cumulative; wire [PREGS-1:1] iqentry_5_cumulative; wire [PREGS-1:1] iqentry_6_cumulative; wire [PREGS-1:1] iqentry_7_cumulative; wire [PREGS-1:1] iq0_out; wire [PREGS-1:1] iq1_out; wire [PREGS-1:1] iq2_out; wire [PREGS-1:1] iq3_out; wire [PREGS-1:1] iq4_out; wire [PREGS-1:1] iq5_out; wire [PREGS-1:1] iq6_out; wire [PREGS-1:1] iq7_out; reg [`QBITS] tail0; reg [`QBITS] tail1; reg [`QBITS] head0; reg [`QBITS] head1; reg [`QBITS] head2; // used only to determine memory-access ordering reg [`QBITS] head3; // used only to determine memory-access ordering reg [`QBITS] head4; // used only to determine memory-access ordering reg [`QBITS] head5; // used only to determine memory-access ordering reg [`QBITS] head6; // used only to determine memory-access ordering reg [`QBITS] head7; // used only to determine memory-access ordering wire take_branch0; wire take_branch1; reg [3:0] nop_fetchbuf; wire fetchbuf; // determines which pair to read from & write to wire [3:0] fb_panic; wire [47:0] fetchbuf0_instr; wire [2:0] fetchbuf0_insln; wire [`ABITS] fetchbuf0_pc; wire fetchbuf0_v; wire fetchbuf0_thrd; wire fetchbuf0_mem; wire fetchbuf0_memld; wire fetchbuf0_jmp; wire fetchbuf0_rfw; wire [47:0] fetchbuf1_instr; wire [2:0] fetchbuf1_insln; wire [`ABITS] fetchbuf1_pc; wire fetchbuf1_v; wire fetchbuf1_thrd; wire fetchbuf1_mem; wire fetchbuf1_memld; wire fetchbuf1_jmp; wire fetchbuf1_rfw; wire [47:0] fetchbufA_instr; wire [`ABITS] fetchbufA_pc; wire fetchbufA_v; wire [47:0] fetchbufB_instr; wire [`ABITS] fetchbufB_pc; wire fetchbufB_v; wire [47:0] fetchbufC_instr; wire [`ABITS] fetchbufC_pc; wire fetchbufC_v; wire [47:0] fetchbufD_instr; wire [`ABITS] fetchbufD_pc; wire fetchbufD_v; //reg did_branchback0; //reg did_branchback1; reg id1_v; reg [4:0] id1_id; reg [47:0] id1_instr; reg [5:0] id1_ven; reg [7:0] id1_vl; reg id1_thrd; reg id1_pt; reg [4:0] id1_Rt; wire [127:0] id1_bus; reg id2_v; reg [4:0] id2_id; reg [47:0] id2_instr; reg [5:0] id2_ven; reg [7:0] id2_vl; reg id2_thrd; reg id2_pt; reg [4:0] id2_Rt; wire [127:0] id2_bus; reg id3_v; reg [4:0] id3_id; reg [47:0] id3_instr; reg [5:0] id3_ven; reg [7:0] id3_vl; reg id3_thrd; reg id3_pt; reg [4:0] id3_Rt; wire [127:0] id3_bus; reg alu0_ld; reg alu0_dataready; wire alu0_done; wire alu0_idle; reg [3:0] alu0_sourceid; reg [47:0] alu0_instr; reg alu0_bt; reg alu0_mem; reg alu0_shft48; reg [63:0] alu0_argA; reg [63:0] alu0_argB; reg [63:0] alu0_argC; reg [63:0] alu0_argI; // only used by BEQ reg [RBIT:0] alu0_tgt; reg [5:0] alu0_ven; reg alu0_thrd; reg [`ABITS] alu0_pc; wire [63:0] alu0_bus; wire [63:0] alu0b_bus; wire [3:0] alu0_id; wire [`XBITS] alu0_exc; wire alu0_v; wire alu0_branchmiss; wire [`ABITS] alu0_misspc; reg alu1_ld; reg alu1_dataready; wire alu1_done; wire alu1_idle; reg [3:0] alu1_sourceid; reg [47:0] alu1_instr; reg alu1_bt; reg alu1_mem; reg alu1_shft48; reg [63:0] alu1_argA; reg [63:0] alu1_argB; reg [63:0] alu1_argC; reg [63:0] alu1_argI; // only used by BEQ reg [RBIT:0] alu1_tgt; reg [5:0] alu1_ven; reg [`ABITS] alu1_pc; reg alu1_thrd; wire [63:0] alu1_bus; wire [63:0] alu1b_bus; wire [3:0] alu1_id; wire [`XBITS] alu1_exc; wire alu1_v; wire alu1_branchmiss; wire [`ABITS] alu1_misspc; reg fpu1_ld; reg fpu1_dataready = 1'b1; wire fpu1_done = 1'b1; wire fpu1_idle; reg [3:0] fpu1_sourceid; reg [47:0] fpu1_instr; reg [63:0] fpu1_argA; reg [63:0] fpu1_argB; reg [63:0] fpu1_argC; reg [63:0] fpu1_argI; // only used by BEQ reg [RBIT:0] fpu1_tgt; reg [`ABITS] fpu1_pc; wire [63:0] fpu1_bus; wire [3:0] fpu1_id; wire [`XBITS] fpu1_exc = 9'h000; wire fpu1_v; wire [31:0] fpu1_status; reg fpu2_ld; reg fpu2_dataready = 1'b1; wire fpu2_done = 1'b1; wire fpu2_idle; reg [3:0] fpu2_sourceid; reg [47:0] fpu2_instr; reg [63:0] fpu2_argA; reg [63:0] fpu2_argB; reg [63:0] fpu2_argC; reg [63:0] fpu2_argI; // only used by BEQ reg [RBIT:0] fpu2_tgt; reg [`ABITS] fpu2_pc; wire [63:0] fpu2_bus; wire [3:0] fpu2_id; wire [`XBITS] fpu2_exc = 9'h000; wire fpu2_v; wire [31:0] fpu2_status; reg [63:0] waitctr; reg fcu_ld; reg fcu_dataready; reg fcu_done; reg fcu_idle = 1'b1; reg [3:0] fcu_sourceid; reg [47:0] fcu_instr; reg [2:0] fcu_insln; reg fcu_call; reg fcu_bt; reg [63:0] fcu_argA; reg [63:0] fcu_argB; reg [63:0] fcu_argC; reg [63:0] fcu_argI; // only used by BEQ reg [63:0] fcu_argT; reg [63:0] fcu_argT2; reg [`ABITS] fcu_retadr; reg fcu_retadr_v; reg [`ABITS] fcu_pc; reg [`ABITS] fcu_nextpc; reg [`ABITS] fcu_brdisp; wire [63:0] fcu_bus; wire [3:0] fcu_id; reg [`XBITS] fcu_exc; wire fcu_v; reg fcu_thrd; reg fcu_branchmiss; reg fcu_clearbm; reg [`ABITS] fcu_misspc; reg [63:0] rmw_argA; reg [63:0] rmw_argB; reg [63:0] rmw_argC; wire [63:0] rmw_res; reg [31:0] rmw_instr; // write buffer reg [63:0] wb_data [0:`WB_DEPTH-1]; reg [`ABITS] wb_addr [0:`WB_DEPTH-1]; reg [1:0] wb_ol [0:`WB_DEPTH-1]; reg [`WB_DEPTH-1:0] wb_v; reg [`WB_DEPTH-1:0] wb_rmw; reg [QENTRIES-1:0] wb_id [0:`WB_DEPTH-1]; reg [QENTRIES-1:0] wbo_id; reg [7:0] wb_sel [0:`WB_DEPTH-1]; reg wb_en; reg branchmiss = 1'b0; reg branchmiss_thrd = 1'b0; reg [`ABITS] misspc; reg [`QBITS] missid; wire take_branch; wire take_branchA; wire take_branchB; wire take_branchC; wire take_branchD; wire dram_avail; reg [2:0] dram0; // state of the DRAM request (latency = 4; can have three in pipeline) reg [2:0] dram1; // state of the DRAM request (latency = 4; can have three in pipeline) reg [2:0] dram2; // state of the DRAM request (latency = 4; can have three in pipeline) reg [63:0] dram0_data; reg [`ABITS] dram0_addr; reg [31:0] dram0_seg; reg [47:0] dram0_instr; reg dram0_rmw; reg dram0_preload; reg [RBIT:0] dram0_tgt; reg [3:0] dram0_id; reg [`XBITS] dram0_exc; reg dram0_unc; reg [2:0] dram0_memsize; reg dram0_load; // is a load operation reg [1:0] dram0_ol; reg [63:0] dram1_data; reg [`ABITS] dram1_addr; reg [31:0] dram1_seg; reg [47:0] dram1_instr; reg dram1_rmw; reg dram1_preload; reg [RBIT:0] dram1_tgt; reg [3:0] dram1_id; reg [`XBITS] dram1_exc; reg dram1_unc; reg [2:0] dram1_memsize; reg dram1_load; reg [1:0] dram1_ol; reg [63:0] dram2_data; reg [`ABITS] dram2_addr; reg [31:0] dram2_seg; reg [47:0] dram2_instr; reg dram2_rmw; reg dram2_preload; reg [RBIT:0] dram2_tgt; reg [3:0] dram2_id; reg [`XBITS] dram2_exc; reg dram2_unc; reg [2:0] dram2_memsize; reg dram2_load; reg [1:0] dram2_ol; reg dramA_v; reg [3:0] dramA_id; reg [63:0] dramA_bus; reg [`XBITS] dramA_exc; reg dramB_v; reg [3:0] dramB_id; reg [63:0] dramB_bus; reg [`XBITS] dramB_exc; reg dramC_v; reg [3:0] dramC_id; reg [63:0] dramC_bus; reg [`XBITS] dramC_exc; wire outstanding_stores; reg [63:0] I; // instruction count reg commit0_v; reg [4:0] commit0_id; reg [RBIT:0] commit0_tgt; reg [7:0] commit0_we = 8'h00; reg [63:0] commit0_bus; reg commit1_v; reg [4:0] commit1_id; reg [RBIT:0] commit1_tgt; reg [7:0] commit1_we = 8'h00; reg [63:0] commit1_bus; reg [4:0] bstate; parameter BIDLE = 5'd0; parameter B1 = 5'd1; parameter B2 = 5'd2; parameter B3 = 5'd3; parameter B4 = 5'd4; parameter B5 = 5'd5; parameter B6 = 5'd6; parameter B7 = 5'd7; parameter B8 = 5'd8; parameter B9 = 5'd9; parameter B10 = 5'd10; parameter B11 = 5'd11; parameter B12 = 5'd12; parameter B13 = 5'd13; parameter B14 = 5'd14; parameter B15 = 5'd15; parameter B16 = 5'd16; parameter B17 = 5'd17; parameter B18 = 5'd18; parameter B19 = 5'd19; parameter B2a = 5'd20; parameter B2b = 5'd21; parameter B2c = 5'd22; parameter B2d = 5'd23; parameter B20 = 5'd24; parameter B21 = 5'd25; reg [1:0] bwhich; reg [3:0] icstate,picstate; parameter IDLE = 4'd0; parameter IC1 = 4'd1; parameter IC2 = 4'd2; parameter IC3 = 4'd3; parameter IC4 = 4'd4; parameter IC5 = 4'd5; parameter IC6 = 4'd6; parameter IC7 = 4'd7; parameter IC8 = 4'd8; parameter IC9 = 4'd9; parameter IC10 = 4'd10; parameter IC3a = 4'd11; reg invic, invdc; reg [1:0] icwhich; reg icnxt,L2_nxt; wire ihit0,ihit1,ihit2,ihitL2; wire ihit = ihit0&ihit1&ihit2; reg phit; wire threadx; always @* phit <= ihit&&icstate==IDLE; reg [2:0] iccnt; reg L1_wr0,L1_wr1,L1_wr2; reg L1_invline; reg [8:0] L1_en; reg [37:0] L1_adr, L2_adr; reg [287:0] L2_rdat; wire [287:0] L2_dato; reg L2_xsel; FT64_regfile2w6r_oc #(.RBIT(RBIT)) urf1 ( .clk(clk), .clk4x(clk4x), .wr0(commit0_v), .wr1(commit1_v), .we0(commit0_we), .we1(commit1_we), .wa0(commit0_tgt), .wa1(commit1_tgt), .i0(commit0_bus), .i1(commit1_bus), .rclk(~clk), .ra0(Ra0), .ra1(Rb0), .ra2(Rc0), .ra3(Ra1), .ra4(Rb1), .ra5(Rc1), .o0(rfoa0), .o1(rfob0), .o2(rfoc0a), .o3(rfoa1), .o4(rfob1), .o5(rfoc1a) ); assign rfoc0 = Rc0[11:6]==6'h3F ? vm[Rc0[2:0]] : rfoc0a; assign rfoc1 = Rc1[11:6]==6'h3F ? vm[Rc1[2:0]] : rfoc1a; function [2:0] fnInsLength; input [47:0] ins; case(ins[7:6]) 2'b00: fnInsLength = 3'd4; 2'b01: fnInsLength = 3'd6; 2'b10: fnInsLength = 3'd2; 2'b11: fnInsLength = 3'd2; endcase endfunction wire [`ABITS] pc0plus6 = pc0 + 32'd6; wire [`ABITS] pc0plus12 = pc0 + 32'd12; `ifdef SUPPORT_SMT generate begin : gInsnVar if (`WAYS > 1) begin assign insn1a = insn1b; end if (`WAYS > 2) begin assign insn2a = insn2b; end end endgenerate `else generate begin : gInsnVar if (`WAYS > 1) begin assign insn1a = {insn1b,insn0a} >> {fnInsLength(insn0a),3'b0}; end if (`WAYS > 2) begin assign insn2a = {insn2b,insn1b,insn0a} >> {fnInsLength(insn0a) + fnInsLength(insn1a),3'b0}; end end endgenerate `endif FT64_L1_icache uic0 ( .rst(rst), .clk(clk), .nxt(icnxt), .wr(L1_wr0), .en(L1_en), .adr(icstate==IDLE||icstate==IC8 ? {pcr[5:0],pc0} : L1_adr), .wadr(L1_adr), .i(L2_rdat), .o(insn0a), .hit(ihit0), .invall(invic), .invline(L1_invline) ); generate begin : gICacheInst if (`WAYS > 1) begin FT64_L1_icache uic1 ( .rst(rst), .clk(clk), .nxt(icnxt), .wr(L1_wr1), .en(L1_en), `ifdef SUPPORT_SMT .adr(icstate==IDLE||icstate==IC8 ? {pcr[5:0],pc1} : L1_adr), `else .adr(icstate==IDLE||icstate==IC8 ? {pcr[5:0],pc0plus6} : L1_adr), `endif .wadr(L1_adr), .i(L2_rdat), .o(insn1b), .hit(ihit1), .invall(invic), .invline(L1_invline) ); end else begin assign ihit1 = 1'b1; end if (`WAYS > 2) begin FT64_L1_icache uic2 ( .rst(rst), .clk(clk), .nxt(icnxt), .wr(L1_wr2), .en(L1_en), `ifdef SUPPORT_SMT .adr(icstate==IDLE||icstate==IC8 ? {pcr[5:0],pc2} : L1_adr), `else .adr(icstate==IDLE||icstate==IC8 ? {pcr[5:0],pc0plus12} : L1_adr), `endif .wadr(L1_adr), .i(L2_rdat), .o(insn2b), .hit(ihit2), .invall(invic), .invline(L1_invline) ); end else assign ihit2 = 1'b1; end endgenerate FT64_L2_icache uic2 ( .rst(rst), .clk(clk), .nxt(L2_nxt), .wr(bstate==B7 && ack_i), .xsel(L2_xsel), .adr(L2_adr), .cnt(iccnt), .exv_i(exvq), .i(dat_i), .err_i(errq), .o(L2_dato), .hit(ihitL2), .invall(invic), .invline() ); wire predict_taken; wire predict_taken0; wire predict_taken1; wire predict_takenA; wire predict_takenB; wire predict_takenC; wire predict_takenD; wire predict_takenA1; wire predict_takenB1; wire predict_takenC1; wire predict_takenD1; wire [`ABITS] btgtA, btgtB, btgtC, btgtD; wire btbwr0 = iqentry_v[head0] && iqentry_done[head0] && ( iqentry_instr[head0][`INSTRUCTION_OP]==`JAL || iqentry_instr[head0][`INSTRUCTION_OP]==`BRK || IsRTI(iqentry_instr[head0])); wire btbwr1 = iqentry_v[head1] && iqentry_done[head1] && ( iqentry_instr[head1][`INSTRUCTION_OP]==`JAL || iqentry_instr[head1][`INSTRUCTION_OP]==`BRK || IsRTI(iqentry_instr[head1])); `ifdef FCU_ENH wire fcu_clk; BUFGCE ufcuclk ( .I(clk_i), .CE(fcu_available), .O(fcu_clk) ); `endif `ifdef FCU_ENH FT64_BTB ubtb1 ( .rst(rst), .wclk(fcu_clk), .wr(btbwr0 | btbwr1), .wadr(btbwr0 ? iqentry_pc[head0] : iqentry_pc[head1]), .wdat(btbwr0 ? iqentry_a0[head0] : iqentry_a0[head1]), .valid(btbwr0 ? iqentry_bt[head0] & iqentry_v[head0] : iqentry_bt[head1] & iqentry_v[head1]), .rclk(~clk), .pcA(fetchbufA_pc), .btgtA(btgtA), .pcB(fetchbufB_pc), .btgtB(btgtB), .pcC(fetchbufC_pc), .btgtC(btgtC), .pcD(fetchbufD_pc), .btgtD(btgtD), .npcA(BRKPC), .npcB(BRKPC), .npcC(BRKPC), .npcD(BRKPC) ); `else // Branch tergets are picked up by fetchbuf logic and need to be present. // Without a target predictor they are just set to the reset address. // This virtually guarentees a miss. assign btgtA = RSTPC; assign btgtB = RSTPC; assign btgtC = RSTPC; assign btgtD = RSTPC; `endif `ifdef FCU_ENH FT64_BranchPredictor ubp1 ( .rst(rst), .clk(fcu_clk), .en(bpe), .xisBranch0(iqentry_br[head0] & commit0_v), .xisBranch1(iqentry_br[head1] & commit1_v), .pcA(fetchbufA_pc), .pcB(fetchbufB_pc), .pcC(fetchbufC_pc), .pcD(fetchbufD_pc), .xpc0(iqentry_pc[head0]), .xpc1(iqentry_pc[head1]), .takb0(commit0_v & iqentry_res[head0][0]), .takb1(commit1_v & iqentry_res[head1][0]), .predict_takenA(predict_takenA), .predict_takenB(predict_takenB), .predict_takenC(predict_takenC), .predict_takenD(predict_takenD) ); `else // Predict based on sign of displacement assign predict_takenA = fetchbufA_instr[31]; assign predict_takenB = fetchbufB_instr[31]; assign predict_takenC = fetchbufC_instr[31]; assign predict_takenD = fetchbufD_instr[31]; `endif //----------------------------------------------------------------------------- // Debug //----------------------------------------------------------------------------- `ifdef SUPPORT_DBG wire [DBW-1:0] dbg_stat1x; reg [DBW-1:0] dbg_stat; reg [DBW-1:0] dbg_ctrl; reg [ABW-1:0] dbg_adr0; reg [ABW-1:0] dbg_adr1; reg [ABW-1:0] dbg_adr2; reg [ABW-1:0] dbg_adr3; reg dbg_imatchA0,dbg_imatchA1,dbg_imatchA2,dbg_imatchA3,dbg_imatchA; reg dbg_imatchB0,dbg_imatchB1,dbg_imatchB2,dbg_imatchB3,dbg_imatchB; wire dbg_lmatch00 = dbg_ctrl[0] && dbg_ctrl[17:16]==2'b11 && dram0_addr[AMSB:3]==dbg_adr0[AMSB:3] && ((dbg_ctrl[19:18]==2'b00 && dram0_addr[2:0]==dbg_adr0[2:0]) || (dbg_ctrl[19:18]==2'b01 && dram0_addr[2:1]==dbg_adr0[2:1]) || (dbg_ctrl[19:18]==2'b10 && dram0_addr[2]==dbg_adr0[2]) || dbg_ctrl[19:18]==2'b11) ; wire dbg_lmatch01 = dbg_ctrl[0] && dbg_ctrl[17:16]==2'b11 && dram1_addr[AMSB:3]==dbg_adr0[AMSB:3] && ((dbg_ctrl[19:18]==2'b00 && dram1_addr[2:0]==dbg_adr0[2:0]) || (dbg_ctrl[19:18]==2'b01 && dram1_addr[2:1]==dbg_adr0[2:1]) || (dbg_ctrl[19:18]==2'b10 && dram1_addr[2]==dbg_adr0[2]) || dbg_ctrl[19:18]==2'b11) ; wire dbg_lmatch02 = dbg_ctrl[0] && dbg_ctrl[17:16]==2'b11 && dram2_addr[AMSB:3]==dbg_adr0[AMSB:3] && ((dbg_ctrl[19:18]==2'b00 && dram2_addr[2:0]==dbg_adr0[2:0]) || (dbg_ctrl[19:18]==2'b01 && dram2_addr[2:1]==dbg_adr0[2:1]) || (dbg_ctrl[19:18]==2'b10 && dram2_addr[2]==dbg_adr0[2]) || dbg_ctrl[19:18]==2'b11) ; wire dbg_lmatch10 = dbg_ctrl[1] && dbg_ctrl[21:20]==2'b11 && dram0_addr[AMSB:3]==dbg_adr1[AMSB:3] && ((dbg_ctrl[23:22]==2'b00 && dram0_addr[2:0]==dbg_adr1[2:0]) || (dbg_ctrl[23:22]==2'b01 && dram0_addr[2:1]==dbg_adr1[2:1]) || (dbg_ctrl[23:22]==2'b10 && dram0_addr[2]==dbg_adr1[2]) || dbg_ctrl[23:22]==2'b11) ; wire dbg_lmatch11 = dbg_ctrl[1] && dbg_ctrl[21:20]==2'b11 && dram1_addr[AMSB:3]==dbg_adr1[AMSB:3] && ((dbg_ctrl[23:22]==2'b00 && dram1_addr[2:0]==dbg_adr1[2:0]) || (dbg_ctrl[23:22]==2'b01 && dram1_addr[2:1]==dbg_adr1[2:1]) || (dbg_ctrl[23:22]==2'b10 && dram1_addr[2]==dbg_adr1[2]) || dbg_ctrl[23:22]==2'b11) ; wire dbg_lmatch12 = dbg_ctrl[1] && dbg_ctrl[21:20]==2'b11 && dram2_addr[AMSB:3]==dbg_adr1[AMSB:3] && ((dbg_ctrl[23:22]==2'b00 && dram2_addr[2:0]==dbg_adr1[2:0]) || (dbg_ctrl[23:22]==2'b01 && dram2_addr[2:1]==dbg_adr1[2:1]) || (dbg_ctrl[23:22]==2'b10 && dram2_addr[2]==dbg_adr1[2]) || dbg_ctrl[23:22]==2'b11) ; wire dbg_lmatch20 = dbg_ctrl[2] && dbg_ctrl[25:24]==2'b11 && dram0_addr[AMSB:3]==dbg_adr2[AMSB:3] && ((dbg_ctrl[27:26]==2'b00 && dram0_addr[2:0]==dbg_adr2[2:0]) || (dbg_ctrl[27:26]==2'b01 && dram0_addr[2:1]==dbg_adr2[2:1]) || (dbg_ctrl[27:26]==2'b10 && dram0_addr[2]==dbg_adr2[2]) || dbg_ctrl[27:26]==2'b11) ; wire dbg_lmatch21 = dbg_ctrl[2] && dbg_ctrl[25:24]==2'b11 && dram1_addr[AMSB:3]==dbg_adr2[AMSB:3] && ((dbg_ctrl[27:26]==2'b00 && dram1_addr[2:0]==dbg_adr2[2:0]) || (dbg_ctrl[27:26]==2'b01 && dram1_addr[2:1]==dbg_adr2[2:1]) || (dbg_ctrl[27:26]==2'b10 && dram1_addr[2]==dbg_adr2[2]) || dbg_ctrl[27:26]==2'b11) ; wire dbg_lmatch22 = dbg_ctrl[2] && dbg_ctrl[25:24]==2'b11 && dram2_addr[AMSB:3]==dbg_adr2[AMSB:3] && ((dbg_ctrl[27:26]==2'b00 && dram2_addr[2:0]==dbg_adr2[2:0]) || (dbg_ctrl[27:26]==2'b01 && dram2_addr[2:1]==dbg_adr2[2:1]) || (dbg_ctrl[27:26]==2'b10 && dram2_addr[2]==dbg_adr2[2]) || dbg_ctrl[27:26]==2'b11) ; wire dbg_lmatch30 = dbg_ctrl[3] && dbg_ctrl[29:28]==2'b11 && dram0_addr[AMSB:3]==dbg_adr3[AMSB:3] && ((dbg_ctrl[31:30]==2'b00 && dram0_addr[2:0]==dbg_adr3[2:0]) || (dbg_ctrl[31:30]==2'b01 && dram0_addr[2:1]==dbg_adr3[2:1]) || (dbg_ctrl[31:30]==2'b10 && dram0_addr[2]==dbg_adr3[2]) || dbg_ctrl[31:30]==2'b11) ; wire dbg_lmatch31 = dbg_ctrl[3] && dbg_ctrl[29:28]==2'b11 && dram1_addr[AMSB:3]==dbg_adr3[AMSB:3] && ((dbg_ctrl[31:30]==2'b00 && dram1_addr[2:0]==dbg_adr3[2:0]) || (dbg_ctrl[31:30]==2'b01 && dram1_addr[2:1]==dbg_adr3[2:1]) || (dbg_ctrl[31:30]==2'b10 && dram1_addr[2]==dbg_adr3[2]) || dbg_ctrl[31:30]==2'b11) ; wire dbg_lmatch32 = dbg_ctrl[3] && dbg_ctrl[29:28]==2'b11 && dram2_addr[AMSB:3]==dbg_adr3[AMSB:3] && ((dbg_ctrl[31:30]==2'b00 && dram2_addr[2:0]==dbg_adr3[2:0]) || (dbg_ctrl[31:30]==2'b01 && dram2_addr[2:1]==dbg_adr3[2:1]) || (dbg_ctrl[31:30]==2'b10 && dram2_addr[2]==dbg_adr3[2]) || dbg_ctrl[31:30]==2'b11) ; wire dbg_lmatch0 = dbg_lmatch00|dbg_lmatch10|dbg_lmatch20|dbg_lmatch30; wire dbg_lmatch1 = dbg_lmatch01|dbg_lmatch11|dbg_lmatch21|dbg_lmatch31; wire dbg_lmatch2 = dbg_lmatch02|dbg_lmatch12|dbg_lmatch22|dbg_lmatch32; wire dbg_lmatch = dbg_lmatch00|dbg_lmatch10|dbg_lmatch20|dbg_lmatch30| dbg_lmatch01|dbg_lmatch11|dbg_lmatch21|dbg_lmatch31| dbg_lmatch02|dbg_lmatch12|dbg_lmatch22|dbg_lmatch32 ; wire dbg_smatch00 = dbg_ctrl[0] && dbg_ctrl[17:16]==2'b11 && dram0_addr[AMSB:3]==dbg_adr0[AMSB:3] && ((dbg_ctrl[19:18]==2'b00 && dram0_addr[2:0]==dbg_adr0[2:0]) || (dbg_ctrl[19:18]==2'b01 && dram0_addr[2:1]==dbg_adr0[2:1]) || (dbg_ctrl[19:18]==2'b10 && dram0_addr[2]==dbg_adr0[2]) || dbg_ctrl[19:18]==2'b11) ; wire dbg_smatch01 = dbg_ctrl[0] && dbg_ctrl[17:16]==2'b11 && dram1_addr[AMSB:3]==dbg_adr0[AMSB:3] && ((dbg_ctrl[19:18]==2'b00 && dram1_addr[2:0]==dbg_adr0[2:0]) || (dbg_ctrl[19:18]==2'b01 && dram1_addr[2:1]==dbg_adr0[2:1]) || (dbg_ctrl[19:18]==2'b10 && dram1_addr[2]==dbg_adr0[2]) || dbg_ctrl[19:18]==2'b11) ; wire dbg_smatch02 = dbg_ctrl[0] && dbg_ctrl[17:16]==2'b11 && dram2_addr[AMSB:3]==dbg_adr0[AMSB:3] && ((dbg_ctrl[19:18]==2'b00 && dram2_addr[2:0]==dbg_adr0[2:0]) || (dbg_ctrl[19:18]==2'b01 && dram2_addr[2:1]==dbg_adr0[2:1]) || (dbg_ctrl[19:18]==2'b10 && dram2_addr[2]==dbg_adr0[2]) || dbg_ctrl[19:18]==2'b11) ; wire dbg_smatch10 = dbg_ctrl[1] && dbg_ctrl[21:20]==2'b11 && dram0_addr[AMSB:3]==dbg_adr1[AMSB:3] && ((dbg_ctrl[23:22]==2'b00 && dram0_addr[2:0]==dbg_adr1[2:0]) || (dbg_ctrl[23:22]==2'b01 && dram0_addr[2:1]==dbg_adr1[2:1]) || (dbg_ctrl[23:22]==2'b10 && dram0_addr[2]==dbg_adr1[2]) || dbg_ctrl[23:22]==2'b11) ; wire dbg_smatch11 = dbg_ctrl[1] && dbg_ctrl[21:20]==2'b11 && dram1_addr[AMSB:3]==dbg_adr1[AMSB:3] && ((dbg_ctrl[23:22]==2'b00 && dram1_addr[2:0]==dbg_adr1[2:0]) || (dbg_ctrl[23:22]==2'b01 && dram1_addr[2:1]==dbg_adr1[2:1]) || (dbg_ctrl[23:22]==2'b10 && dram1_addr[2]==dbg_adr1[2]) || dbg_ctrl[23:22]==2'b11) ; wire dbg_smatch12 = dbg_ctrl[1] && dbg_ctrl[21:20]==2'b11 && dram2_addr[AMSB:3]==dbg_adr1[AMSB:3] && ((dbg_ctrl[23:22]==2'b00 && dram2_addr[2:0]==dbg_adr1[2:0]) || (dbg_ctrl[23:22]==2'b01 && dram2_addr[2:1]==dbg_adr1[2:1]) || (dbg_ctrl[23:22]==2'b10 && dram2_addr[2]==dbg_adr1[2]) || dbg_ctrl[23:22]==2'b11) ; wire dbg_smatch20 = dbg_ctrl[2] && dbg_ctrl[25:24]==2'b11 && dram0_addr[AMSB:3]==dbg_adr2[AMSB:3] && ((dbg_ctrl[27:26]==2'b00 && dram0_addr[2:0]==dbg_adr2[2:0]) || (dbg_ctrl[27:26]==2'b01 && dram0_addr[2:1]==dbg_adr2[2:1]) || (dbg_ctrl[27:26]==2'b10 && dram0_addr[2]==dbg_adr2[2]) || dbg_ctrl[27:26]==2'b11) ; wire dbg_smatch21 = dbg_ctrl[2] && dbg_ctrl[25:24]==2'b11 && dram1_addr[AMSB:3]==dbg_adr2[AMSB:3] && ((dbg_ctrl[27:26]==2'b00 && dram1_addr[2:0]==dbg_adr2[2:0]) || (dbg_ctrl[27:26]==2'b01 && dram1_addr[2:1]==dbg_adr2[2:1]) || (dbg_ctrl[27:26]==2'b10 && dram1_addr[2]==dbg_adr2[2]) || dbg_ctrl[27:26]==2'b11) ; wire dbg_smatch22 = dbg_ctrl[2] && dbg_ctrl[25:24]==2'b11 && dram2_addr[AMSB:3]==dbg_adr2[AMSB:3] && ((dbg_ctrl[27:26]==2'b00 && dram2_addr[2:0]==dbg_adr2[2:0]) || (dbg_ctrl[27:26]==2'b01 && dram2_addr[2:1]==dbg_adr2[2:1]) || (dbg_ctrl[27:26]==2'b10 && dram2_addr[2]==dbg_adr2[2]) || dbg_ctrl[27:26]==2'b11) ; wire dbg_smatch30 = dbg_ctrl[3] && dbg_ctrl[29:28]==2'b11 && dram0_addr[AMSB:3]==dbg_adr3[AMSB:3] && ((dbg_ctrl[31:30]==2'b00 && dram0_addr[2:0]==dbg_adr3[2:0]) || (dbg_ctrl[31:30]==2'b01 && dram0_addr[2:1]==dbg_adr3[2:1]) || (dbg_ctrl[31:30]==2'b10 && dram0_addr[2]==dbg_adr3[2]) || dbg_ctrl[31:30]==2'b11) ; wire dbg_smatch31 = dbg_ctrl[3] && dbg_ctrl[29:28]==2'b11 && dram1_addr[AMSB:3]==dbg_adr3[AMSB:3] && ((dbg_ctrl[31:30]==2'b00 && dram1_addr[2:0]==dbg_adr3[2:0]) || (dbg_ctrl[31:30]==2'b01 && dram1_addr[2:1]==dbg_adr3[2:1]) || (dbg_ctrl[31:30]==2'b10 && dram1_addr[2]==dbg_adr3[2]) || dbg_ctrl[31:30]==2'b11) ; wire dbg_smatch32 = dbg_ctrl[3] && dbg_ctrl[29:28]==2'b11 && dram2_addr[AMSB:3]==dbg_adr3[AMSB:3] && ((dbg_ctrl[31:30]==2'b00 && dram2_addr[2:0]==dbg_adr3[2:0]) || (dbg_ctrl[31:30]==2'b01 && dram2_addr[2:1]==dbg_adr3[2:1]) || (dbg_ctrl[31:30]==2'b10 && dram2_addr[2]==dbg_adr3[2]) || dbg_ctrl[31:30]==2'b11) ; wire dbg_smatch0 = dbg_smatch00|dbg_smatch10|dbg_smatch20|dbg_smatch30; wire dbg_smatch1 = dbg_smatch01|dbg_smatch11|dbg_smatch21|dbg_smatch31; wire dbg_smatch2 = dbg_smatch02|dbg_smatch12|dbg_smatch22|dbg_smatch32; wire dbg_smatch = dbg_smatch00|dbg_smatch10|dbg_smatch20|dbg_smatch30| dbg_smatch01|dbg_smatch11|dbg_smatch21|dbg_smatch31| dbg_smatch02|dbg_smatch12|dbg_smatch22|dbg_smatch32 ; wire dbg_stat0 = dbg_imatchA0 | dbg_imatchB0 | dbg_lmatch00 | dbg_lmatch01 | dbg_lmatch02 | dbg_smatch00 | dbg_smatch01 | dbg_smatch02; wire dbg_stat1 = dbg_imatchA1 | dbg_imatchB1 | dbg_lmatch10 | dbg_lmatch11 | dbg_lmatch12 | dbg_smatch10 | dbg_smatch11 | dbg_smatch12; wire dbg_stat2 = dbg_imatchA2 | dbg_imatchB2 | dbg_lmatch20 | dbg_lmatch21 | dbg_lmatch22 | dbg_smatch20 | dbg_smatch21 | dbg_smatch22; wire dbg_stat3 = dbg_imatchA3 | dbg_imatchB3 | dbg_lmatch30 | dbg_lmatch31 | dbg_lmatch32 | dbg_smatch30 | dbg_smatch31 | dbg_smatch32; assign dbg_stat1x = {dbg_stat3,dbg_stat2,dbg_stat1,dbg_stat0}; wire debug_on = |dbg_ctrl[3:0]|dbg_ctrl[7]|dbg_ctrl[63]; always @* begin if (dbg_ctrl[0] && dbg_ctrl[17:16]==2'b00 && fetchbuf0_pc==dbg_adr0) dbg_imatchA0 = `TRUE; if (dbg_ctrl[1] && dbg_ctrl[21:20]==2'b00 && fetchbuf0_pc==dbg_adr1) dbg_imatchA1 = `TRUE; if (dbg_ctrl[2] && dbg_ctrl[25:24]==2'b00 && fetchbuf0_pc==dbg_adr2) dbg_imatchA2 = `TRUE; if (dbg_ctrl[3] && dbg_ctrl[29:28]==2'b00 && fetchbuf0_pc==dbg_adr3) dbg_imatchA3 = `TRUE; if (dbg_imatchA0|dbg_imatchA1|dbg_imatchA2|dbg_imatchA3) dbg_imatchA = `TRUE; end always @* begin if (dbg_ctrl[0] && dbg_ctrl[17:16]==2'b00 && fetchbuf1_pc==dbg_adr0) dbg_imatchB0 = `TRUE; if (dbg_ctrl[1] && dbg_ctrl[21:20]==2'b00 && fetchbuf1_pc==dbg_adr1) dbg_imatchB1 = `TRUE; if (dbg_ctrl[2] && dbg_ctrl[25:24]==2'b00 && fetchbuf1_pc==dbg_adr2) dbg_imatchB2 = `TRUE; if (dbg_ctrl[3] && dbg_ctrl[29:28]==2'b00 && fetchbuf1_pc==dbg_adr3) dbg_imatchB3 = `TRUE; if (dbg_imatchB0|dbg_imatchB1|dbg_imatchB2|dbg_imatchB3) dbg_imatchB = `TRUE; end `endif //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // hirq squashes the pc increment if there's an irq. wire hirq = (irq_i > im) && ~int_commit; always @* if (hirq) insn0 <= {8'd0,3'd0,irq_i,1'b0,vec_i,2'b00,`BRK}; else if (phit) begin if (insn0a[`INSTRUCTION_OP]==`BRK && insn0a[23:21]==3'd0 && insn0a[7:6]==2'b00) insn0 <= {8'd1,3'd0,4'b0,1'b0,`FLT_PRIV,2'b00,`BRK}; else insn0 <= insn0a; end else insn0 <= `NOP_INSN; generate begin : gInsnMux if (`WAYS > 1) begin always @* if (phit) begin if (insn1a[`INSTRUCTION_OP]==`BRK && insn1a[23:21]==3'd0 && insn1a[7:6]==2'b00) insn1 <= {8'd1,3'd0,4'b0,1'b0,`FLT_PRIV,2'b00,`BRK}; else insn1 <= insn1a; end else insn1 <= `NOP_INSN; end if (`WAYS > 2) begin always @* if (phit) begin if (insn2a[`INSTRUCTION_OP]==`BRK && insn1a[23:21]==3'd0 && insn2a[7:6]==2'b00) insn2 <= {8'd1,3'd0,4'b0,1'b0,`FLT_PRIV,2'b00,`BRK}; else insn2 <= insn2a; end else insn2 <= `NOP_INSN; end end endgenerate wire [63:0] dc0_out, dc1_out, dc2_out; assign rdat0 = dram0_unc ? xdati : dc0_out; assign rdat1 = dram1_unc ? xdati : dc1_out; assign rdat2 = dram2_unc ? xdati : dc2_out; reg preload; reg [1:0] dccnt; wire dhit0, dhit1, dhit2; wire dhit00, dhit10, dhit20; wire dhit01, dhit11, dhit21; reg [`ABITS] dc_wadr; reg [63:0] dc_wdat; reg isStore; FT64_dcache udc0 ( .rst(rst), .wclk(clk), .wr((bstate==B2d && ack_i)||((bstate==B1||(bstate==B19 && isStore)) && dhit0)), .sel(sel_o), .wadr({pcr[5:0],adr_o}), .i(bstate==B2d ? dat_i : dat_o), .rclk(clk), .rdsize(dram0_memsize), .radr({pcr[5:0],dram0_addr}), .o(dc0_out), .hit(), .hit0(dhit0), .hit1() ); generate begin : gDCacheInst if (`NUM_MEM > 1) begin FT64_dcache udc1 ( .rst(rst), .wclk(clk), .wr((bstate==B2d && ack_i)||((bstate==B1||(bstate==B19 && isStore)) && dhit1)), .sel(sel_o), .wadr({pcr[5:0],adr_o}), .i(bstate==B2d ? dat_i : dat_o), .rclk(clk), .rdsize(dram1_memsize), .radr({pcr[5:0],dram1_addr}), .o(dc1_out), .hit(), .hit0(dhit1), .hit1() ); end if (`NUM_MEM > 2) begin FT64_dcache udc2 ( .rst(rst), .wclk(clk), .wr((bstate==B2d && ack_i)||((bstate==B1||(bstate==B19 && isStore)) && dhit2)), .sel(sel_o), .wadr({pcr[5:0],adr_o}), .i(bstate==B2d ? dat_i : dat_o), .rclk(clk), .rdsize(dram2_memsize), .radr({pcr[5:0],dram2_addr}), .o(dc2_out), .hit(), .hit0(dhit2), .hit1() ); end end endgenerate function [`QBITS] idp1; input [`QBITS] id; case(id) 3'd0: idp1 = 3'd1; 3'd1: idp1 = 3'd2; 3'd2: idp1 = 3'd3; 3'd3: idp1 = 3'd4; 3'd4: idp1 = 3'd5; 3'd5: idp1 = 3'd6; 3'd6: idp1 = 3'd7; 3'd7: idp1 = 3'd0; endcase endfunction function [`QBITS] idp2; input [`QBITS] id; case(id) 3'd0: idp2 = 3'd2; 3'd1: idp2 = 3'd3; 3'd2: idp2 = 3'd4; 3'd3: idp2 = 3'd5; 3'd4: idp2 = 3'd6; 3'd5: idp2 = 3'd7; 3'd6: idp2 = 3'd0; 3'd7: idp2 = 3'd1; endcase endfunction function [`QBITS] idp3; input [`QBITS] id; case(id) 3'd0: idp3 = 3'd3; 3'd1: idp3 = 3'd4; 3'd2: idp3 = 3'd5; 3'd3: idp3 = 3'd6; 3'd4: idp3 = 3'd7; 3'd5: idp3 = 3'd0; 3'd6: idp3 = 3'd1; 3'd7: idp3 = 3'd2; endcase endfunction function [`QBITS] idp4; input [`QBITS] id; case(id) 3'd0: idp4 = 3'd4; 3'd1: idp4 = 3'd5; 3'd2: idp4 = 3'd6; 3'd3: idp4 = 3'd7; 3'd4: idp4 = 3'd0; 3'd5: idp4 = 3'd1; 3'd6: idp4 = 3'd2; 3'd7: idp4 = 3'd3; endcase endfunction function [`QBITS] idp5; input [`QBITS] id; case(id) 3'd0: idp5 = 3'd5; 3'd1: idp5 = 3'd6; 3'd2: idp5 = 3'd7; 3'd3: idp5 = 3'd0; 3'd4: idp5 = 3'd1; 3'd5: idp5 = 3'd2; 3'd6: idp5 = 3'd3; 3'd7: idp5 = 3'd4; endcase endfunction function [`QBITS] idp6; input [`QBITS] id; case(id) 3'd0: idp6 = 3'd6; 3'd1: idp6 = 3'd7; 3'd2: idp6 = 3'd0; 3'd3: idp6 = 3'd1; 3'd4: idp6 = 3'd2; 3'd5: idp6 = 3'd3; 3'd6: idp6 = 3'd4; 3'd7: idp6 = 3'd5; endcase endfunction function [`QBITS] idp7; input [`QBITS] id; case(id) 3'd0: idp7 = 3'd7; 3'd1: idp7 = 3'd0; 3'd2: idp7 = 3'd1; 3'd3: idp7 = 3'd2; 3'd4: idp7 = 3'd3; 3'd5: idp7 = 3'd4; 3'd6: idp7 = 3'd5; 3'd7: idp7 = 3'd6; endcase endfunction function [`QBITS] idm1; input [`QBITS] id; case(id) 3'd0: idm1 = 3'd7; 3'd1: idm1 = 3'd0; 3'd2: idm1 = 3'd1; 3'd3: idm1 = 3'd2; 3'd4: idm1 = 3'd3; 3'd5: idm1 = 3'd4; 3'd6: idm1 = 3'd5; 3'd7: idm1 = 3'd6; endcase endfunction `ifdef SUPPORT_SMT function [RBIT:0] fnRa; input [47:0] isn; input [5:0] vqei; input [5:0] vli; input thrd; case(isn[`INSTRUCTION_OP]) `IVECTOR: case(isn[`INSTRUCTION_S2]) `VCIDX,`VSCAN: fnRa = {6'd0,1'b1,isn[`INSTRUCTION_RA]}; `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMPOP,`VMFIRST,`VMLAST: fnRa = {6'h3F,1'b1,2'b0,isn[8:6]}; `VMFILL:fnRa = {6'd0,1'b1,isn[`INSTRUCTION_RA]}; default:fnRa = {6'h3F,1'b1,2'b0,isn[8:6]}; endcase `VSHLV: fnRa = (vqei+1+isn[15:11] >= vli) ? 11'h000 : {vli-vqei-isn[15:11]-1,1'b1,isn[`INSTRUCTION_RA]}; `VSHRV: fnRa = (vqei+isn[15:11] >= vli) ? 11'h000 : {vqei+isn[15:11],1'b1,isn[`INSTRUCTION_RA]}; `VSxx,`VSxxU,`VSxxS,`VSxxSU: fnRa = {vqei,1'b1,isn[`INSTRUCTION_RA]}; default: fnRa = {vqei,1'b1,isn[`INSTRUCTION_RA]}; endcase `R2: case(isn[`INSTRUCTION_S2]) `MOV: case(isn[25:23]) 3'd0: fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; 3'd1: fnRa = {isn[22:18],1'b0,isn[`INSTRUCTION_RA]}; 3'd2: fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; 3'd3: fnRa = {rs_stack[thrd][5:0],1'b0,isn[`INSTRUCTION_RA]}; 3'd4: fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; 3'd5: fnRa = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; 3'd6: fnRa = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; default:fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; endcase `VMOV: case (isn[`INSTRUCTION_S1]) 5'h0: fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; 5'h1: fnRa = {6'h3F,1'b1,isn[`INSTRUCTION_RA]}; endcase default: fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; endcase `FLOAT: fnRa = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; default: fnRa = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; endcase endfunction function [RBIT:0] fnRb; input [47:0] isn; input fb; input [5:0] vqei; input [5:0] rfoa0i; input [5:0] rfoa1i; input thrd; case(isn[`INSTRUCTION_OP]) `R2: case(isn[`INSTRUCTION_S2]) `VEX: fnRb = fb ? {rfoa1i,1'b1,isn[`INSTRUCTION_RB]} : {rfoa0i,1'b1,isn[`INSTRUCTION_RB]}; `LVX,`SVX: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; default: fnRb = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; endcase `IVECTOR: case(isn[`INSTRUCTION_S2]) `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMPOP: fnRb = {6'h3F,1'b1,2'b0,isn[13:11]}; default: fnRb = 12'h000; endcase `VXCHG: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; `VSxx,`VSxxU: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; `VSxxS,`VSxxSU: fnRb = {vqei,1'b0,isn[`INSTRUCTION_RB]}; `VADDS,`VSUBS,`VMULS,`VANDS,`VORS,`VXORS,`VXORS: fnRb = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; `VSHL,`VSHR,`VASR: fnRb = {isn[25],isn[22]}==2'b00 ? {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]} : {vqei,1'b1,isn[`INSTRUCTION_RB]}; default: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; endcase `FLOAT: fnRb = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; default: fnRb = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; endcase endfunction function [RBIT:0] fnRc; input [47:0] isn; input [5:0] vqei; input thrd; case(isn[`INSTRUCTION_OP]) `R2: case(isn[`INSTRUCTION_S2]) `SVX: fnRc = {vqei,1'b1,isn[`INSTRUCTION_RC]}; `SBX,`SCX,`SHX,`SWX,`SWCX,`CACHEX: fnRc = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; `CMOVEZ,`CMOVNZ,`MAJ: fnRc = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; default: fnRc = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; endcase `IVECTOR: case(isn[`INSTRUCTION_S2]) `VSxx,`VSxxS,`VSxxU,`VSxxSU: fnRc = {6'h3F,1'b1,2'b0,isn[18:16]}; default: fnRc = {vqei,1'b1,isn[`INSTRUCTION_RC]}; endcase `FLOAT: fnRc = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; default: fnRc = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; endcase endfunction function [RBIT:0] fnRt; input [47:0] isn; input [5:0] vqei; input [5:0] vli; input thrd; casez(isn[`INSTRUCTION_OP]) `IVECTOR: case(isn[`INSTRUCTION_S2]) `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMFILL: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; `VMPOP: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; endcase `VSxx,`VSxxU,`VSxxS,`VSxxSU: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; `VSHLV: fnRt = (vqei+1 >= vli) ? 11'h000 : {vli-vqei-1,1'b1,isn[`INSTRUCTION_RC]}; `VSHRV: fnRt = (vqei >= vli) ? 11'h000 : {vqei,1'b1,isn[`INSTRUCTION_RC]}; `VEINS: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RC]}; // ToDo: add element # from Ra `V2BITS: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RC]}; endcase `R2: case(isn[`INSTRUCTION_S2]) `MOV: case(isn[25:23]) 3'd0: fnRt = {isn[22:18],1'b0,isn[`INSTRUCTION_RB]}; 3'd1: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; 3'd2: fnRt = {rs_stack[thrd][5:0],1'b0,isn[`INSTRUCTION_RB]}; 3'd3: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; 3'd4: fnRt = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; 3'd5: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; 3'd6: fnRt = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; default:fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; endcase `VMOV: case (isn[`INSTRUCTION_S1]) 5'h0: fnRt = {6'h3F,1'b1,isn[`INSTRUCTION_RB]}; 5'h1: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = 12'h000; endcase `R1: case(isn[22:18]) `CNTLO,`CNTLZ,`CNTPOP,`ABS,`NOT: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; `MEMDB,`MEMSB,`SYNC: fnRt = 12'd0; default: fnRt = 12'd0; endcase `CMOVEZ: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_S1]}; `CMOVNZ: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_S1]}; `MUX: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_S1]}; `MIN: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_S1]}; `MAX: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_S1]}; `LVX: fnRt = {vqei,1'b1,isn[20:16]}; `SHIFTR: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; `SHIFT31,`SHIFT63: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; `SEI: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; `WAIT,`RTI,`CHK: fnRt = 12'd0; default: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; endcase `MEMNDX: case(isn[`INSTRUCTION_S2]) `SBX,`SCX,`SHX,`SWX,`SWCX,`CACHEX: fnRt = 12'd0; default: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; endcase `FLOAT: case(isn[31:26]) `FTX,`FCX,`FEX,`FDX,`FRM: fnRt = 12'd0; `FSYNC: fnRt = 12'd0; default: fnRt = {fp1_rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; endcase `BRK: fnRt = 12'd0; `REX: fnRt = 12'd0; `CHK: fnRt = 12'd0; `EXEC: fnRt = 12'd0; `Bcc: fnRt = 12'd0; `BBc: case(isn[20:19]) `IBNE: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; `DBNZ: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; default: fnRt = 12'd0; endcase `BEQI: fnRt = 12'd0; `SB,`Sx,`SWC,`CACHE: fnRt = 12'd0; `JMP: fnRt = 12'd0; `CALL: fnRt = {rgs[thrd],1'b0,regLR}; // regLR `RET: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RA]}; `LV: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RB]}; `AMO: fnRt = isn[31] ? {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]} : {rgs[thrd],1'b0,isn[`INSTRUCTION_RC]}; default: fnRt = {rgs[thrd],1'b0,isn[`INSTRUCTION_RB]}; endcase endfunction `else function [RBIT:0] fnRa; input [47:0] isn; input [5:0] vqei; input [5:0] vli; input thrd; case(isn[`INSTRUCTION_OP]) `IVECTOR: case(isn[`INSTRUCTION_S2]) `VCIDX,`VSCAN: fnRa = {6'd0,1'b1,isn[`INSTRUCTION_RA]}; `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMPOP,`VMFIRST,`VMLAST: fnRa = {6'h3F,1'b1,2'b0,isn[8:6]}; `VMFILL:fnRa = {6'd0,1'b1,isn[`INSTRUCTION_RA]}; default:fnRa = {6'h3F,1'b1,2'b0,isn[8:6]}; endcase `VSHLV: fnRa = (vqei+1+isn[15:11] >= vli) ? 11'h000 : {vli-vqei-isn[15:11]-1,1'b1,isn[`INSTRUCTION_RA]}; `VSHRV: fnRa = (vqei+isn[15:11] >= vli) ? 11'h000 : {vqei+isn[15:11],1'b1,isn[`INSTRUCTION_RA]}; `VSxx,`VSxxU,`VSxxS,`VSxxSU: fnRa = {vqei,1'b1,isn[`INSTRUCTION_RA]}; default: fnRa = {vqei,1'b1,isn[`INSTRUCTION_RA]}; endcase `RR: case(isn[`INSTRUCTION_S2]) `MOV: case(isn[25:23]) 3'd0: fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; 3'd1: fnRa = {isn[22:18],1'b0,isn[`INSTRUCTION_RA]}; 3'd2: fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; 3'd3: fnRa = {rs_stack[5:0],1'b0,isn[`INSTRUCTION_RA]}; 3'd4: fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; 3'd5: fnRa = {fp1_rgs,1'b0,isn[`INSTRUCTION_RA]}; 3'd6: fnRa = {fp1_rgs,1'b0,isn[`INSTRUCTION_RA]}; default:fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; endcase `VMOV: case (isn[`INSTRUCTION_S1]) 5'h0: fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; 5'h1: fnRa = {6'h3F,1'b1,isn[`INSTRUCTION_RA]}; endcase default: fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; endcase `FLOAT: fnRa = {fp1_rgs,1'b0,isn[`INSTRUCTION_RA]}; default: fnRa = {rgs,1'b0,isn[`INSTRUCTION_RA]}; endcase endfunction function [RBIT:0] fnRb; input [47:0] isn; input fb; input [5:0] vqei; input [5:0] rfoa0i; input [5:0] rfoa1i; input thrd; case(isn[`INSTRUCTION_OP]) `RR: case(isn[`INSTRUCTION_S2]) `VEX: fnRb = fb ? {rfoa1i,1'b1,isn[`INSTRUCTION_RB]} : {rfoa0i,1'b1,isn[`INSTRUCTION_RB]}; `LVX,`SVX: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; default: fnRb = {rgs,1'b0,isn[`INSTRUCTION_RB]}; endcase `IVECTOR: case(isn[`INSTRUCTION_S2]) `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMPOP: fnRb = {6'h3F,1'b1,2'b0,isn[13:11]}; default: fnRb = 12'h000; endcase `VXCHG: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; `VSxx,`VSxxU: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; `VSxxS,`VSxxSU: fnRb = {vqei,1'b0,isn[`INSTRUCTION_RB]}; `VADDS,`VSUBS,`VMULS,`VANDS,`VORS,`VXORS,`VXORS: fnRb = {rgs,1'b0,isn[`INSTRUCTION_RB]}; `VSHL,`VSHR,`VASR: fnRb = {isn[25],isn[22]}==2'b00 ? {rgs,1'b0,isn[`INSTRUCTION_RB]} : {vqei,1'b1,isn[`INSTRUCTION_RB]}; default: fnRb = {vqei,1'b1,isn[`INSTRUCTION_RB]}; endcase `FLOAT: fnRb = {fp1_rgs,1'b0,isn[`INSTRUCTION_RB]}; default: fnRb = {rgs,1'b0,isn[`INSTRUCTION_RB]}; endcase endfunction function [RBIT:0] fnRc; input [47:0] isn; input [5:0] vqei; input thrd; case(isn[`INSTRUCTION_OP]) `R2: case(isn[`INSTRUCTION_S2]) `SVX: fnRc = {vqei,1'b1,isn[`INSTRUCTION_RC]}; `SBX,`SCX,`SHX,`SWX,`SWCX,`CACHEX: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]}; `CMOVEZ,`CMOVNZ,`MAJ: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]}; default: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]}; endcase `IVECTOR: case(isn[`INSTRUCTION_S2]) `VSxx,`VSxxS,`VSxxU,`VSxxSU: fnRc = {6'h3F,1'b1,2'b0,isn[18:16]}; default: fnRc = {vqei,1'b1,isn[`INSTRUCTION_RC]}; endcase `FLOAT: fnRc = {fp1_rgs,1'b0,isn[`INSTRUCTION_RC]}; default: fnRc = {rgs,1'b0,isn[`INSTRUCTION_RC]}; endcase endfunction function [RBIT:0] fnRt; input [47:0] isn; input [5:0] vqei; input [5:0] vli; input thrd; casez(isn[`INSTRUCTION_OP]) `IVECTOR: case(isn[`INSTRUCTION_S2]) `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMFILL: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; `VMPOP: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; endcase `VSxx,`VSxxU,`VSxxS,`VSxxSU: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; `VSHLV: fnRt = (vqei+1 >= vli) ? 11'h000 : {vli-vqei-1,1'b1,isn[`INSTRUCTION_RC]}; `VSHRV: fnRt = (vqei >= vli) ? 11'h000 : {vqei,1'b1,isn[`INSTRUCTION_RC]}; `VEINS: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RC]}; // ToDo: add element # from Ra `V2BITS: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RC]}; endcase `FVECTOR: case(isn[`INSTRUCTION_S2]) `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMFILL: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; `VMPOP: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; endcase `VSxx,`VSxxU,`VSxxS,`VSxxSU: fnRt = {6'h3F,1'b1,2'b0,isn[18:16]}; `VSHLV: fnRt = (vqei+1 >= vli) ? 11'h000 : {vli-vqei-1,1'b1,isn[`INSTRUCTION_RC]}; `VSHRV: fnRt = (vqei >= vli) ? 11'h000 : {vqei,1'b1,isn[`INSTRUCTION_RC]}; `VEINS: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RC]}; // ToDo: add element # from Ra `V2BITS: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RC]}; endcase `R2: case(isn[`INSTRUCTION_S2]) `MOV: case(isn[25:23]) 3'd0: fnRt = {isn[22:18],1'b0,isn[`INSTRUCTION_RB]}; 3'd1: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; 3'd2: fnRt = {rs_stack[5:0],1'b0,isn[`INSTRUCTION_RB]}; 3'd3: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; 3'd4: fnRt = {fp1_rgs,1'b0,isn[`INSTRUCTION_RB]}; 3'd5: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; 3'd6: fnRt = {fp1_rgs,1'b0,isn[`INSTRUCTION_RB]}; default:fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; endcase `VMOV: case (isn[`INSTRUCTION_S1]) 5'h0: fnRt = {6'h3F,1'b1,isn[`INSTRUCTION_RB]}; 5'h1: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; default: fnRt = 12'h000; endcase `R1: case(isn[22:18]) `CNTLO,`CNTLZ,`CNTPOP,`ABS,`NOT: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; `MEMDB,`MEMSB,`SYNC: fnRt = 12'd0; default: fnRt = 12'd0; endcase `CMOVEZ: fnRt = {rgs,1'b0,isn[`INSTRUCTION_S1]}; `CMOVNZ: fnRt = {rgs,1'b0,isn[`INSTRUCTION_S1]}; `MUX: fnRt = {rgs,1'b0,isn[`INSTRUCTION_S1]}; `MIN: fnRt = {rgs,1'b0,isn[`INSTRUCTION_S1]}; `MAX: fnRt = {rgs,1'b0,isn[`INSTRUCTION_S1]}; `LVX: fnRt = {vqei,1'b1,isn[20:16]}; `SHIFTR: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RC]}; `SHIFT31,`SHIFT63: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; `SEI: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; `WAIT,`RTI,`CHK: fnRt = 12'd0; default: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RC]}; endcase `MEMNDX: case(isn[`INSTRUCTION_S2]) `SBX,`SCX,`SHX,`SWX,`SWCX,`CACHEX: fnRt = 12'd0; default: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RC]}; endcase `FLOAT: case(isn[31:26]) `FTX,`FCX,`FEX,`FDX,`FRM: fnRt = 12'd0; `FSYNC: fnRt = 12'd0; default: fnRt = {fp1_rgs,1'b0,isn[`INSTRUCTION_RC]}; endcase `BRK: fnRt = 12'd0; `REX: fnRt = 12'd0; `CHK: fnRt = 12'd0; `EXEC: fnRt = 12'd0; `Bcc: fnRt = 12'd0; `BBc: case(isn[20:19]) `IBNE: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RA]}; `DBNZ: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RA]}; default: fnRt = 12'd0; endcase `BEQI: fnRt = 12'd0; `SB,`Sx,`SWC,`CACHE: fnRt = 12'd0; `JMP: fnRt = 12'd0; `CALL: fnRt = {rgs,1'b0,regLR}; // regLR `RET: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RA]}; `LV: fnRt = {vqei,1'b1,isn[`INSTRUCTION_RB]}; `AMO: fnRt = isn[31] ? {rgs,1'b0,isn[`INSTRUCTION_RB]} : {rgs,1'b0,isn[`INSTRUCTION_RC]}; default: fnRt = {rgs,1'b0,isn[`INSTRUCTION_RB]}; endcase endfunction `endif // Determines which lanes of the target register get updated. function [7:0] fnWe; input [47:0] isn; casez(isn[`INSTRUCTION_OP]) `R2: case(isn[`INSTRUCTION_S2]) `R1: case(isn[22:18]) `ABS,`CNTLZ,`CNTLO,`CNTPOP: case(isn[25:23]) 3'b000: fnWe = 8'h01; 3'b001: fnWe = 8'h03; 3'b010: fnWe = 8'h0F; 3'b011: fnWe = 8'hFF; default: fnWe = 8'hFF; endcase default: fnWe = 8'hFF; endcase `SHIFT31: fnWe = (~isn[25] & isn[21]) ? 8'hFF : 8'hFF; `SHIFT63: fnWe = (~isn[25] & isn[21]) ? 8'hFF : 8'hFF; `SLT,`SLTU,`SLE,`SLEU, `ADD,`SUB, `AND,`OR,`XOR, `NAND,`NOR,`XNOR, `DIVMOD,`DIVMODU,`DIVMODSU, `MUL,`MULU,`MULSU: case(isn[25:23]) 3'b000: fnWe = 8'h01; 3'b001: fnWe = 8'h03; 3'b010: fnWe = 8'h0F; 3'b011: fnWe = 8'hFF; default: fnWe = 8'hFF; endcase default: fnWe = 8'hFF; endcase default: fnWe = 8'hFF; endcase endfunction // Detect if a source is automatically valid function Source1Valid; input [47:0] isn; casez(isn[`INSTRUCTION_OP]) `BRK: Source1Valid = TRUE; `Bcc: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `BBc: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `BEQI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `CHK: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `RR: case(isn[`INSTRUCTION_S2]) `SHIFT31: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SHIFT63: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SHIFTR: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; default: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; endcase `MEMNDX:Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `ADDI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SLTI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SLTUI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SGTI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SGTUI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `ANDI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `ORI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `XORI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `XNORI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `MULUI: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `AMO: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `LB: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `LBU: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `Lx: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `LxU: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `LWR: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `LV: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `LVx: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SB: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `Sx: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SWC: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `SV: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `INC: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `CAS: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `JAL: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `RET: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `CSRRW: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; `BITFIELD: case(isn[31:28]) `BFINSI: Source1Valid = TRUE; default: Source1Valid = isn[`INSTRUCTION_RA]==5'd0; endcase `IVECTOR: Source1Valid = FALSE; default: Source1Valid = TRUE; endcase endfunction function Source2Valid; input [47:0] isn; casez(isn[`INSTRUCTION_OP]) `BRK: Source2Valid = TRUE; `Bcc: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `BBc: Source2Valid = TRUE; `BEQI: Source2Valid = TRUE; `CHK: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `RR: case(isn[`INSTRUCTION_S2]) `R1: Source2Valid = TRUE; `SHIFTR: Source2Valid = isn[25] ? 1'b1 : isn[`INSTRUCTION_RB]==5'd0; `SHIFT31: Source2Valid = isn[25] ? 1'b1 : isn[`INSTRUCTION_RB]==5'd0; `SHIFT63: Source2Valid = isn[25] ? 1'b1 : isn[`INSTRUCTION_RB]==5'd0; `LVX,`SVX: Source2Valid = FALSE; default: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; endcase `MEMNDX: case(isn[`INSTRUCTION_S2]) `LVX,`SVX: Source2Valid = FALSE; default: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; endcase `ADDI: Source2Valid = TRUE; `SLTI: Source2Valid = TRUE; `SLTUI: Source2Valid = TRUE; `SGTI: Source2Valid = TRUE; `SGTUI: Source2Valid = TRUE; `ANDI: Source2Valid = TRUE; `ORI: Source2Valid = TRUE; `XORI: Source2Valid = TRUE; `XNORI: Source2Valid = TRUE; `MULUI: Source2Valid = TRUE; `LB: Source2Valid = TRUE; `LBU: Source2Valid = TRUE; `Lx: Source2Valid = TRUE; `LxU: Source2Valid = TRUE; `LWR: Source2Valid = TRUE; `LVx: Source2Valid = TRUE; `INC: Source2Valid = TRUE; `SB: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `Sx: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `SWC: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `CAS: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `JAL: Source2Valid = TRUE; `RET: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `IVECTOR: case(isn[`INSTRUCTION_S2]) `VABS: Source2Valid = TRUE; `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMPOP: Source2Valid = FALSE; `VADDS,`VSUBS,`VANDS,`VORS,`VXORS: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `VBITS2V: Source2Valid = TRUE; `V2BITS: Source2Valid = isn[`INSTRUCTION_RB]==5'd0; `VSHL,`VSHR,`VASR: Source2Valid = isn[22:21]==2'd2; default: Source2Valid = FALSE; endcase `LV: Source2Valid = TRUE; `SV: Source2Valid = FALSE; `AMO: Source2Valid = isn[31] || isn[`INSTRUCTION_RB]==5'd0; default: Source2Valid = TRUE; endcase endfunction function Source3Valid; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `IVECTOR: case(isn[`INSTRUCTION_S2]) `VEX: Source3Valid = TRUE; default: Source3Valid = TRUE; endcase `CHK: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `R2: if (isn[`INSTRUCTION_L2]==2'b01) case(isn[47:42]) `CMOVEZ,`CMOVNZ: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; default: Source3Valid = TRUE; endcase else case(isn[`INSTRUCTION_S2]) `SBX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SCX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SHX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SWX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SWCX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `CASX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `MAJ: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; default: Source3Valid = TRUE; endcase `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `SBX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SCX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SHX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SWX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `SWCX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; `CASX: Source3Valid = isn[`INSTRUCTION_RC]==5'd0; default: Source3Valid = TRUE; endcase default: Source3Valid = TRUE; endcase endfunction function SourceTValid; input [31:0] isn; SourceTValid = FALSE; endfunction function SourceT2Valid; input [31:0] isn; case(isn[`INSTRUCTION_OP]) `Bcc: SourceT2Valid = TRUE; `ORI: SourceT2Valid = TRUE; default: SourceT2Valid = FALSE; endcase endfunction // Used to indicate to the queue logic that the instruction needs to be // recycled to the queue VL number of times. function IsVector; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: case(isn[`INSTRUCTION_S2]) `LVX,`SVX: IsVector = TRUE; default: IsVector = FALSE; endcase `IVECTOR: case(isn[`INSTRUCTION_S2]) `VMxx: case(isn[25:23]) `VMAND,`VMOR,`VMXOR,`VMXNOR,`VMPOP: IsVector = FALSE; default: IsVector = TRUE; endcase `VEINS: IsVector = FALSE; `VEX: IsVector = FALSE; default: IsVector = TRUE; endcase `LV,`SV: IsVector = TRUE; default: IsVector = FALSE; endcase endfunction function IsVeins; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `IVECTOR: IsVeins = isn[`INSTRUCTION_S2]==`VEINS; default: IsVeins = FALSE; endcase endfunction function IsVex; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `IVECTOR: IsVex = isn[`INSTRUCTION_S2]==`VEX; default: IsVex = FALSE; endcase endfunction function IsVCmprss; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `IVECTOR: IsVCmprss = isn[`INSTRUCTION_S2]==`VCMPRSS || isn[`INSTRUCTION_S2]==`VCIDX; default: IsVCmprss = FALSE; endcase endfunction function IsVShifti; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `IVECTOR: case(isn[`INSTRUCTION_S2]) `VSHL,`VSHR,`VASR: IsVShifti = {isn[25],isn[22]}==2'd2; default: IsVShifti = FALSE; endcase default: IsVShifti = FALSE; endcase endfunction function IsVLS; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: case(isn[`INSTRUCTION_S2]) `LVX,`SVX,`LVWS,`SVWS: IsVLS = TRUE; default: IsVLS = FALSE; endcase `LV,`SV: IsVLS = TRUE; default: IsVLS = FALSE; endcase endfunction function [1:0] fnM2; input [31:0] isn; case(isn[`INSTRUCTION_OP]) `RR: fnM2 = isn[24:23]; default: fnM2 = 2'b00; endcase endfunction function [0:0] IsMem; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: IsMem = TRUE; `AMO: IsMem = TRUE; `LB: IsMem = TRUE; `LBU: IsMem = TRUE; `Lx: IsMem = TRUE; `LxU: IsMem = TRUE; `LWR: IsMem = TRUE; `LV,`SV: IsMem = TRUE; `INC: IsMem = TRUE; `SB: IsMem = TRUE; `Sx: IsMem = TRUE; `SWC: IsMem = TRUE; `CAS: IsMem = TRUE; `LVx: IsMem = TRUE; default: IsMem = FALSE; endcase endfunction function IsMemNdx; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: IsMemNdx = TRUE; default: IsMemNdx = FALSE; endcase endfunction function IsLoad; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LBX: IsLoad = TRUE; `LBUX: IsLoad = TRUE; `LCX: IsLoad = TRUE; `LCUX: IsLoad = TRUE; `LHX: IsLoad = TRUE; `LHUX: IsLoad = TRUE; `LWX: IsLoad = TRUE; `LWRX: IsLoad = TRUE; `LVX: IsLoad = TRUE; `LVx: IsLoad = TRUE; default: IsLoad = FALSE; endcase else IsLoad = FALSE; `LB: IsLoad = TRUE; `LBU: IsLoad = TRUE; `Lx: IsLoad = TRUE; `LxU: IsLoad = TRUE; `LWR: IsLoad = TRUE; `LV: IsLoad = TRUE; `LVx: IsLoad = TRUE; default: IsLoad = FALSE; endcase endfunction function IsVolatileLoad; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LWRX: IsVolatileLoad = TRUE; `LVx: IsVolatileLoad = TRUE; default: IsVolatileLoad = FALSE; endcase else IsVolatileLoad = FALSE; `LWR: IsVolatileLoad = TRUE; `LVx: IsVolatileLoad = TRUE; default: IsVolatileLoad = FALSE; endcase endfunction function [2:0] MemSize; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LBX,`LBUX,`SBX: MemSize = byt; `LCX,`LCUX,`SCX: MemSize = wyde; `LHX,`SHX: MemSize = tetra; `LHUX: MemSize = tetra; `LWX,`SWX: MemSize = octa; `LWRX,`SWCX: MemSize = octa; `LVX,`SVX: MemSize = octa; `LVx: case(isn[25:23]) 3'd0,3'd1: MemSize = byt; 3'd2,3'd3: MemSize = wyde; 3'd4,3'd5: MemSize = tetra; default: MemSize = octa; endcase default: MemSize = octa; endcase else MemSize = octa; `LB,`LBU,`SB: MemSize = byt; `Lx,`LxU,`Sx: casez(isn[20:18]) 3'b100: MemSize = octa; 3'b?10: MemSize = tetra; 3'b??1: MemSize = wyde; default: MemSize = octa; endcase `LWR,`SWC: MemSize = octa; `LV,`SV: MemSize = octa; `AMO: case(isn[23:21]) 3'd0: MemSize = byt; 3'd1: MemSize = wyde; 3'd2: MemSize = tetra; 3'd3: MemSize = octa; default: MemSize = octa; endcase `LVx: case(isn[30:28]) 3'd0,3'd1: MemSize = byt; 3'd2,3'd3: MemSize = wyde; 3'd4,3'd5: MemSize = tetra; default: MemSize = octa; endcase default: MemSize = octa; endcase endfunction function IsStore; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `SBX: IsStore = TRUE; `SCX: IsStore = TRUE; `SHX: IsStore = TRUE; `SWX: IsStore = TRUE; `SWCX: IsStore = TRUE; `SVX: IsStore = TRUE; `CASX: IsStore = TRUE; `INC: IsStore = TRUE; default: IsStore = FALSE; endcase else IsStore = FALSE; `SB: IsStore = TRUE; `Sx: IsStore = TRUE; `SWC: IsStore = TRUE; `INC: IsStore = TRUE; `SV: IsStore = TRUE; `CAS: IsStore = TRUE; `AMO: IsStore = TRUE; default: IsStore = FALSE; endcase endfunction function IsInc; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `INC: IsInc = TRUE; default: IsInc = FALSE; endcase else IsInc = FALSE; `INC: IsInc = TRUE; default: IsInc = FALSE; endcase endfunction function IsSWC; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `SWCX: IsSWC = TRUE; default: IsSWC = FALSE; endcase else IsSWC = FALSE; `SWC: IsSWC = TRUE; default: IsSWC = FALSE; endcase endfunction // Aquire / release bits are only available on indexed SWC / LWR function IsSWCX; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `SWCX: IsSWCX = TRUE; default: IsSWCX = FALSE; endcase else IsSWCX = FALSE; default: IsSWCX = FALSE; endcase endfunction function IsLWR; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LWRX: IsLWR = TRUE; default: IsLWR = FALSE; endcase else IsLWR = FALSE; `LWR: IsLWR = TRUE; default: IsLWR = FALSE; endcase endfunction function IsLWRX; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LWRX: IsLWRX = TRUE; default: IsLWRX = FALSE; endcase else IsLWRX = FALSE; default: IsLWRX = FALSE; endcase endfunction function IsCAS; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `CASX: IsCAS = TRUE; default: IsCAS = FALSE; endcase else IsCAS = FALSE; `CAS: IsCAS = TRUE; default: IsCAS = FALSE; endcase endfunction function IsAMO; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `AMO: IsAMO = TRUE; default: IsAMO = FALSE; endcase endfunction // Really IsPredictableBranch // Does not include BccR's function IsBranch; input [47:0] isn; casez(isn[`INSTRUCTION_OP]) `Bcc: IsBranch = TRUE; `BBc: IsBranch = TRUE; `BEQI: IsBranch = TRUE; `CHK: IsBranch = TRUE; default: IsBranch = FALSE; endcase endfunction function IsWait; input [47:0] isn; IsWait = isn[`INSTRUCTION_OP]==`R2 && isn[`INSTRUCTION_L2]==2'b00 && isn[`INSTRUCTION_S2]==`WAIT; endfunction function IsBrk; input [47:0] isn; IsBrk = isn[`INSTRUCTION_OP]==`BRK && isn[`INSTRUCTION_L2]==2'b00; endfunction function IsIrq; input [47:0] isn; IsIrq = isn[`INSTRUCTION_OP]==`BRK && isn[`INSTRUCTION_L2]==2'b00 && isn[23:20]==4'h0; endfunction function IsRTI; input [47:0] isn; IsRTI = isn[`INSTRUCTION_OP]==`RR && isn[`INSTRUCTION_L2]==2'b00 && isn[`INSTRUCTION_S2]==`RTI; endfunction function IsJAL; input [47:0] isn; IsJAL = isn[`INSTRUCTION_OP]==`JAL && isn[7]==1'b0; endfunction function IsCall; input [47:0] isn; IsCall = isn[`INSTRUCTION_OP]==`CALL && isn[7]==1'b0; endfunction function IsJmp; input [47:0] isn; IsJmp = isn[`INSTRUCTION_OP]==`JMP && isn[7]==1'b0; endfunction function IsRet; input [47:0] isn; IsRet = isn[`INSTRUCTION_OP]==`RET && isn[7]==1'b0; endfunction function IsFlowCtrl; input [47:0] isn; casez(isn[`INSTRUCTION_OP]) `BRK: IsFlowCtrl = TRUE; `R2: case(isn[`INSTRUCTION_S2]) `RTI: IsFlowCtrl = TRUE; default: IsFlowCtrl = FALSE; endcase `Bcc: IsFlowCtrl = TRUE; `BBc: IsFlowCtrl = TRUE; `BEQI: IsFlowCtrl = TRUE; `CHK: IsFlowCtrl = TRUE; `JAL: IsFlowCtrl = TRUE; `JMP: IsFlowCtrl = TRUE; `CALL: IsFlowCtrl = TRUE; `RET: IsFlowCtrl = TRUE; default: IsFlowCtrl = FALSE; endcase endfunction function IsCache; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `CACHEX: IsCache = TRUE; default: IsCache = FALSE; endcase else IsCache = FALSE; `CACHE: IsCache = TRUE; default: IsCache = FALSE; endcase endfunction function [4:0] CacheCmd; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `CACHEX: CacheCmd = isn[22:18]; default: CacheCmd = 5'd0; endcase else CacheCmd = 5'd0; `CACHE: CacheCmd = isn[15:11]; default: CacheCmd = 5'd0; endcase endfunction function IsSync; input [47:0] isn; IsSync = (isn[`INSTRUCTION_OP]==`R2 && isn[`INSTRUCTION_L2]==2'b00 && isn[`INSTRUCTION_S2]==`R1 && isn[22:18]==`SYNC); endfunction function IsFSync; input [47:0] isn; IsFSync = (isn[`INSTRUCTION_OP]==`FLOAT && isn[`INSTRUCTION_L2]==2'b00 && isn[`INSTRUCTION_S2]==`FSYNC); endfunction function IsMemsb; input [47:0] isn; IsMemsb = (isn[`INSTRUCTION_OP]==`RR && isn[`INSTRUCTION_L2]==2'b00 && isn[`INSTRUCTION_S2]==`R1 && isn[22:18]==`MEMSB); endfunction function IsSEI; input [47:0] isn; IsSEI = (isn[`INSTRUCTION_OP]==`R2 && isn[`INSTRUCTION_L2]==2'b00 && isn[`INSTRUCTION_S2]==`SEI); endfunction function IsLV; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LVX: IsLV = TRUE; default: IsLV = FALSE; endcase else IsLV = FALSE; `LV: IsLV = TRUE; default: IsLV = FALSE; endcase endfunction function IsRFW; input [47:0] isn; input [5:0] vqei; input [5:0] vli; input thrd; if (fnRt(isn,vqei,vli,thrd)==12'd0) IsRFW = FALSE; else casez(isn[`INSTRUCTION_OP]) `IVECTOR: IsRFW = TRUE; `FVECTOR: IsRFW = TRUE; `R2: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `R1: IsRFW = TRUE; `ADD: IsRFW = TRUE; `SUB: IsRFW = TRUE; `SLT: IsRFW = TRUE; `SLTU: IsRFW = TRUE; `SLE: IsRFW = TRUE; `SLEU: IsRFW = TRUE; `AND: IsRFW = TRUE; `OR: IsRFW = TRUE; `XOR: IsRFW = TRUE; `MULU: IsRFW = TRUE; `MULSU: IsRFW = TRUE; `MUL: IsRFW = TRUE; `DIVMODU: IsRFW = TRUE; `DIVMODSU: IsRFW = TRUE; `DIVMOD:IsRFW = TRUE; `MOV: IsRFW = TRUE; `VMOV: IsRFW = TRUE; `SHIFTR,`SHIFT31,`SHIFT63: IsRFW = TRUE; `MIN,`MAX: IsRFW = TRUE; `SEI: IsRFW = TRUE; default: IsRFW = FALSE; endcase else IsRFW = FALSE; `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `LBX: IsRFW = TRUE; `LBUX: IsRFW = TRUE; `LCX: IsRFW = TRUE; `LCUX: IsRFW = TRUE; `LHX: IsRFW = TRUE; `LHUX: IsRFW = TRUE; `LWX: IsRFW = TRUE; `LWRX: IsRFW = TRUE; `LVX: IsRFW = TRUE; `LVx: IsRFW = TRUE; `CASX: IsRFW = TRUE; default: IsRFW = FALSE; endcase else IsRFW = FALSE; `BBc: case(isn[20:19]) `IBNE: IsRFW = TRUE; `DBNZ: IsRFW = TRUE; default: IsRFW = FALSE; endcase `BITFIELD: IsRFW = TRUE; `ADDI: IsRFW = TRUE; `SLTI: IsRFW = TRUE; `SLTUI: IsRFW = TRUE; `SGTI: IsRFW = TRUE; `SGTUI: IsRFW = TRUE; `ANDI: IsRFW = TRUE; `ORI: IsRFW = TRUE; `XORI: IsRFW = TRUE; `MULUI: IsRFW = TRUE; `MULI: IsRFW = TRUE; `DIVUI: IsRFW = TRUE; `DIVI: IsRFW = TRUE; `MODI: IsRFW = TRUE; `JAL: IsRFW = TRUE; `CALL: IsRFW = TRUE; `RET: IsRFW = TRUE; `LB: IsRFW = TRUE; `LBU: IsRFW = TRUE; `Lx: IsRFW = TRUE; `LWR: IsRFW = TRUE; `LV: IsRFW = TRUE; `LVx: IsRFW = TRUE; `CAS: IsRFW = TRUE; `AMO: IsRFW = TRUE; `CSRRW: IsRFW = TRUE; default: IsRFW = FALSE; endcase endfunction function IsShifti; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `R2: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `SHIFT31,`SHIFT63: IsShifti = TRUE; default: IsShifti = FALSE; endcase else IsShifti = FALSE; default: IsShifti = FALSE; endcase endfunction function IsRtop; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `R2: if (isn[`INSTRUCTION_L2]==2'b01) case(isn[47:42]) `RTOP: IsRtop = TRUE; default: IsRtop = FALSE; endcase else IsRtop = FALSE; default: IsRtop = FALSE; endcase endfunction function IsMul; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `RR: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `MULU,`MULSU,`MUL: IsMul = TRUE; default: IsMul = FALSE; endcase else IsMul = FALSE; `MULUI,`MULI: IsMul = TRUE; default: IsMul = FALSE; endcase endfunction function IsDivmod; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `RR: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `DIVMODU,`DIVMODSU,`DIVMOD: IsDivmod = TRUE; default: IsDivmod = FALSE; endcase else IsDivmod = FALSE; `DIVUI,`DIVI,`MODI: IsDivmod = TRUE; default: IsDivmod = FALSE; endcase endfunction function IsExec; input [47:0] isn; case(isn[`INSTRUCTION_OP]) `EXEC: IsExec = TRUE; default: IsExec = FALSE; endcase endfunction function [7:0] fnSelect; input [47:0] ins; input [`ABITS] adr; begin case(ins[`INSTRUCTION_OP]) `MEMNDX: if (ins[`INSTRUCTION_L2]==2'b00) case(ins[`INSTRUCTION_S2]) `LBX,`LBUX,`SBX: case(adr[2:0]) 3'd0: fnSelect = 8'h01; 3'd1: fnSelect = 8'h02; 3'd2: fnSelect = 8'h04; 3'd3: fnSelect = 8'h08; 3'd4: fnSelect = 8'h10; 3'd5: fnSelect = 8'h20; 3'd6: fnSelect = 8'h40; 3'd7: fnSelect = 8'h80; endcase `LCX,`LCUX,`SCX: case(adr[2:1]) 2'd0: fnSelect = 8'h03; 2'd1: fnSelect = 8'h0C; 2'd2: fnSelect = 8'h30; 2'd3: fnSelect = 8'hC0; endcase `LHX,`LHUX,`SHX: case(adr[2]) 1'b0: fnSelect = 8'h0F; 1'b1: fnSelect = 8'hF0; endcase `INC, `LWX,`SWX,`LWRX,`SWCX,`LVX,`SVX,`CASX: fnSelect = 8'hFF; `LVx: ; // case(ins[25:23]) // `LVB,`LVBU: // case(adr[2:0]) // 3'd0: fnSelect = 8'h01; // 3'd1: fnSelect = 8'h02; // 3'd2: fnSelect = 8'h04; // 3'd3: fnSelect = 8'h08; // 3'd4: fnSelect = 8'h10; // 3'd5: fnSelect = 8'h20; // 3'd6: fnSelect = 8'h40; // 3'd7: fnSelect = 8'h80; // endcase // `LVC,`LVCU: // case(adr[2:1]) // 2'd0: fnSelect = 8'h03; // 2'd1: fnSelect = 8'h0C; // 2'd2: fnSelect = 8'h30; // 2'd3: fnSelect = 8'hC0; // endcase // `LVH,`LVHU: // case(adr[2]) // 1'b0: fnSelect = 8'h0F; // 1'b1: fnSelect = 8'hF0; // endcase // `LVW: // fnSelect = 8'hFF; // endcase default: fnSelect = 8'h00; endcase else fnSelect = 8'h00; `LB,`LBU,`SB: case(adr[2:0]) 3'd0: fnSelect = 8'h01; 3'd1: fnSelect = 8'h02; 3'd2: fnSelect = 8'h04; 3'd3: fnSelect = 8'h08; 3'd4: fnSelect = 8'h10; 3'd5: fnSelect = 8'h20; 3'd6: fnSelect = 8'h40; 3'd7: fnSelect = 8'h80; endcase `Lx,`LxU,`Sx: casez(ins[20:18]) 3'b100: fnSelect = 8'hFF; 3'b?10: fnSelect = adr[2] ? 8'hF0 : 8'h0F; 3'b??1: case(adr[2:1]) 2'd0: fnSelect = 8'h03; 2'd1: fnSelect = 8'h0C; 2'd2: fnSelect = 8'h30; 2'd3: fnSelect = 8'hC0; endcase default: fnSelect = 8'h00; endcase `INC, `LWR,`SWC,`CAS: fnSelect = 8'hFF; `LV,`SV: fnSelect = 8'hFF; `AMO: case(ins[23:21]) 3'd0: fnSelect = {8'h01 << adr[2:0]}; 3'd1: fnSelect = {8'h03 << {adr[2:1],1'b0}}; 3'd2: fnSelect = {8'h0F << {adr[2],2'b00}}; 3'd3: fnSelect = 8'hFF; default: fnSelect = 8'hFF; endcase // `LVx: // `LVB,`LVBU: // case(adr[2:0]) // 3'd0: fnSelect = 8'h01; // 3'd1: fnSelect = 8'h02; // 3'd2: fnSelect = 8'h04; // 3'd3: fnSelect = 8'h08; // 3'd4: fnSelect = 8'h10; // 3'd5: fnSelect = 8'h20; // 3'd6: fnSelect = 8'h40; // 3'd7: fnSelect = 8'h80; // endcase // `LVC,`LVCU: // case(adr[2:1]) // 2'd0: fnSelect = 8'h03; // 2'd1: fnSelect = 8'h0C; // 2'd2: fnSelect = 8'h30; // 2'd3: fnSelect = 8'hC0; // endcase // `LVH,`LVHU: // case(adr[2]) // 1'b0: fnSelect = 8'h0F; // 1'b1: fnSelect = 8'hF0; // endcase // `LVW: // fnSelect = 8'hFF; default: fnSelect = 8'h00; endcase end endfunction /* function [63:0] fnDatc; input [47:0] ins; input [63:0] dat; case(ins[`INSTRUCTION_OP]) `R2: if (isn[`INSTRUCTION_L2]==2'b01) case(ins[47:42]) `FINDB: fnDatc = dat[7:0]; `FINDC: fnDatc = dat[15:0]; `FINDH: fnDatc = dat[31:0]; `FINDW: fnDatc = dat[63:0]; default: fnDatc = dat[63:0]; endcase else fnDatc = dat[63:0]; default: fnDatc = dat[63:0]; endcase endfunction */ /* function [63:0] fnMemInc; input [47:0] ins; case(ins[`INSTRUCTION_OP]) `R2: if (isn[`INSTRUCTION_L2]==2'b01) case(ins[47:42]) `FINDB: fnMemInc = 32'd1; `FINDC: fnMemInc = 32'd2; `FINDH: fnMemInc = 32'd4; `FINDW: fnMemInc = 32'd8; default: fnMemInc = 32'd8; endcase else fnMemInc = 32'd8; default: fnMemInc = 32'd8; endcase endfunction */ function [63:0] fnDati; input [47:0] ins; input [`ABITS] adr; input [63:0] dat; case(ins[`INSTRUCTION_OP]) `MEMNDX: if (ins[`INSTRUCTION_L2]==2'b00) case(ins[`INSTRUCTION_S2]) `LBX: case(adr[2:0]) 3'd0: fnDati = {{56{dat[7]}},dat[7:0]}; 3'd1: fnDati = {{56{dat[15]}},dat[15:8]}; 3'd2: fnDati = {{56{dat[23]}},dat[23:16]}; 3'd3: fnDati = {{56{dat[31]}},dat[31:24]}; 3'd4: fnDati = {{56{dat[39]}},dat[39:32]}; 3'd5: fnDati = {{56{dat[47]}},dat[47:40]}; 3'd6: fnDati = {{56{dat[55]}},dat[55:48]}; 3'd7: fnDati = {{56{dat[63]}},dat[63:56]}; endcase `LBUX: case(adr[2:0]) 3'd0: fnDati = {{56{1'b0}},dat[7:0]}; 3'd1: fnDati = {{56{1'b0}},dat[15:8]}; 3'd2: fnDati = {{56{1'b0}},dat[23:16]}; 3'd3: fnDati = {{56{1'b0}},dat[31:24]}; 3'd4: fnDati = {{56{1'b0}},dat[39:32]}; 3'd5: fnDati = {{56{1'b0}},dat[47:40]}; 3'd6: fnDati = {{56{1'b0}},dat[55:48]}; 3'd7: fnDati = {{56{2'b0}},dat[63:56]}; endcase `LCX: case(adr[2:1]) 2'd0: fnDati = {{48{dat[15]}},dat[15:0]}; 2'd1: fnDati = {{48{dat[31]}},dat[31:16]}; 2'd2: fnDati = {{48{dat[47]}},dat[47:32]}; 2'd3: fnDati = {{48{dat[63]}},dat[63:48]}; endcase `LCUX: case(adr[2:1]) 2'd0: fnDati = {{48{1'b0}},dat[15:0]}; 2'd1: fnDati = {{48{1'b0}},dat[31:16]}; 2'd2: fnDati = {{48{1'b0}},dat[47:32]}; 2'd3: fnDati = {{48{1'b0}},dat[63:48]}; endcase `LHX: case(adr[2]) 1'b0: fnDati = {{32{dat[31]}},dat[31:0]}; 1'b1: fnDati = {{32{dat[63]}},dat[63:32]}; endcase `LHUX: case(adr[2]) 1'b0: fnDati = {{32{1'b0}},dat[31:0]}; 1'b1: fnDati = {{32{1'b0}},dat[63:32]}; endcase `LWX,`LWRX,`LVX,`CAS: fnDati = dat; // `LVx: // case(ins[25:23]) // `LVB: // case(adr[2:0]) // 3'd0: fnDati = {{56{dat[7]}},dat[7:0]}; // 3'd1: fnDati = {{56{dat[15]}},dat[15:8]}; // 3'd2: fnDati = {{56{dat[23]}},dat[23:16]}; // 3'd3: fnDati = {{56{dat[31]}},dat[31:24]}; // 3'd4: fnDati = {{56{dat[39]}},dat[39:32]}; // 3'd5: fnDati = {{56{dat[47]}},dat[47:40]}; // 3'd6: fnDati = {{56{dat[55]}},dat[55:48]}; // 3'd7: fnDati = {{56{dat[63]}},dat[63:56]}; // endcase // `LVBU: // case(adr[2:0]) // 3'd0: fnDati = {{56{1'b0}},dat[7:0]}; // 3'd1: fnDati = {{56{1'b0}},dat[15:8]}; // 3'd2: fnDati = {{56{1'b0}},dat[23:16]}; // 3'd3: fnDati = {{56{1'b0}},dat[31:24]}; // 3'd4: fnDati = {{56{1'b0}},dat[39:32]}; // 3'd5: fnDati = {{56{1'b0}},dat[47:40]}; // 3'd6: fnDati = {{56{1'b0}},dat[55:48]}; // 3'd7: fnDati = {{56{2'b0}},dat[63:56]}; // endcase // `LVC: // case(adr[2:1]) // 2'd0: fnDati = {{48{dat[15]}},dat[15:0]}; // 2'd1: fnDati = {{48{dat[31]}},dat[31:16]}; // 2'd2: fnDati = {{48{dat[47]}},dat[47:32]}; // 2'd3: fnDati = {{48{dat[63]}},dat[63:48]}; // endcase // `LVCU: // case(adr[2:1]) // 2'd0: fnDati = {{48{1'b0}},dat[15:0]}; // 2'd1: fnDati = {{48{1'b0}},dat[31:16]}; // 2'd2: fnDati = {{48{1'b0}},dat[47:32]}; // 2'd3: fnDati = {{48{1'b0}},dat[63:48]}; // endcase // `LVH: // case(adr[2]) // 1'b0: fnDati = {{32{dat[31]}},dat[31:0]}; // 1'b1: fnDati = {{32{dat[63]}},dat[63:32]}; // endcase // `LVHU: // case(adr[2]) // 1'b0: fnDati = {{32{1'b0}},dat[31:0]}; // 1'b1: fnDati = {{32{1'b0}},dat[63:32]}; // endcase // `LVW: fnDati = dat; // default: fnDati = dat; // endcase default: fnDati = dat; endcase else fnDati = dat; `LB: case(adr[2:0]) 3'd0: fnDati = {{56{dat[7]}},dat[7:0]}; 3'd1: fnDati = {{56{dat[15]}},dat[15:8]}; 3'd2: fnDati = {{56{dat[23]}},dat[23:16]}; 3'd3: fnDati = {{56{dat[31]}},dat[31:24]}; 3'd4: fnDati = {{56{dat[39]}},dat[39:32]}; 3'd5: fnDati = {{56{dat[47]}},dat[47:40]}; 3'd6: fnDati = {{56{dat[55]}},dat[55:48]}; 3'd7: fnDati = {{56{dat[63]}},dat[63:56]}; endcase `LBU: case(adr[2:0]) 3'd0: fnDati = {{56{1'b0}},dat[7:0]}; 3'd1: fnDati = {{56{1'b0}},dat[15:8]}; 3'd2: fnDati = {{56{1'b0}},dat[23:16]}; 3'd3: fnDati = {{56{1'b0}},dat[31:24]}; 3'd4: fnDati = {{56{1'b0}},dat[39:32]}; 3'd5: fnDati = {{56{1'b0}},dat[47:40]}; 3'd6: fnDati = {{56{1'b0}},dat[55:48]}; 3'd7: fnDati = {{56{2'b0}},dat[63:56]}; endcase `Lx: casez(ins[20:18]) 3'b100: fnDati = dat; 3'b?10: case(adr[2]) 1'b0: fnDati = {{32{dat[31]}},dat[31:0]}; 1'b1: fnDati = {{32{dat[63]}},dat[63:32]}; endcase 3'b??1: case(adr[2:1]) 2'd0: fnDati = {{48{dat[15]}},dat[15:0]}; 2'd1: fnDati = {{48{dat[31]}},dat[31:16]}; 2'd2: fnDati = {{48{dat[47]}},dat[47:32]}; 2'd3: fnDati = {{48{dat[63]}},dat[63:48]}; endcase endcase `LxU: casez(ins[20:18]) 3'b100: fnDati = dat; 3'b?10: case(adr[2]) 1'b0: fnDati = {{32{1'b0}},dat[31:0]}; 1'b1: fnDati = {{32{1'b0}},dat[63:32]}; endcase 3'b??1: case(adr[2:1]) 2'd0: fnDati = {{48{1'b0}},dat[15:0]}; 2'd1: fnDati = {{48{1'b0}},dat[31:16]}; 2'd2: fnDati = {{48{1'b0}},dat[47:32]}; 2'd3: fnDati = {{48{1'b0}},dat[63:48]}; endcase endcase `LWR,`LV,`CAS,`AMO: fnDati = dat; //`LVx: // case(ins[30:28]) // `LVB: // case(adr[2:0]) // 3'd0: fnDati = {{56{dat[7]}},dat[7:0]}; // 3'd1: fnDati = {{56{dat[15]}},dat[15:8]}; // 3'd2: fnDati = {{56{dat[23]}},dat[23:16]}; // 3'd3: fnDati = {{56{dat[31]}},dat[31:24]}; // 3'd4: fnDati = {{56{dat[39]}},dat[39:32]}; // 3'd5: fnDati = {{56{dat[47]}},dat[47:40]}; // 3'd6: fnDati = {{56{dat[55]}},dat[55:48]}; // 3'd7: fnDati = {{56{dat[63]}},dat[63:56]}; // endcase // `LVBU: // case(adr[2:0]) // 3'd0: fnDati = {{56{1'b0}},dat[7:0]}; // 3'd1: fnDati = {{56{1'b0}},dat[15:8]}; // 3'd2: fnDati = {{56{1'b0}},dat[23:16]}; // 3'd3: fnDati = {{56{1'b0}},dat[31:24]}; // 3'd4: fnDati = {{56{1'b0}},dat[39:32]}; // 3'd5: fnDati = {{56{1'b0}},dat[47:40]}; // 3'd6: fnDati = {{56{1'b0}},dat[55:48]}; // 3'd7: fnDati = {{56{2'b0}},dat[63:56]}; // endcase // `LVC: // case(adr[2:1]) // 2'd0: fnDati = {{48{dat[15]}},dat[15:0]}; // 2'd1: fnDati = {{48{dat[31]}},dat[31:16]}; // 2'd2: fnDati = {{48{dat[47]}},dat[47:32]}; // 2'd3: fnDati = {{48{dat[63]}},dat[63:48]}; // endcase // `LVCU: // case(adr[2:1]) // 2'd0: fnDati = {{48{1'b0}},dat[15:0]}; // 2'd1: fnDati = {{48{1'b0}},dat[31:16]}; // 2'd2: fnDati = {{48{1'b0}},dat[47:32]}; // 2'd3: fnDati = {{48{1'b0}},dat[63:48]}; // endcase // `LVH: // case(adr[2]) // 1'b0: fnDati = {{32{dat[31]}},dat[31:0]}; // 1'b1: fnDati = {{32{dat[63]}},dat[63:32]}; // endcase // `LVHU: // case(adr[2]) // 1'b0: fnDati = {{32{1'b0}},dat[31:0]}; // 1'b1: fnDati = {{32{1'b0}},dat[63:32]}; // endcase //// `LVW: fnDati = dat; // default: fnDati = dat; // endcase default: fnDati = dat; endcase endfunction function [63:0] fnDato; input [47:0] isn; input [63:0] dat; case(isn[`INSTRUCTION_OP]) `MEMNDX: if (isn[`INSTRUCTION_L2]==2'b00) case(isn[`INSTRUCTION_S2]) `SBX: fnDato = {8{dat[7:0]}}; `SCX: fnDato = {4{dat[15:0]}}; `SHX: fnDato = {2{dat[31:0]}}; default: fnDato = dat; endcase else fnDato = dat; `SB: fnDato = {8{dat[7:0]}}; `Sx: casez(isn[20:18]) 3'b100: fnDato = dat; 3'b?10: fnDato = {2{dat[31:0]}}; 3'b??1: fnDato = {4{dat[15:0]}}; default: fnDato = dat; endcase `AMO: case(isn[23:21]) 3'd0: fnDato = {8{dat[7:0]}}; 3'd1: fnDato = {4{dat[15:0]}}; 3'd2: fnDato = {2{dat[31:0]}}; 3'd3: fnDato = dat; default: fnDato = dat; endcase default: fnDato = dat; endcase endfunction // Indicate if the ALU instruction is valid immediately (single cycle operation) function IsSingleCycle; input [47:0] isn; IsSingleCycle = !(IsMul(isn)|IsDivmod(isn)); endfunction `ifdef SUPPORT_SMT decoder8 iq0(.num({iqentry_tgt[0][8:7],iqentry_tgt[0][5:0]}), .out(iq0_out)); decoder8 iq1(.num({iqentry_tgt[1][8:7],iqentry_tgt[1][5:0]}), .out(iq1_out)); decoder8 iq2(.num({iqentry_tgt[2][8:7],iqentry_tgt[2][5:0]}), .out(iq2_out)); decoder8 iq3(.num({iqentry_tgt[3][8:7],iqentry_tgt[3][5:0]}), .out(iq3_out)); decoder8 iq4(.num({iqentry_tgt[4][8:7],iqentry_tgt[4][5:0]}), .out(iq4_out)); decoder8 iq5(.num({iqentry_tgt[5][8:7],iqentry_tgt[5][5:0]}), .out(iq5_out)); decoder8 iq6(.num({iqentry_tgt[6][8:7],iqentry_tgt[6][5:0]}), .out(iq6_out)); decoder8 iq7(.num({iqentry_tgt[7][8:7],iqentry_tgt[7][5:0]}), .out(iq7_out)); `else decoder7 iq0(.num({iqentry_tgt[0][7],iqentry_tgt[0][5:0]}), .out(iq0_out)); decoder7 iq1(.num({iqentry_tgt[1][7],iqentry_tgt[1][5:0]}), .out(iq1_out)); decoder7 iq2(.num({iqentry_tgt[2][7],iqentry_tgt[2][5:0]}), .out(iq2_out)); decoder7 iq3(.num({iqentry_tgt[3][7],iqentry_tgt[3][5:0]}), .out(iq3_out)); decoder7 iq4(.num({iqentry_tgt[4][7],iqentry_tgt[4][5:0]}), .out(iq4_out)); decoder7 iq5(.num({iqentry_tgt[5][7],iqentry_tgt[5][5:0]}), .out(iq5_out)); decoder7 iq6(.num({iqentry_tgt[6][7],iqentry_tgt[6][5:0]}), .out(iq6_out)); decoder7 iq7(.num({iqentry_tgt[7][7],iqentry_tgt[7][5:0]}), .out(iq7_out)); /* decoder6 iq0(.num({iqentry_tgt[0][5:0]}), .out(iq0_out)); decoder6 iq1(.num({iqentry_tgt[1][5:0]}), .out(iq1_out)); decoder6 iq2(.num({iqentry_tgt[2][5:0]}), .out(iq2_out)); decoder6 iq3(.num({iqentry_tgt[3][5:0]}), .out(iq3_out)); decoder6 iq4(.num({iqentry_tgt[4][5:0]}), .out(iq4_out)); decoder6 iq5(.num({iqentry_tgt[5][5:0]}), .out(iq5_out)); decoder6 iq6(.num({iqentry_tgt[6][5:0]}), .out(iq6_out)); decoder6 iq7(.num({iqentry_tgt[7][5:0]}), .out(iq7_out));*/ `endif initial begin: Init // // // set up panic messages message[ `PANIC_NONE ] = "NONE "; message[ `PANIC_FETCHBUFBEQ ] = "FETCHBUFBEQ "; message[ `PANIC_INVALIDISLOT ] = "INVALIDISLOT "; message[ `PANIC_IDENTICALDRAMS ] = "IDENTICALDRAMS "; message[ `PANIC_OVERRUN ] = "OVERRUN "; message[ `PANIC_HALTINSTRUCTION ] = "HALTINSTRUCTION "; message[ `PANIC_INVALIDMEMOP ] = "INVALIDMEMOP "; message[ `PANIC_INVALIDFBSTATE ] = "INVALIDFBSTATE "; message[ `PANIC_INVALIDIQSTATE ] = "INVALIDIQSTATE "; message[ `PANIC_BRANCHBACK ] = "BRANCHBACK "; message[ `PANIC_MEMORYRACE ] = "MEMORYRACE "; message[ `PANIC_ALU0ONLY ] = "ALU0 Only "; for (n = 0; n < 64; n = n + 1) codebuf[n] <= 48'h0; end // --------------------------------------------------------------------------- // FETCH // --------------------------------------------------------------------------- // assign fetchbuf0_mem = IsMem(fetchbuf0_instr); assign fetchbuf0_memld = IsMem(fetchbuf0_instr) & IsLoad(fetchbuf0_instr); assign fetchbuf0_jmp = IsFlowCtrl(fetchbuf0_instr); assign fetchbuf0_rfw = IsRFW(fetchbuf0_instr,vqe0,vl,fetchbuf0_thrd); assign fetchbuf1_mem = IsMem(fetchbuf1_instr); assign fetchbuf1_memld = IsMem(fetchbuf1_instr) & IsLoad(fetchbuf1_instr); assign fetchbuf1_jmp = IsFlowCtrl(fetchbuf1_instr); assign fetchbuf1_rfw = IsRFW(fetchbuf1_instr,vqe1,vl,fetchbuf1_thrd); FT64_fetchbuf #(AMSB,RSTPC) ufb1 ( .rst(rst), .clk4x(clk4x), .clk(clk), .fcu_clk(fcu_clk), .cs_i(adr_o[31:16]==16'hFFFF), .cyc_i(cyc_o), .stb_i(stb_o), .ack_o(dc_ack), .we_i(we_o), .adr_i(adr_o[15:0]), .dat_i(dat_o[31:0]), .hirq(hirq), .regLR(regLR), .thread_en(thread_en), .insn0(insn0), .insn1(insn1), .phit(phit), .threadx(threadx), .branchmiss(branchmiss), .misspc(misspc), .branchmiss_thrd(branchmiss_thrd), .predict_takenA(predict_takenA), .predict_takenB(predict_takenB), .predict_takenC(predict_takenC), .predict_takenD(predict_takenD), .predict_taken0(predict_taken0), .predict_taken1(predict_taken1), .queued1(queued1), .queued2(queued2), .queuedNop(queuedNop), .pc0(pc0), .pc1(pc1), .fetchbuf(fetchbuf), .fetchbufA_v(fetchbufA_v), .fetchbufB_v(fetchbufB_v), .fetchbufC_v(fetchbufC_v), .fetchbufD_v(fetchbufD_v), .fetchbufA_pc(fetchbufA_pc), .fetchbufB_pc(fetchbufB_pc), .fetchbufC_pc(fetchbufC_pc), .fetchbufD_pc(fetchbufD_pc), .fetchbufA_instr(fetchbufA_instr), .fetchbufB_instr(fetchbufB_instr), .fetchbufC_instr(fetchbufC_instr), .fetchbufD_instr(fetchbufD_instr), .fetchbuf0_instr(fetchbuf0_instr), .fetchbuf1_instr(fetchbuf1_instr), .fetchbuf0_thrd(fetchbuf0_thrd), .fetchbuf1_thrd(fetchbuf1_thrd), .fetchbuf0_pc(fetchbuf0_pc), .fetchbuf1_pc(fetchbuf1_pc), .fetchbuf0_v(fetchbuf0_v), .fetchbuf1_v(fetchbuf1_v), .fetchbuf0_insln(fetchbuf0_insln), .fetchbuf1_insln(fetchbuf1_insln), .codebuf0(codebuf[insn0[21:16]]), .codebuf1(codebuf[insn1[21:16]]), .btgtA(btgtA), .btgtB(btgtB), .btgtC(btgtC), .btgtD(btgtD), .nop_fetchbuf(nop_fetchbuf), .take_branch0(take_branch0), .take_branch1(take_branch1), .stompedRets(stompedOnRets), .panic(fb_panic) ); //initial begin: stop_at //#1000000; panic <= `PANIC_OVERRUN; //end // // BRANCH-MISS LOGIC: livetarget // // livetarget implies that there is a not-to-be-stomped instruction that targets the register in question // therefore, if it is zero it implies the rf_v value should become VALID on a branchmiss // generate begin : live_target for (g = 1; g < PREGS; g = g + 1) begin : lvtgt assign livetarget[g] = iqentry_0_livetarget[g] | iqentry_1_livetarget[g] | iqentry_2_livetarget[g] | iqentry_3_livetarget[g] | iqentry_4_livetarget[g] | iqentry_5_livetarget[g] | iqentry_6_livetarget[g] | iqentry_7_livetarget[g]; end end endgenerate assign iqentry_0_livetarget = {PREGS {iqentry_v[0]}} & {PREGS {~iqentry_stomp[0] && iqentry_thrd[0]==branchmiss_thrd}} & iq0_out, iqentry_1_livetarget = {PREGS {iqentry_v[1]}} & {PREGS {~iqentry_stomp[1] && iqentry_thrd[1]==branchmiss_thrd}} & iq1_out, iqentry_2_livetarget = {PREGS {iqentry_v[2]}} & {PREGS {~iqentry_stomp[2] && iqentry_thrd[2]==branchmiss_thrd}} & iq2_out, iqentry_3_livetarget = {PREGS {iqentry_v[3]}} & {PREGS {~iqentry_stomp[3] && iqentry_thrd[3]==branchmiss_thrd}} & iq3_out, iqentry_4_livetarget = {PREGS {iqentry_v[4]}} & {PREGS {~iqentry_stomp[4] && iqentry_thrd[4]==branchmiss_thrd}} & iq4_out, iqentry_5_livetarget = {PREGS {iqentry_v[5]}} & {PREGS {~iqentry_stomp[5] && iqentry_thrd[5]==branchmiss_thrd}} & iq5_out, iqentry_6_livetarget = {PREGS {iqentry_v[6]}} & {PREGS {~iqentry_stomp[6] && iqentry_thrd[6]==branchmiss_thrd}} & iq6_out, iqentry_7_livetarget = {PREGS {iqentry_v[7]}} & {PREGS {~iqentry_stomp[7] && iqentry_thrd[7]==branchmiss_thrd}} & iq7_out; // // BRANCH-MISS LOGIC: latestID // // latestID is the instruction queue ID of the newest instruction (latest) that targets // a particular register. looks a lot like scheduling logic, but in reverse. // assign iqentry_0_cumulative = (missid==3'd0) ? iqentry_0_livetarget : (missid==3'd1) ? iqentry_0_livetarget | iqentry_1_livetarget : (missid==3'd2) ? iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget : (missid==3'd3) ? iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget : (missid==3'd4) ? iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget : (missid==3'd5) ? iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget : (missid==3'd6) ? iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget : (missid==3'd7) ? iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget : {PREGS{1'b0}}; assign iqentry_1_cumulative = (missid==3'd1) ? iqentry_1_livetarget : (missid==3'd2) ? iqentry_1_livetarget | iqentry_2_livetarget : (missid==3'd3) ? iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget : (missid==3'd4) ? iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget : (missid==3'd5) ? iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget : (missid==3'd6) ? iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget : (missid==3'd7) ? iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget : (missid==3'd0) ? iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget : {PREGS{1'b0}}; assign iqentry_2_cumulative = (missid==3'd2) ? iqentry_2_livetarget : (missid==3'd3) ? iqentry_2_livetarget | iqentry_3_livetarget : (missid==3'd4) ? iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget : (missid==3'd5) ? iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget : (missid==3'd6) ? iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget : (missid==3'd7) ? iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget : (missid==3'd0) ? iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget : (missid==3'd1) ? iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget : {PREGS{1'b0}}; assign iqentry_3_cumulative = (missid==3'd3) ? iqentry_3_livetarget : (missid==3'd4) ? iqentry_3_livetarget | iqentry_4_livetarget : (missid==3'd5) ? iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget : (missid==3'd6) ? iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget : (missid==3'd7) ? iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget : (missid==3'd0) ? iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget : (missid==3'd1) ? iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget : (missid==3'd2) ? iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget : {PREGS{1'b0}}; assign iqentry_4_cumulative = (missid==3'd4) ? iqentry_4_livetarget : (missid==3'd5) ? iqentry_4_livetarget | iqentry_5_livetarget : (missid==3'd6) ? iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget : (missid==3'd7) ? iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget : (missid==3'd0) ? iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget : (missid==3'd1) ? iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget : (missid==3'd2) ? iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget : (missid==3'd3) ? iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget : {PREGS{1'b0}}; assign iqentry_5_cumulative = (missid==3'd5) ? iqentry_5_livetarget : (missid==3'd6) ? iqentry_5_livetarget | iqentry_6_livetarget : (missid==3'd7) ? iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget : (missid==3'd0) ? iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget : (missid==3'd1) ? iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget : (missid==3'd2) ? iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget : (missid==3'd3) ? iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget : (missid==3'd4) ? iqentry_5_livetarget | iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget : {PREGS{1'b0}}; assign iqentry_6_cumulative = (missid==3'd6) ? iqentry_6_livetarget : (missid==3'd7) ? iqentry_6_livetarget | iqentry_7_livetarget : (missid==3'd0) ? iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget : (missid==3'd1) ? iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget : (missid==3'd2) ? iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget : (missid==3'd3) ? iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget : (missid==3'd4) ? iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget : (missid==3'd5) ? iqentry_6_livetarget | iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget : {PREGS{1'b0}}; assign iqentry_7_cumulative = (missid==3'd7) ? iqentry_7_livetarget : (missid==3'd0) ? iqentry_7_livetarget | iqentry_0_livetarget : (missid==3'd1) ? iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget : (missid==3'd2) ? iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget : (missid==3'd3) ? iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget : (missid==3'd4) ? iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget : (missid==3'd5) ? iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget : (missid==3'd6) ? iqentry_7_livetarget | iqentry_0_livetarget | iqentry_1_livetarget | iqentry_2_livetarget | iqentry_3_livetarget | iqentry_4_livetarget | iqentry_5_livetarget | iqentry_6_livetarget : {PREGS{1'b0}}; assign iqentry_0_latestID = (missid == 3'd0 || ((iqentry_0_livetarget & iqentry_1_cumulative) == {PREGS{1'b0}})) ? iqentry_0_livetarget : {PREGS{1'b0}}; assign iqentry_1_latestID = (missid == 3'd1 || ((iqentry_1_livetarget & iqentry_2_cumulative) == {PREGS{1'b0}})) ? iqentry_1_livetarget : {PREGS{1'b0}}; assign iqentry_2_latestID = (missid == 3'd2 || ((iqentry_2_livetarget & iqentry_3_cumulative) == {PREGS{1'b0}})) ? iqentry_2_livetarget : {PREGS{1'b0}}; assign iqentry_3_latestID = (missid == 3'd3 || ((iqentry_3_livetarget & iqentry_4_cumulative) == {PREGS{1'b0}})) ? iqentry_3_livetarget : {PREGS{1'b0}}; assign iqentry_4_latestID = (missid == 3'd4 || ((iqentry_4_livetarget & iqentry_5_cumulative) == {PREGS{1'b0}})) ? iqentry_4_livetarget : {PREGS{1'b0}}; assign iqentry_5_latestID = (missid == 3'd5 || ((iqentry_5_livetarget & iqentry_6_cumulative) == {PREGS{1'b0}})) ? iqentry_5_livetarget : {PREGS{1'b0}}; assign iqentry_6_latestID = (missid == 3'd6 || ((iqentry_6_livetarget & iqentry_7_cumulative) == {PREGS{1'b0}})) ? iqentry_6_livetarget : {PREGS{1'b0}}; assign iqentry_7_latestID = (missid == 3'd7 || ((iqentry_7_livetarget & iqentry_0_cumulative) == {PREGS{1'b0}})) ? iqentry_7_livetarget : {PREGS{1'b0}}; assign iqentry_source[0] = | iqentry_0_latestID, iqentry_source[1] = | iqentry_1_latestID, iqentry_source[2] = | iqentry_2_latestID, iqentry_source[3] = | iqentry_3_latestID, iqentry_source[4] = | iqentry_4_latestID, iqentry_source[5] = | iqentry_5_latestID, iqentry_source[6] = | iqentry_6_latestID, iqentry_source[7] = | iqentry_7_latestID; reg vqueued2; assign Ra0 = fnRa(fetchbuf0_instr,vqe0,vl,fetchbuf0_thrd) | {fetchbuf0_thrd,7'b0}; assign Rb0 = fnRb(fetchbuf0_instr,1'b0,vqe0,rfoa0[5:0],rfoa1[5:0],fetchbuf0_thrd) | {fetchbuf0_thrd,7'b0}; assign Rc0 = fnRc(fetchbuf0_instr,vqe0,fetchbuf0_thrd) | {fetchbuf0_thrd,7'b0}; assign Rt0 = fnRt(fetchbuf0_instr,vqet0,vl,fetchbuf0_thrd) | {fetchbuf0_thrd,7'b0}; assign Ra1 = fnRa(fetchbuf1_instr,vqueued2 ? vqe0 + 1 : vqe1,vl,fetchbuf1_thrd) | {fetchbuf1_thrd,7'b0}; assign Rb1 = fnRb(fetchbuf1_instr,1'b1,vqueued2 ? vqe0 + 1 : vqe1,rfoa0[5:0],rfoa1[5:0],fetchbuf1_thrd) | {fetchbuf1_thrd,7'b0}; assign Rc1 = fnRc(fetchbuf1_instr,vqueued2 ? vqe0 + 1 : vqe1,fetchbuf1_thrd) | {fetchbuf1_thrd,7'b0}; assign Rt1 = fnRt(fetchbuf1_instr,vqueued2 ? vqet0 + 1 : vqet1,vl,fetchbuf1_thrd) | {fetchbuf1_thrd,7'b0}; // // additional logic for ISSUE // // for the moment, we look at ALU-input buffers to allow back-to-back issue of // dependent instructions ... we do not, however, look ahead for DRAM requests // that will become valid in the next cycle. instead, these have to propagate // their results into the IQ entry directly, at which point it becomes issue-able // // note that, for all intents & purposes, iqentry_done == iqentry_agen ... no need to duplicate wire [QENTRIES-1:0] args_valid; wire [QENTRIES-1:0] could_issue; wire [QENTRIES-1:0] could_issueid; generate begin : issue_logic for (g = 0; g < QENTRIES; g = g + 1) begin assign args_valid[g] = (iqentry_a1_v[g] `ifdef FU_BYPASS || (iqentry_a1_s[g] == alu0_sourceid && alu0_dataready) || ((iqentry_a1_s[g] == alu1_sourceid && alu1_dataready) && (`NUM_ALU > 1)) || ((iqentry_a1_s[g] == fpu1_sourceid && fpu1_dataready) && (`NUM_FPU > 0)) `endif ) && (iqentry_a2_v[g] || (iqentry_mem[g] & ~iqentry_agen[g] & ~iqentry_memndx[g]) // a2 needs to be valid for indexed instruction `ifdef FU_BYPASS || (iqentry_a2_s[g] == alu0_sourceid && alu0_dataready) || ((iqentry_a2_s[g] == alu1_sourceid && alu1_dataready) && (`NUM_ALU > 1)) || ((iqentry_a2_s[g] == fpu1_sourceid && fpu1_dataready) && (`NUM_FPU > 0)) `endif ) && (iqentry_a3_v[g] // || (iqentry_mem[g] & ~iqentry_agen[g]) `ifdef FU_BYPASS || (iqentry_a3_s[g] == alu0_sourceid && alu0_dataready) || ((iqentry_a3_s[g] == alu1_sourceid && alu1_dataready) && (`NUM_ALU > 1)) `endif ) ; assign could_issue[g] = iqentry_v[g] && !iqentry_done[g] && !iqentry_out[g] && args_valid[g] && iqentry_iv[g] && (iqentry_mem[g] ? !iqentry_agen[g] : 1'b1); assign could_issueid[g] = iqentry_v[g] && !iqentry_iv[g]; // && (iqentry_a1_v[g] // || (iqentry_a1_s[g] == alu0_sourceid && alu0_dataready) // || (iqentry_a1_s[g] == alu1_sourceid && alu1_dataready)); end end endgenerate // The (old) simulator didn't handle the asynchronous race loop properly in the // original code. It would issue two instructions to the same islot. So the // issue logic has been re-written to eliminate the asynchronous loop. // Can't issue to the ALU if it's busy doing a long running operation like a // divide. // ToDo: fix the memory synchronization, see fp_issue below wire [`QBITS] heads [QENTRIES-1:0]; assign heads[0] = head0; assign heads[1] = head1; assign heads[2] = head2; assign heads[3] = head3; assign heads[4] = head4; assign heads[5] = head5; assign heads[6] = head6; assign heads[7] = head7; always @* begin iqentry_id1issue = {QENTRIES{1'b0}}; if (id1_available) begin for (n = 0; n < QENTRIES; n = n + 1) if (could_issueid[heads[n]] && iqentry_id1issue=={QENTRIES{1'b0}}) iqentry_id1issue[heads[n]] = `TRUE; end end generate begin : gIDUIssue if (`NUM_IDU > 1) begin always @* begin iqentry_id2issue = {QENTRIES{1'b0}}; if (id2_available) begin for (n = 0; n < QENTRIES; n = n + 1) if (could_issueid[heads[n]] && !iqentry_id1issue[heads[n]] && iqentry_id2issue=={QENTRIES{1'b0}}) iqentry_id2issue[heads[n]] = `TRUE; end end end if (`NUM_IDU > 2) begin always @* begin iqentry_id3issue = {QENTRIES{1'b0}}; if (id3_available) begin for (n = 0; n < QENTRIES; n = n + 1) if (could_issueid[heads[n]] && !iqentry_id1issue[heads[n]] && !iqentry_id2issue[heads[n]] && iqentry_id3issue=={QENTRIES{1'b0}}) iqentry_id3issue[heads[n]] = `TRUE; end end end end endgenerate always @* begin iqentry_alu0_issue = {QENTRIES{1'b0}}; iqentry_alu1_issue = {QENTRIES{1'b0}}; if (alu0_available & alu0_idle) begin if (could_issue[head0] && iqentry_alu[head0]) begin iqentry_alu0_issue[head0] = `TRUE; end else if (could_issue[head1] && iqentry_alu[head1]) begin iqentry_alu0_issue[head1] = `TRUE; end else if (could_issue[head2] && iqentry_alu[head2] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) ) begin iqentry_alu0_issue[head2] = `TRUE; end else if (could_issue[head3] && iqentry_alu[head3] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_alu0_issue[head3] = `TRUE; end else if (could_issue[head4] && iqentry_alu[head4] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_alu0_issue[head4] = `TRUE; end else if (could_issue[head5] && iqentry_alu[head5] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_alu0_issue[head5] = `TRUE; end `ifdef FULL_ISSUE_LOGIC else if (could_issue[head6] && iqentry_alu[head6] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_alu0_issue[head6] = `TRUE; end else if (could_issue[head7] && iqentry_alu[head7] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && iqentry_sync[head6]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_alu0_issue[head7] = `TRUE; end `endif end if (alu1_available && alu1_idle && `NUM_ALU > 1) begin if ((could_issue & ~iqentry_alu0_issue & ~iqentry_alu0) != 8'h00) begin if (could_issue[head0] && iqentry_alu[head0] && !iqentry_alu0[head0] // alu0only && !iqentry_alu0_issue[head0]) begin iqentry_alu1_issue[head0] = `TRUE; end else if (could_issue[head1] && !iqentry_alu0_issue[head1] && iqentry_alu[head1] && !iqentry_alu0[head1]) begin iqentry_alu1_issue[head1] = `TRUE; end else if (could_issue[head2] && !iqentry_alu0_issue[head2] && iqentry_alu[head2] && !iqentry_alu0[head2] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) ) begin iqentry_alu1_issue[head2] = `TRUE; end else if (could_issue[head3] && !iqentry_alu0_issue[head3] && iqentry_alu[head3] && !iqentry_alu0[head3] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_alu1_issue[head3] = `TRUE; end else if (could_issue[head4] && !iqentry_alu0_issue[head4] && iqentry_alu[head4] && !iqentry_alu0[head4] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_alu1_issue[head4] = `TRUE; end else if (could_issue[head5] && !iqentry_alu0_issue[head5] && iqentry_alu[head5] && !iqentry_alu0[head5] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_alu1_issue[head5] = `TRUE; end `ifdef FULL_ISSUE_LOGIC else if (could_issue[head6] && !iqentry_alu0_issue[head6] && iqentry_alu[head6] && !iqentry_alu0[head6] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_alu1_issue[head6] = `TRUE; end else if (could_issue[head7] && !iqentry_alu0_issue[head7] && iqentry_alu[head7] && !iqentry_alu0[head7] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && iqentry_sync[head6]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_alu1_issue[head7] = `TRUE; end `endif end // aluissue(alu0_idle,8'h00,2'b00); // aluissue(alu1_idle,iqentry_alu0,2'b01); end end always @* begin iqentry_fpu1_issue = {QENTRIES{1'b0}}; // fpu1issue(fpu1_idle,2'b00); if (fpu1_idle && `NUM_FPU > 0) begin if (could_issue[head0] && iqentry_fpu[head0]) begin iqentry_fpu1_issue[head0] = `TRUE; end else if (could_issue[head1] && iqentry_fpu[head1]) begin iqentry_fpu1_issue[head1] = `TRUE; end else if (could_issue[head2] && iqentry_fpu[head2] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) ) begin iqentry_fpu1_issue[head2] = `TRUE; end else if (could_issue[head3] && iqentry_fpu[head3] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_fpu1_issue[head3] = `TRUE; end else if (could_issue[head4] && iqentry_fpu[head4] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_fpu1_issue[head4] = `TRUE; end else if (could_issue[head5] && iqentry_fpu[head5] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_fpu1_issue[head5] = `TRUE; end `ifdef FULL_ISSUE_LOGIC else if (could_issue[head6] && iqentry_fpu[head6] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && (iqentry_sync[head5] || iqentry_fsync[head5])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_fpu1_issue[head6] = `TRUE; end else if (could_issue[head7] && iqentry_fpu[head7] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && (iqentry_sync[head5] || iqentry_fsync[head5])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && (iqentry_sync[head6] || iqentry_fsync[head6])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_fpu1_issue[head7] = `TRUE; end `endif end end always @* begin iqentry_fpu2_issue = {QENTRIES{1'b0}}; // fpu2issue(fpu2_idle,2'b00); if (fpu2_idle && `NUM_FPU > 1) begin if (could_issue[head0] && iqentry_fpu[head0] && !iqentry_fpu1_issue[head0]) begin iqentry_fpu2_issue[head0] = `TRUE; end else if (could_issue[head1] && iqentry_fpu[head1] && !iqentry_fpu1_issue[head1]) begin iqentry_fpu2_issue[head1] = `TRUE; end else if (could_issue[head2] && iqentry_fpu[head2] && !iqentry_fpu1_issue[head2] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) ) begin iqentry_fpu2_issue[head2] = `TRUE; end else if (could_issue[head3] && iqentry_fpu[head3] && !iqentry_fpu1_issue[head3] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_fpu2_issue[head3] = `TRUE; end else if (could_issue[head4] && iqentry_fpu[head4] && !iqentry_fpu1_issue[head4] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_fpu2_issue[head4] = `TRUE; end else if (could_issue[head5] && iqentry_fpu[head5] && !iqentry_fpu1_issue[head5] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_fpu2_issue[head5] = `TRUE; end `ifdef FULL_ISSUE_LOGIC else if (could_issue[head6] && iqentry_fpu[head6] && !iqentry_fpu1_issue[head6] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && (iqentry_sync[head5] || iqentry_fsync[head5])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_fpu2_issue[head6] = `TRUE; end else if (could_issue[head7] && iqentry_fpu[head7] && !iqentry_fpu1_issue[head7] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && (iqentry_sync[head5] || iqentry_fsync[head5])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && (iqentry_sync[head6] || iqentry_fsync[head6])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_fpu2_issue[head7] = `TRUE; end `endif end end wire [QENTRIES-1:0] nextqd; // Next queue id reg [`QBITS] nid0; always @* if (iqentry_thrd[1]==iqentry_thrd[0]) nid0 = 3'd1; else if (iqentry_thrd[2]==iqentry_thrd[0]) nid0 = 3'd2; else if (iqentry_thrd[3]==iqentry_thrd[0]) nid0 = 3'd3; else if (iqentry_thrd[4]==iqentry_thrd[0]) nid0 = 3'd4; else if (iqentry_thrd[5]==iqentry_thrd[0]) nid0 = 3'd5; else if (iqentry_thrd[6]==iqentry_thrd[0]) nid0 = 3'd6; else if (iqentry_thrd[7]==iqentry_thrd[0]) nid0 = 3'd7; else nid0 = 3'd0; reg [`QBITS] nid1; always @* if (iqentry_thrd[2]==iqentry_thrd[1]) nid1 = 3'd2; else if (iqentry_thrd[3]==iqentry_thrd[1]) nid1 = 3'd3; else if (iqentry_thrd[4]==iqentry_thrd[1]) nid1 = 3'd4; else if (iqentry_thrd[5]==iqentry_thrd[1]) nid1 = 3'd5; else if (iqentry_thrd[6]==iqentry_thrd[1]) nid1 = 3'd6; else if (iqentry_thrd[7]==iqentry_thrd[1]) nid1 = 3'd7; else if (iqentry_thrd[0]==iqentry_thrd[1]) nid1 = 3'd0; else nid1 = 3'd1; reg [`QBITS] nid2; always @* if (iqentry_thrd[3]==iqentry_thrd[2]) nid2 = 3'd3; else if (iqentry_thrd[4]==iqentry_thrd[2]) nid2 = 3'd4; else if (iqentry_thrd[5]==iqentry_thrd[2]) nid2 = 3'd5; else if (iqentry_thrd[6]==iqentry_thrd[2]) nid2 = 3'd6; else if (iqentry_thrd[7]==iqentry_thrd[2]) nid2 = 3'd7; else if (iqentry_thrd[0]==iqentry_thrd[2]) nid2 = 3'd0; else if (iqentry_thrd[1]==iqentry_thrd[2]) nid2 = 3'd1; else nid2 = 3'd2; reg [`QBITS] nid3; always @* if (iqentry_thrd[4]==iqentry_thrd[3]) nid3 = 3'd4; else if (iqentry_thrd[5]==iqentry_thrd[3]) nid3 = 3'd5; else if (iqentry_thrd[6]==iqentry_thrd[3]) nid3 = 3'd6; else if (iqentry_thrd[7]==iqentry_thrd[3]) nid3 = 3'd7; else if (iqentry_thrd[0]==iqentry_thrd[3]) nid3 = 3'd0; else if (iqentry_thrd[1]==iqentry_thrd[3]) nid3 = 3'd1; else if (iqentry_thrd[2]==iqentry_thrd[3]) nid3 = 3'd2; else nid3 = 3'd3; reg [`QBITS] nid4; always @* if (iqentry_thrd[5]==iqentry_thrd[4]) nid4 = 3'd5; else if (iqentry_thrd[6]==iqentry_thrd[4]) nid4 = 3'd6; else if (iqentry_thrd[7]==iqentry_thrd[4]) nid4 = 3'd7; else if (iqentry_thrd[0]==iqentry_thrd[4]) nid4 = 3'd0; else if (iqentry_thrd[1]==iqentry_thrd[4]) nid4 = 3'd1; else if (iqentry_thrd[2]==iqentry_thrd[4]) nid4 = 3'd2; else if (iqentry_thrd[3]==iqentry_thrd[4]) nid4 = 3'd3; else nid4 = 3'd4; reg [`QBITS] nid5; always @* if (iqentry_thrd[6]==iqentry_thrd[5]) nid5 = 3'd6; else if (iqentry_thrd[7]==iqentry_thrd[5]) nid5 = 3'd7; else if (iqentry_thrd[0]==iqentry_thrd[5]) nid5 = 3'd0; else if (iqentry_thrd[1]==iqentry_thrd[5]) nid5 = 3'd1; else if (iqentry_thrd[2]==iqentry_thrd[5]) nid5 = 3'd2; else if (iqentry_thrd[3]==iqentry_thrd[5]) nid5 = 3'd3; else if (iqentry_thrd[4]==iqentry_thrd[5]) nid5 = 3'd4; else nid5 = 3'd5; reg [`QBITS] nid6; always @* if (iqentry_thrd[7]==iqentry_thrd[6]) nid6 = 3'd7; else if (iqentry_thrd[0]==iqentry_thrd[6]) nid6 = 3'd0; else if (iqentry_thrd[1]==iqentry_thrd[6]) nid6 = 3'd1; else if (iqentry_thrd[2]==iqentry_thrd[6]) nid6 = 3'd2; else if (iqentry_thrd[3]==iqentry_thrd[6]) nid6 = 3'd3; else if (iqentry_thrd[4]==iqentry_thrd[6]) nid6 = 3'd4; else if (iqentry_thrd[5]==iqentry_thrd[6]) nid6 = 3'd5; else nid6 = 3'd6; reg [`QBITS] nid7; always @* if (iqentry_thrd[0]==iqentry_thrd[7]) nid7 = 3'd0; else if (iqentry_thrd[1]==iqentry_thrd[7]) nid7 = 3'd1; else if (iqentry_thrd[2]==iqentry_thrd[7]) nid7 = 3'd2; else if (iqentry_thrd[3]==iqentry_thrd[7]) nid7 = 3'd3; else if (iqentry_thrd[4]==iqentry_thrd[7]) nid7 = 3'd4; else if (iqentry_thrd[5]==iqentry_thrd[7]) nid7 = 3'd5; else if (iqentry_thrd[6]==iqentry_thrd[7]) nid7 = 3'd6; else nid7 = 3'd7; // Search the queue for the next entry on the same thread. reg [`QBITS] nid; always @* if (iqentry_thrd[idp1(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp1(fcu_id); else if (iqentry_thrd[idp2(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp2(fcu_id); else if (iqentry_thrd[idp3(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp3(fcu_id); else if (iqentry_thrd[idp4(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp4(fcu_id); else if (iqentry_thrd[idp5(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp5(fcu_id); else if (iqentry_thrd[idp6(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp6(fcu_id); else if (iqentry_thrd[idp7(fcu_id)]==iqentry_thrd[fcu_id[`QBITS]]) nid = idp7(fcu_id); else nid = fcu_id; assign nextqd[0] = iqentry_sn[nid0] > iqentry_sn[0] || iqentry_v[0]; assign nextqd[1] = iqentry_sn[nid1] > iqentry_sn[1] || iqentry_v[1]; assign nextqd[2] = iqentry_sn[nid2] > iqentry_sn[2] || iqentry_v[2]; assign nextqd[3] = iqentry_sn[nid3] > iqentry_sn[3] || iqentry_v[3]; assign nextqd[4] = iqentry_sn[nid4] > iqentry_sn[4] || iqentry_v[4]; assign nextqd[5] = iqentry_sn[nid5] > iqentry_sn[5] || iqentry_v[5]; assign nextqd[6] = iqentry_sn[nid6] > iqentry_sn[6] || iqentry_v[6]; assign nextqd[7] = iqentry_sn[nid7] > iqentry_sn[7] || iqentry_v[7]; //assign nextqd = 8'hFF; // Don't issue to the fcu until the following instruction is enqueued. // However, if the queue is full then issue anyway. A branch miss will likely occur. always @*//(could_issue or head0 or head1 or head2 or head3 or head4 or head5 or head6 or head7) begin iqentry_fcu_issue = {QENTRIES{1'b0}}; if (fcu_done) begin if (could_issue[head0] && iqentry_fc[head0] && nextqd[head0]) begin iqentry_fcu_issue[head0] = `TRUE; end else if (could_issue[head1] && iqentry_fc[head1] && nextqd[head1]) begin iqentry_fcu_issue[head1] = `TRUE; end else if (could_issue[head2] && iqentry_fc[head2] && nextqd[head2] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) ) begin iqentry_fcu_issue[head2] = `TRUE; end else if (could_issue[head3] && iqentry_fc[head3] && nextqd[head3] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_fcu_issue[head3] = `TRUE; end else if (could_issue[head4] && iqentry_fc[head4] && nextqd[head4] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_fcu_issue[head4] = `TRUE; end else if (could_issue[head5] && iqentry_fc[head5] && nextqd[head5] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_fcu_issue[head5] = `TRUE; end `ifdef FULL_ISSUE_LOGIC else if (could_issue[head6] && iqentry_fc[head6] && nextqd[head6] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_fcu_issue[head6] = `TRUE; end else if (could_issue[head7] && iqentry_fc[head7] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && iqentry_sync[head6]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_fcu_issue[head7] = `TRUE; end `endif end end // // determine if the instructions ready to issue can, in fact, issue. // "ready" means that the instruction has valid operands but has not gone yet reg [1:0] issue_count, missue_count; always @* begin issue_count = 0; memissue[ head0 ] = iqentry_memready[ head0 ]; // first in line ... go as soon as ready if (memissue[head0]) issue_count = issue_count + 1; memissue[ head1 ] = ~iqentry_stomp[head1] && iqentry_memready[ head1 ] // addr and data are valid && issue_count < `NUM_MEM // ... and no preceding instruction is ready to go //&& ~iqentry_memready[head0] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head1][AMSB:3] != iqentry_a1[head0][AMSB:3])) // ... if a release, any prior memory ops must be done before this one && (iqentry_rl[head1] ? iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0] : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head1] || !(iqentry_fc[head0]||iqentry_canex[head0])); if (memissue[head1]) issue_count = issue_count + 1; memissue[ head2 ] = ~iqentry_stomp[head2] && iqentry_memready[ head2 ] // addr and data are valid // ... and no preceding instruction is ready to go && issue_count < `NUM_MEM //&& ~iqentry_memready[head0] //&& ~iqentry_memready[head1] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head2][AMSB:3] != iqentry_a1[head0][AMSB:3])) && (!iqentry_mem[head1] || (iqentry_agen[head1] & iqentry_out[head1]) || (iqentry_a1_v[head1] && iqentry_a1[head2][AMSB:3] != iqentry_a1[head1][AMSB:3])) // ... if a release, any prior memory ops must be done before this one && (iqentry_rl[head2] ? (iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0]) && (iqentry_done[head1] || !iqentry_v[head1] || !iqentry_mem[head1]) : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) && !(iqentry_aq[head1] && iqentry_v[head1]) // ... and there isn't a barrier, or everything before the barrier is done or invalid && (!(iqentry_iv[head1] && iqentry_memsb[head1]) || (iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head1] && iqentry_memdb[head1]) || (!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0])) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head2] || !(iqentry_fc[head0]||iqentry_canex[head0]) && !(iqentry_fc[head1]||iqentry_canex[head1])); if (memissue[head2]) issue_count = issue_count + 1; memissue[ head3 ] = ~iqentry_stomp[head3] && iqentry_memready[ head3 ] // addr and data are valid // ... and no preceding instruction is ready to go && issue_count < `NUM_MEM //&& ~iqentry_memready[head0] //&& ~iqentry_memready[head1] //&& ~iqentry_memready[head2] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head3][AMSB:3] != iqentry_a1[head0][AMSB:3])) && (!iqentry_mem[head1] || (iqentry_agen[head1] & iqentry_out[head1]) || (iqentry_a1_v[head1] && iqentry_a1[head3][AMSB:3] != iqentry_a1[head1][AMSB:3])) && (!iqentry_mem[head2] || (iqentry_agen[head2] & iqentry_out[head2]) || (iqentry_a1_v[head2] && iqentry_a1[head3][AMSB:3] != iqentry_a1[head2][AMSB:3])) // ... if a release, any prior memory ops must be done before this one && (iqentry_rl[head3] ? (iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0]) && (iqentry_done[head1] || !iqentry_v[head1] || !iqentry_mem[head1]) && (iqentry_done[head2] || !iqentry_v[head2] || !iqentry_mem[head2]) : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) && !(iqentry_aq[head1] && iqentry_v[head1]) && !(iqentry_aq[head2] && iqentry_v[head2]) // ... and there isn't a barrier, or everything before the barrier is done or invalid && (!(iqentry_iv[head1] && iqentry_memsb[head1]) || (iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memsb[head2]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head1] && iqentry_memdb[head1]) || (!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memdb[head2]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1])) ) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head3] || !(iqentry_fc[head0]||iqentry_canex[head0]) && !(iqentry_fc[head1]||iqentry_canex[head1]) && !(iqentry_fc[head2]||iqentry_canex[head2])); if (memissue[head3]) issue_count = issue_count + 1; memissue[ head4 ] = ~iqentry_stomp[head4] && iqentry_memready[ head4 ] // addr and data are valid // ... and no preceding instruction is ready to go && issue_count < `NUM_MEM //&& ~iqentry_memready[head0] //&& ~iqentry_memready[head1] //&& ~iqentry_memready[head2] //&& ~iqentry_memready[head3] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head4][AMSB:3] != iqentry_a1[head0][AMSB:3])) && (!iqentry_mem[head1] || (iqentry_agen[head1] & iqentry_out[head1]) || (iqentry_a1_v[head1] && iqentry_a1[head4][AMSB:3] != iqentry_a1[head1][AMSB:3])) && (!iqentry_mem[head2] || (iqentry_agen[head2] & iqentry_out[head2]) || (iqentry_a1_v[head2] && iqentry_a1[head4][AMSB:3] != iqentry_a1[head2][AMSB:3])) && (!iqentry_mem[head3] || (iqentry_agen[head3] & iqentry_out[head3]) || (iqentry_a1_v[head3] && iqentry_a1[head4][AMSB:3] != iqentry_a1[head3][AMSB:3])) // ... if a release, any prior memory ops must be done before this one && (iqentry_rl[head4] ? (iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0]) && (iqentry_done[head1] || !iqentry_v[head1] || !iqentry_mem[head1]) && (iqentry_done[head2] || !iqentry_v[head2] || !iqentry_mem[head2]) && (iqentry_done[head3] || !iqentry_v[head3] || !iqentry_mem[head3]) : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) && !(iqentry_aq[head1] && iqentry_v[head1]) && !(iqentry_aq[head2] && iqentry_v[head2]) && !(iqentry_aq[head3] && iqentry_v[head3]) // ... and there isn't a barrier, or everything before the barrier is done or invalid && (!(iqentry_iv[head1] && iqentry_memsb[head1]) || (iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memsb[head2]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memsb[head3]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_v[head1] && iqentry_memdb[head1]) || (!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memdb[head2]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memdb[head3]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2])) ) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head4] || !(iqentry_fc[head0]||iqentry_canex[head0]) && !(iqentry_fc[head1]||iqentry_canex[head1]) && !(iqentry_fc[head2]||iqentry_canex[head2]) && !(iqentry_fc[head3]||iqentry_canex[head3])); if (memissue[head4]) issue_count = issue_count + 1; memissue[ head5 ] = ~iqentry_stomp[head5] && iqentry_memready[ head5 ] // addr and data are valid // ... and no preceding instruction is ready to go && issue_count < `NUM_MEM //&& ~iqentry_memready[head0] //&& ~iqentry_memready[head1] //&& ~iqentry_memready[head2] //&& ~iqentry_memready[head3] //&& ~iqentry_memready[head4] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head5][AMSB:3] != iqentry_a1[head0][AMSB:3])) && (!iqentry_mem[head1] || (iqentry_agen[head1] & iqentry_out[head1]) || (iqentry_a1_v[head1] && iqentry_a1[head5][AMSB:3] != iqentry_a1[head1][AMSB:3])) && (!iqentry_mem[head2] || (iqentry_agen[head2] & iqentry_out[head2]) || (iqentry_a1_v[head2] && iqentry_a1[head5][AMSB:3] != iqentry_a1[head2][AMSB:3])) && (!iqentry_mem[head3] || (iqentry_agen[head3] & iqentry_out[head3]) || (iqentry_a1_v[head3] && iqentry_a1[head5][AMSB:3] != iqentry_a1[head3][AMSB:3])) && (!iqentry_mem[head4] || (iqentry_agen[head4] & iqentry_out[head4]) || (iqentry_a1_v[head4] && iqentry_a1[head5][AMSB:3] != iqentry_a1[head4][AMSB:3])) // ... if a release, any prior memory ops must be done before this one && (iqentry_rl[head5] ? (iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0]) && (iqentry_done[head1] || !iqentry_v[head1] || !iqentry_mem[head1]) && (iqentry_done[head2] || !iqentry_v[head2] || !iqentry_mem[head2]) && (iqentry_done[head3] || !iqentry_v[head3] || !iqentry_mem[head3]) && (iqentry_done[head4] || !iqentry_v[head4] || !iqentry_mem[head4]) : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) && !(iqentry_aq[head1] && iqentry_v[head1]) && !(iqentry_aq[head2] && iqentry_v[head2]) && !(iqentry_aq[head3] && iqentry_v[head3]) && !(iqentry_aq[head4] && iqentry_v[head4]) // ... and there isn't a barrier, or everything before the barrier is done or invalid && (!(iqentry_iv[head1] && iqentry_memsb[head1]) || (iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memsb[head2]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memsb[head3]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_iv[head4] && iqentry_memsb[head4]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2]) && (iqentry_done[head3] || !iqentry_v[head3])) ) && (!(iqentry_iv[head1] && iqentry_memdb[head1]) || (!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memdb[head2]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memdb[head3]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_iv[head4] && iqentry_memdb[head4]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2]) && (!iqentry_mem[head3] || iqentry_done[head3] || !iqentry_v[head3])) ) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head5] || !(iqentry_fc[head0]||iqentry_canex[head0]) && !(iqentry_fc[head1]||iqentry_canex[head1]) && !(iqentry_fc[head2]||iqentry_canex[head2]) && !(iqentry_fc[head3]||iqentry_canex[head3]) && !(iqentry_fc[head4]||iqentry_canex[head4])); if (memissue[head5]) issue_count = issue_count + 1; `ifdef FULL_ISSUE_LOGIC memissue[ head6 ] = ~iqentry_stomp[head6] && iqentry_memready[ head6 ] // addr and data are valid // ... and no preceding instruction is ready to go && issue_count < `NUM_MEM //&& ~iqentry_memready[head0] //&& ~iqentry_memready[head1] //&& ~iqentry_memready[head2] //&& ~iqentry_memready[head3] //&& ~iqentry_memready[head4] //&& ~iqentry_memready[head5] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head6][AMSB:3] != iqentry_a1[head0][AMSB:3])) && (!iqentry_mem[head1] || (iqentry_agen[head1] & iqentry_out[head1]) || (iqentry_a1_v[head1] && iqentry_a1[head6][AMSB:3] != iqentry_a1[head1][AMSB:3])) && (!iqentry_mem[head2] || (iqentry_agen[head2] & iqentry_out[head2]) || (iqentry_a1_v[head2] && iqentry_a1[head6][AMSB:3] != iqentry_a1[head2][AMSB:3])) && (!iqentry_mem[head3] || (iqentry_agen[head3] & iqentry_out[head3]) || (iqentry_a1_v[head3] && iqentry_a1[head6][AMSB:3] != iqentry_a1[head3][AMSB:3])) && (!iqentry_mem[head4] || (iqentry_agen[head4] & iqentry_out[head4]) || (iqentry_a1_v[head4] && iqentry_a1[head6][AMSB:3] != iqentry_a1[head4][AMSB:3])) && (!iqentry_mem[head5] || (iqentry_agen[head5] & iqentry_out[head5]) || (iqentry_a1_v[head5] && iqentry_a1[head6][AMSB:3] != iqentry_a1[head5][AMSB:3])) && (iqentry_rl[head6] ? (iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0]) && (iqentry_done[head1] || !iqentry_v[head1] || !iqentry_mem[head1]) && (iqentry_done[head2] || !iqentry_v[head2] || !iqentry_mem[head2]) && (iqentry_done[head3] || !iqentry_v[head3] || !iqentry_mem[head3]) && (iqentry_done[head4] || !iqentry_v[head4] || !iqentry_mem[head4]) && (iqentry_done[head5] || !iqentry_v[head5] || !iqentry_mem[head5]) : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) && !(iqentry_aq[head1] && iqentry_v[head1]) && !(iqentry_aq[head2] && iqentry_v[head2]) && !(iqentry_aq[head3] && iqentry_v[head3]) && !(iqentry_aq[head4] && iqentry_v[head4]) && !(iqentry_aq[head5] && iqentry_v[head5]) // ... and there isn't a barrier, or everything before the barrier is done or invalid && (!(iqentry_iv[head1] && iqentry_memsb[head1]) || (iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memsb[head2]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memsb[head3]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_iv[head4] && iqentry_memsb[head4]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2]) && (iqentry_done[head3] || !iqentry_v[head3])) ) && (!(iqentry_iv[head5] && iqentry_memsb[head5]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2]) && (iqentry_done[head3] || !iqentry_v[head3]) && (iqentry_done[head4] || !iqentry_v[head4])) ) && (!(iqentry_iv[head1] && iqentry_memdb[head1]) || (!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memdb[head2]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memdb[head3]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_iv[head4] && iqentry_memdb[head4]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2]) && (!iqentry_mem[head3] || iqentry_done[head3] || !iqentry_v[head3])) ) && (!(iqentry_iv[head5] && iqentry_memdb[head5]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2]) && (!iqentry_mem[head3] || iqentry_done[head3] || !iqentry_v[head3]) && (!iqentry_mem[head4] || iqentry_done[head4] || !iqentry_v[head4])) ) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head6] || !(iqentry_fc[head0]||iqentry_canex[head0]) && !(iqentry_fc[head1]||iqentry_canex[head1]) && !(iqentry_fc[head2]||iqentry_canex[head2]) && !(iqentry_fc[head3]||iqentry_canex[head3]) && !(iqentry_fc[head4]||iqentry_canex[head4]) && !(iqentry_fc[head5]||iqentry_canex[head5])); if (memissue[head6]) issue_count = issue_count + 1; memissue[ head7 ] = ~iqentry_stomp[head7] && iqentry_memready[ head7 ] // addr and data are valid // ... and no preceding instruction is ready to go && issue_count < `NUM_MEM //&& ~iqentry_memready[head0] //&& ~iqentry_memready[head1] //&& ~iqentry_memready[head2] //&& ~iqentry_memready[head3] //&& ~iqentry_memready[head4] //&& ~iqentry_memready[head5] //&& ~iqentry_memready[head6] // ... and there is no address-overlap with any preceding instruction && (!iqentry_mem[head0] || (iqentry_agen[head0] & iqentry_out[head0]) || (iqentry_a1_v[head0] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head0][AMSB:3])) && (!iqentry_mem[head1] || (iqentry_agen[head1] & iqentry_out[head1]) || (iqentry_a1_v[head1] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head1][AMSB:3])) && (!iqentry_mem[head2] || (iqentry_agen[head2] & iqentry_out[head2]) || (iqentry_a1_v[head2] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head2][AMSB:3])) && (!iqentry_mem[head3] || (iqentry_agen[head3] & iqentry_out[head3]) || (iqentry_a1_v[head3] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head3][AMSB:3])) && (!iqentry_mem[head4] || (iqentry_agen[head4] & iqentry_out[head4]) || (iqentry_a1_v[head4] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head4][AMSB:3])) && (!iqentry_mem[head5] || (iqentry_agen[head5] & iqentry_out[head5]) || (iqentry_a1_v[head5] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head5][AMSB:3])) && (!iqentry_mem[head6] || (iqentry_agen[head6] & iqentry_out[head6]) || (iqentry_a1_v[head6] && iqentry_a1[head7][AMSB:3] != iqentry_a1[head6][AMSB:3])) && (iqentry_rl[head7] ? (iqentry_done[head0] || !iqentry_v[head0] || !iqentry_mem[head0]) && (iqentry_done[head1] || !iqentry_v[head1] || !iqentry_mem[head1]) && (iqentry_done[head2] || !iqentry_v[head2] || !iqentry_mem[head2]) && (iqentry_done[head3] || !iqentry_v[head3] || !iqentry_mem[head3]) && (iqentry_done[head4] || !iqentry_v[head4] || !iqentry_mem[head4]) && (iqentry_done[head5] || !iqentry_v[head5] || !iqentry_mem[head5]) && (iqentry_done[head6] || !iqentry_v[head6] || !iqentry_mem[head6]) : 1'b1) // ... if a preivous op has the aquire bit set && !(iqentry_aq[head0] && iqentry_v[head0]) && !(iqentry_aq[head1] && iqentry_v[head1]) && !(iqentry_aq[head2] && iqentry_v[head2]) && !(iqentry_aq[head3] && iqentry_v[head3]) && !(iqentry_aq[head4] && iqentry_v[head4]) && !(iqentry_aq[head5] && iqentry_v[head5]) && !(iqentry_aq[head6] && iqentry_v[head6]) // ... and there isn't a barrier, or everything before the barrier is done or invalid && (!(iqentry_iv[head1] && iqentry_memsb[head1]) || (iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memsb[head2]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memsb[head3]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_iv[head4] && iqentry_memsb[head4]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2]) && (iqentry_done[head3] || !iqentry_v[head3])) ) && (!(iqentry_iv[head5] && iqentry_memsb[head5]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2]) && (iqentry_done[head3] || !iqentry_v[head3]) && (iqentry_done[head4] || !iqentry_v[head4])) ) && (!(iqentry_iv[head6] && iqentry_memsb[head6]) || ((iqentry_done[head0] || !iqentry_v[head0]) && (iqentry_done[head1] || !iqentry_v[head1]) && (iqentry_done[head2] || !iqentry_v[head2]) && (iqentry_done[head3] || !iqentry_v[head3]) && (iqentry_done[head4] || !iqentry_v[head4]) && (iqentry_done[head5] || !iqentry_v[head5])) ) && (!(iqentry_iv[head1] && iqentry_memdb[head1]) || (!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0])) && (!(iqentry_iv[head2] && iqentry_memdb[head2]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1])) ) && (!(iqentry_iv[head3] && iqentry_memdb[head3]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2])) ) && (!(iqentry_iv[head4] && iqentry_memdb[head4]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2]) && (!iqentry_mem[head3] || iqentry_done[head3] || !iqentry_v[head3])) ) && (!(iqentry_iv[head5] && iqentry_memdb[head5]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2]) && (!iqentry_mem[head3] || iqentry_done[head3] || !iqentry_v[head3]) && (!iqentry_mem[head4] || iqentry_done[head4] || !iqentry_v[head4])) ) && (!(iqentry_iv[head6] && iqentry_memdb[head6]) || ((!iqentry_mem[head0] || iqentry_done[head0] || !iqentry_v[head0]) && (!iqentry_mem[head1] || iqentry_done[head1] || !iqentry_v[head1]) && (!iqentry_mem[head2] || iqentry_done[head2] || !iqentry_v[head2]) && (!iqentry_mem[head3] || iqentry_done[head3] || !iqentry_v[head3]) && (!iqentry_mem[head4] || iqentry_done[head4] || !iqentry_v[head4]) && (!iqentry_mem[head5] || iqentry_done[head5] || !iqentry_v[head5])) ) // ... and, if it is a SW, there is no chance of it being undone && (iqentry_load[head7] || !(iqentry_fc[head0]||iqentry_canex[head0]) && !(iqentry_fc[head1]||iqentry_canex[head1]) && !(iqentry_fc[head2]||iqentry_canex[head2]) && !(iqentry_fc[head3]||iqentry_canex[head3]) && !(iqentry_fc[head4]||iqentry_canex[head4]) && !(iqentry_fc[head5]||iqentry_canex[head5]) && !(iqentry_fc[head6]||iqentry_canex[head6])); `endif end reg [2:0] wbptr; always @* begin // Crashes sim // wbptr <= `WB_DEPTH-1; // if (wb_v==8'h0) // wbptr <= 3'd0; // else // begin // for (n = `WB_DEPTH-2; n >= 0; n = n - 1) // if (wb_v[n] && wbptr==`WB_DEPTH-1) // wbptr <= n + 1; // end if (wb_v[6]) wbptr <= 3'd7; else if (wb_v[5]) wbptr <= 3'd6; else if (wb_v[4]) wbptr <= 3'd5; else if (wb_v[3]) wbptr <= 3'd4; else if (wb_v[2]) wbptr <= 3'd3; else if (wb_v[1]) wbptr <= 3'd2; else if (wb_v[0]) wbptr <= 3'd1; else wbptr <= 3'd0; end // Stomp logic for branch miss. FT64_stomp #(QENTRIES) ustmp1 ( .branchmiss(branchmiss), .branchmiss_thrd(branchmiss_thrd), .missid(missid), .head0(head0), .thrd(iqentry_thrd), .iqentry_v(iqentry_v), .stomp(iqentry_stomp) ); always @* begin if (iqentry_stomp[0] && IsRet(iqentry_instr[0])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[1] && IsRet(iqentry_instr[1])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[2] && IsRet(iqentry_instr[2])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[3] && IsRet(iqentry_instr[3])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[4] && IsRet(iqentry_instr[4])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[5] && IsRet(iqentry_instr[5])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[6] && IsRet(iqentry_instr[6])) stompedOnRets = stompedOnRets + 4'd1; if (iqentry_stomp[7] && IsRet(iqentry_instr[7])) stompedOnRets = stompedOnRets + 4'd1; end reg id1_vi, id2_vi, id3_vi; wire [4:0] id1_ido, id2_ido, id3_ido; wire id1_vo, id2_vo, id3_vo; wire id1_clk, id2_clk, id3_clk; // Always at least one decoder BUFGCE uclkb2 ( .I(clk_i), .CE(id1_available), .O(id1_clk) ); FT64_idecoder uid1 ( .clk(id1_clk), .idv_i(id1_vi), .id_i(id1_id), .instr(id1_instr), .ven(id1_ven), .vl(id1_vl), .thrd(id1_thrd), .predict_taken(id1_pt), .Rt(id1_Rt), .bus(id1_bus), .id_o(id1_ido), .idv_o(id1_vo) ); generate begin : gIDUInst if (`NUM_IDU > 1) begin BUFGCE uclkb3 ( .I(clk_i), .CE(id2_available), .O(id2_clk) ); FT64_idecoder uid2 ( .clk(id2_clk), .idv_i(id2_vi), .id_i(id2_id), .instr(id2_instr), .ven(id2_ven), .vl(id2_vl), .thrd(id2_thrd), .predict_taken(id2_pt), .Rt(id2_Rt), .bus(id2_bus), .id_o(id2_ido), .idv_o(id2_vo) ); end if (`NUM_IDU > 2) begin BUFGCE uclkb4 ( .I(clk_i), .CE(id3_available), .O(id3_clk) ); FT64_idecoder uid2 ( .clk(id3_clk), .idv_i(id3_vi), .id_i(id3_id), .instr(id3_instr), .ven(id3_ven), .vl(id3_vl), .thrd(id3_thrd), .predict_taken(id3_pt), .Rt(id3_Rt), .bus(id3_bus), .id_o(id3_ido), .idv_o(id3_vo) ); end end endgenerate // // EXECUTE // reg [63:0] csr_r; always @* read_csr(alu0_instr[29:18],csr_r,alu0_thrd); FT64_alu #(.BIG(1'b1),.SUP_VECTOR(SUP_VECTOR)) ualu0 ( .rst(rst), .clk(clk), .ld(alu0_ld), .abort(1'b0), .instr(alu0_instr), .a(alu0_argA), .b(alu0_argB), .c(alu0_argC), .pc(alu0_pc), // .imm(alu0_argI), .tgt(alu0_tgt), .ven(alu0_ven), .vm(vm[alu0_instr[25:23]]), .sbl(sbl), .sbu(sbu), .csr(csr_r), .o(alu0_bus), .ob(alu0b_bus), .done(alu0_done), .idle(alu0_idle), .excen(aec[4:0]), .exc(alu0_exc), .thrd(alu0_thrd), .mem(alu0_mem), .shift48(alu0_shft48) ); generate begin : gAluInst if (`NUM_ALU > 1) begin FT64_alu #(.BIG(1'b0),.SUP_VECTOR(SUP_VECTOR)) ualu1 ( .rst(rst), .clk(clk), .ld(alu1_ld), .abort(1'b0), .instr(alu1_instr), .a(alu1_argA), .b(alu1_argB), .c(alu1_argC), .pc(alu1_pc), //.imm(alu1_argI), .tgt(alu1_tgt), .ven(alu1_ven), .vm(vm[alu1_instr[25:23]]), .sbl(sbl), .sbu(sbu), .csr(64'd0), .o(alu1_bus), .ob(alu1b_bus), .done(alu1_done), .idle(alu1_idle), .excen(aec[4:0]), .exc(alu1_exc), .thrd(1'b0), .mem(alu1_mem), .shift48(alu1_shft48) ); end end endgenerate generate begin : gFPUInst if (`NUM_FPU > 0) begin wire fpu1_clk; BUFGCE ufpc1 ( .I(clk_i), .CE(fpu1_available), .O(fpu1_clk) ); fpUnit ufp1 ( .rst(rst), .clk(fpu1_clk), .clk4x(clk4x), .ce(1'b1), .ir(fpu1_instr), .ld(fpu1_ld), .a(fpu1_argA), .b(fpu1_argB), .imm(fpu1_argI), .o(fpu1_bus), .csr_i(), .status(fpu1_status), .exception(), .done(fpu1_done) ); end if (`NUM_FPU > 1) begin wire fpu2_clk; BUFGCE ufpc2 ( .I(clk_i), .CE(fpu2_available), .O(fpu2_clk) ); fpUnit ufp1 ( .rst(rst), .clk(fpu2_clk), .clk4x(clk4x), .ce(1'b1), .ir(fpu2_instr), .ld(fpu2_ld), .a(fpu2_argA), .b(fpu2_argB), .imm(fpu2_argI), .o(fpu2_bus), .csr_i(), .status(fpu2_status), .exception(), .done(fpu2_done) ); end end endgenerate assign fpu_exc = fpu1_available ? (|fpu1_status[15:0] ? `FLT_FLT : `FLT_NONE) : `FLT_UNIMP; assign alu0_v = alu0_dataready, alu1_v = alu1_dataready; assign alu0_id = alu0_sourceid, alu1_id = alu1_sourceid; assign fpu1_v = fpu1_dataready; assign fpu1_id = fpu1_sourceid; assign fpu2_v = fpu2_dataready; assign fpu2_id = fpu2_sourceid; `ifdef SUPPORT_SMT wire [1:0] olm = ol[fcu_thrd]; `else wire [1:0] olm = ol; `endif assign fcu_v = fcu_dataready; assign fcu_id = fcu_sourceid; wire [4:0] fcmpo; wire fnanx; fp_cmp_unit ufcmp1 (fcu_argA, fcu_argB, fcmpo, fnanx); wire fcu_takb; always @* begin fcu_exc <= `FLT_NONE; casez(fcu_instr[`INSTRUCTION_OP]) `CHK: begin if (fcu_instr[21]) fcu_exc <= fcu_argA >= fcu_argB && fcu_argA < fcu_argC ? `FLT_NONE : `FLT_CHK; end `REX: case(olm) `OL_USER: fcu_exc <= `FLT_PRIV; default: ; endcase endcase end FT64_EvalBranch ube1 ( .instr(fcu_instr), .a(fcu_argA), .b(fcu_argB), .c(fcu_argC), .takb(fcu_takb) ); FT64_FCU_Calc ufcuc1 ( .ol(olm), .instr(fcu_instr), .tvec(tvec[fcu_instr[14:13]]), .a(fcu_argA), .i(fcu_argI), .pc(fcu_pc), .im(im), .waitctr(waitctr), .bus(fcu_bus) ); always @* begin case(fcu_instr[`INSTRUCTION_OP]) `R2: fcu_misspc = fcu_argB; // RTI (we don't bother fully decoding this as it's the only R2) `RET: fcu_misspc = fcu_argB; `REX: fcu_misspc = fcu_bus; `BRK: fcu_misspc = {tvec[0][31:8], 1'b0, olm, 5'h0}; `JAL: fcu_misspc = fcu_argA + fcu_argI; //`CHK: fcu_misspc = fcu_nextpc + fcu_argI; // Handled as an instruction exception // Default: branch default: fcu_misspc = fcu_takb ? fcu_nextpc + fcu_brdisp : fcu_nextpc; endcase fcu_misspc[0] = 1'b0; end // To avoid false branch mispredicts the branch isn't evaluated until the // following instruction queues. The address of the next instruction is // looked at to see if the BTB predicted correctly. wire fcu_brk_miss = (IsBrk(fcu_instr) || IsRTI(fcu_instr)) && fcu_v; wire fcu_ret_miss = IsRet(fcu_instr) && fcu_v && (fcu_argB != iqentry_pc[idp2(fcu_id)]); wire fcu_jal_miss = IsJAL(fcu_instr) && fcu_v && fcu_argA + fcu_argI != iqentry_pc[idp2(fcu_id)]; wire fcu_followed = iqentry_sn[nid] > iqentry_sn[fcu_id[`QBITS]]; always @* if (fcu_dataready) begin // if (fcu_timeout[7]) // fcu_branchmiss = TRUE; // Break and RTI switch register sets, and so are always treated as a branch miss in order to // flush the pipeline. Hardware interrupts also stream break instructions so they need to // flushed from the queue so the interrupt is recognized only once. // BRK and RTI are handled as excmiss types which are processed during the commit stage. // else if (fcu_brk_miss) fcu_branchmiss = TRUE & ~fcu_clearbm; // the following instruction is queued else if (fcu_followed) begin `ifdef SUPPORT_SMT if (fcu_instr[`INSTRUCTION_OP] == `REX && (im < ~ol[fcu_thrd]) && fcu_v) `else if (fcu_instr[`INSTRUCTION_OP] == `REX && (im < ~ol) && fcu_v) `endif fcu_branchmiss = TRUE & ~fcu_clearbm; else if (fcu_ret_miss) fcu_branchmiss = TRUE & ~fcu_clearbm; else if (IsBranch(fcu_instr) && fcu_v && (((fcu_takb && (~fcu_bt || (fcu_misspc != iqentry_pc[nid]))) || (~fcu_takb && ( fcu_bt || (fcu_pc + 32'd4 != iqentry_pc[nid])))) || iqentry_v[nid])) fcu_branchmiss = TRUE & ~fcu_clearbm; else if (fcu_jal_miss) fcu_branchmiss = TRUE & ~fcu_clearbm; else if (fcu_instr[`INSTRUCTION_OP] == `CHK && ~fcu_takb && fcu_v) fcu_branchmiss = TRUE & ~fcu_clearbm; else fcu_branchmiss = FALSE; end else begin // Stuck at the head and can't finish because there's still an uncommitted instruction in the queue. // -> cause a branch miss to clear the queue. if (iqentry_v[nid] && !IsCall(fcu_instr) && !IsJmp(fcu_instr) && fcu_v) fcu_branchmiss = TRUE & ~fcu_clearbm; else /* if (fcu_id==head0 && iqentry_v[idp1(head0)]) begin if ((fcu_bus[0] && (~fcu_bt || (fcu_misspc == iqentry_pc[nid]))) || (~fcu_bus[0] && ( fcu_bt || (fcu_pc + 32'd4 == iqentry_pc[nid])))) fcu_branchmiss = FALSE; else fcu_branchmiss = TRUE; end else if (fcu_id==head1 && iqentry_v[idp2(head1)]) begin if ((fcu_bus[0] && (~fcu_bt || (fcu_misspc == iqentry_pc[nid]))) || (~fcu_bus[0] && ( fcu_bt || (fcu_pc + 32'd4 == iqentry_pc[nid])))) fcu_branchmiss = FALSE; else fcu_branchmiss = TRUE; end else*/ fcu_branchmiss = FALSE; end end else fcu_branchmiss = FALSE; /* assign fcu_branchmiss = fcu_dataready && // and the following instruction is queued iqentry_v[idp1(fcu_id)] && iqentry_sn[idp1(fcu_id)]==iqentry_sn[fcu_id[`QBITS]]+5'd1 && ((IsBrk(fcu_instr) || IsRTI(fcu_instr)) || ((fcu_instr[`INSTRUCTION_OP] == `REX && (im < ~ol)) || (fcu_instr[`INSTRUCTION_OP] == `CHK && ~fcu_bus[0]) || (IsRTI(fcu_instr) && epc != iqentry_pc[idp1(fcu_id[`QBITS])]) || // If it's a ret and the return address doesn't match the address of the // next queued instruction then the return prediction was wrong. (/*IsRet(fcu_instr) && IsRet(fcu_instr) && ((fcu_argB != iqentry_pc[idp1(fcu_id)]) || (iqentry_sn[fcu_id[`QBITS]]+5'd1!=iqentry_sn[idp1(fcu_id)]) || !iqentry_v[idp1(fcu_id)])) || (IsBrk(fcu_instr) && {tvec[0][31:8], ol, 5'h0} != iqentry_pc[idp1(fcu_id)]) || // (fcu_instr[`INSTRUCTION_OP] == `BccR && fcu_argC != iqentry_pc[(fcu_id[`QBITS]+3'd1)&7] && fcu_bus[0]) || (IsBranch(fcu_instr) && ((fcu_bus[0] && (~fcu_bt || (fcu_misspc != iqentry_pc[idp1(fcu_id)]))) || (~fcu_bus[0] && ( fcu_bt || (fcu_pc + 32'd4 != iqentry_pc[idp1(fcu_id)]))))) || (IsJAL(fcu_instr)) && fcu_argA + fcu_argI != iqentry_pc[idp1(fcu_id)])); */ // Flow control ops don't issue until the next instruction queues. // The fcu_timeout tracks how long the flow control op has been in the "out" state. // It should never be that way more than a couple of cycles. Sometimes the fcu_wr pulse got missed // because the following instruction got stomped on during a branchmiss, hence iqentry_v isn't true. wire fcu_wr = (fcu_v && iqentry_v[nid] && iqentry_sn[nid] > iqentry_sn[fcu_id[`QBITS]]);// // && iqentry_v[nid] // && fcu_instr==iqentry_instr[fcu_id[`QBITS]]);// || fcu_timeout==8'h05; FT64_RMW_alu urmwalu0 (rmw_instr, rmw_argA, rmw_argB, rmw_argC, rmw_res); //assign fcu_done = IsWait(fcu_instr) ? ((waitctr==64'd1) || signal_i[fcu_argA[4:0]|fcu_argI[4:0]]) : // fcu_v && iqentry_v[idp1(fcu_id)] && iqentry_sn[idp1(fcu_id)]==iqentry_sn[fcu_id[`QBITS]]+5'd1; // An exception in a committing instruction takes precedence /* Too slow. Needs to be registered assign branchmiss = excmiss|fcu_branchmiss, misspc = excmiss ? excmisspc : fcu_misspc, missid = excmiss ? (|iqentry_exc[head0] ? head0 : head1) : fcu_sourceid; assign branchmiss_thrd = excmiss ? excthrd : fcu_thrd; */ // // additional DRAM-enqueue logic assign dram_avail = (dram0 == `DRAMSLOT_AVAIL || dram1 == `DRAMSLOT_AVAIL || dram2 == `DRAMSLOT_AVAIL); assign iqentry_memopsvalid[0] = (iqentry_mem[0] & iqentry_a2_v[0] & iqentry_agen[0]), iqentry_memopsvalid[1] = (iqentry_mem[1] & iqentry_a2_v[1] & iqentry_agen[1]), iqentry_memopsvalid[2] = (iqentry_mem[2] & iqentry_a2_v[2] & iqentry_agen[2]), iqentry_memopsvalid[3] = (iqentry_mem[3] & iqentry_a2_v[3] & iqentry_agen[3]), iqentry_memopsvalid[4] = (iqentry_mem[4] & iqentry_a2_v[4] & iqentry_agen[4]), iqentry_memopsvalid[5] = (iqentry_mem[5] & iqentry_a2_v[5] & iqentry_agen[5]), iqentry_memopsvalid[6] = (iqentry_mem[6] & iqentry_a2_v[6] & iqentry_agen[6]), iqentry_memopsvalid[7] = (iqentry_mem[7] & iqentry_a2_v[7] & iqentry_agen[7]); assign iqentry_memready[0] = (iqentry_v[0] & iqentry_memopsvalid[0] & ~iqentry_memissue[0] & ~iqentry_done[0] & ~iqentry_out[0] & ~iqentry_stomp[0]), iqentry_memready[1] = (iqentry_v[1] & iqentry_memopsvalid[1] & ~iqentry_memissue[1] & ~iqentry_done[1] & ~iqentry_out[1] & ~iqentry_stomp[1]), iqentry_memready[2] = (iqentry_v[2] & iqentry_memopsvalid[2] & ~iqentry_memissue[2] & ~iqentry_done[2] & ~iqentry_out[2] & ~iqentry_stomp[2]), iqentry_memready[3] = (iqentry_v[3] & iqentry_memopsvalid[3] & ~iqentry_memissue[3] & ~iqentry_done[3] & ~iqentry_out[3] & ~iqentry_stomp[3]), iqentry_memready[4] = (iqentry_v[4] & iqentry_memopsvalid[4] & ~iqentry_memissue[4] & ~iqentry_done[4] & ~iqentry_out[4] & ~iqentry_stomp[4]), iqentry_memready[5] = (iqentry_v[5] & iqentry_memopsvalid[5] & ~iqentry_memissue[5] & ~iqentry_done[5] & ~iqentry_out[5] & ~iqentry_stomp[5]), iqentry_memready[6] = (iqentry_v[6] & iqentry_memopsvalid[6] & ~iqentry_memissue[6] & ~iqentry_done[6] & ~iqentry_out[6] & ~iqentry_stomp[6]), iqentry_memready[7] = (iqentry_v[7] & iqentry_memopsvalid[7] & ~iqentry_memissue[7] & ~iqentry_done[7] & ~iqentry_out[7] & ~iqentry_stomp[7]); assign outstanding_stores = (dram0 && IsStore(dram0_instr)) || (dram1 && IsStore(dram1_instr)) || (dram2 && IsStore(dram2_instr)); // // additional COMMIT logic // always @* begin commit0_v <= ({iqentry_v[head0], iqentry_cmt[head0]} == 2'b11 && ~|panic); commit0_id <= {iqentry_mem[head0], head0}; // if a memory op, it has a DRAM-bus id commit0_tgt <= iqentry_tgt[head0]; commit0_we <= iqentry_we[head0]; commit0_bus <= iqentry_res[head0]; if (`NUM_CMT > 1) begin commit1_v <= ({iqentry_v[head0], iqentry_cmt[head0]} != 2'b10 && {iqentry_v[head1], iqentry_cmt[head1]} == 2'b11 && ~|panic); commit1_id <= {iqentry_mem[head1], head1}; commit1_tgt <= iqentry_tgt[head1]; commit1_we <= iqentry_we[head1]; commit1_bus <= iqentry_res[head1]; end else begin commit1_tgt <= 12'h000; commit1_we <= 8'h00; end end assign int_commit = (commit0_v && IsIrq(iqentry_instr[head0])) || (commit0_v && commit1_v && IsIrq(iqentry_instr[head1]) && `NUM_CMT > 1); // Detect if a given register will become valid during the current cycle. // We want a signal that is active during the current clock cycle for the read // through register file, which trims a cycle off register access for every // instruction. But two different kinds of assignment statements can't be // placed under the same always block, it's a bad practice and may not work. // So a signal is created here with it's own always block. reg [AREGS-1:0] regIsValid; always @* begin for (n = 1; n < AREGS; n = n + 1) begin regIsValid[n] = rf_v[n]; if (branchmiss) if (~livetarget[n]) begin if (branchmiss_thrd) begin if (n >= 128) regIsValid[n] = `VAL; end else begin if (n < 128) regIsValid[n] = `VAL; end end if (commit0_v && n=={commit0_tgt[7:0]}) regIsValid[n] = regIsValid[n] | (rf_source[ {commit0_tgt[7:0]} ] == commit0_id || (branchmiss && branchmiss_thrd == iqentry_thrd[commit0_id[`QBITS]] && iqentry_source[ commit0_id[`QBITS] ])); if (commit1_v && n=={commit1_tgt[7:0]} && `NUM_CMT > 1) regIsValid[n] = regIsValid[n] | (rf_source[ {commit1_tgt[7:0]} ] == commit1_id || (branchmiss && branchmiss_thrd == iqentry_thrd[commit0_id[`QBITS]] && iqentry_source[ commit1_id[`QBITS] ])); end regIsValid[0] = `VAL; end // Wait until the cycle after Ra becomes valid to give time to read // the vector element from the register file. reg rf_vra0, rf_vra1; /*always @(posedge clk) rf_vra0 <= regIsValid[Ra0s]; always @(posedge clk) rf_vra1 <= regIsValid[Ra1s]; */ // Check how many instructions can be queued. This might be fewer than the // number ready to queue from the fetch stage if queue slots aren't // available or if there are no more physical registers left for remapping. // The fetch stage needs to know how many instructions will queue so this // logic is placed here. // NOPs are filtered out and do not enter the instruction queue. The core // will stream NOPs on a cache miss and they would mess up the queue order // if there are immediate prefixes in the queue. // For the VEX instruction, the instruction can't queue until register Ra // is valid, because register Ra is used to specify the vector element to // read. wire q2open = iqentry_v[tail0]==`INV && iqentry_v[tail1]==`INV; wire q3open = iqentry_v[tail0]==`INV && iqentry_v[tail1]==`INV && iqentry_v[idp1(tail1)]==`INV; always @* begin canq1 <= FALSE; canq2 <= FALSE; queued1 <= FALSE; queued2 <= FALSE; queuedNop <= FALSE; vqueued2 <= FALSE; if (!branchmiss) begin // Two available if (fetchbuf1_v & fetchbuf0_v) begin // Is there a pair of NOPs ? (cache miss) if ((fetchbuf0_instr[`INSTRUCTION_OP]==`NOP) && (fetchbuf1_instr[`INSTRUCTION_OP]==`NOP)) queuedNop <= TRUE; else begin // If it's a predicted branch queue only the first instruction, the second // instruction will be stomped on. if (take_branch0 && fetchbuf1_thrd==fetchbuf0_thrd) begin if (iqentry_v[tail0]==`INV) begin canq1 <= TRUE; queued1 <= TRUE; end end // This is where a single NOP is allowed through to simplify the code. A // single NOP can't be a cache miss. Otherwise it would be necessary to queue // fetchbuf1 on tail0 it would add a nightmare to the enqueue code. // Not a branch and there are two instructions fetched, see whether or not // both instructions can be queued. else begin if (iqentry_v[tail0]==`INV) begin canq1 <= !IsVex(fetchbuf0_instr) || rf_vra0 || !SUP_VECTOR; queued1 <= ( ((!IsVex(fetchbuf0_instr) || rf_vra0) && (!IsVector(fetchbuf0_instr))) || !SUP_VECTOR); if (iqentry_v[tail1]==`INV) begin canq2 <= ((!IsVex(fetchbuf1_instr) || rf_vra1)) || !SUP_VECTOR; queued2 <= ( (!IsVector(fetchbuf1_instr) && (!IsVex(fetchbuf1_instr) || rf_vra1) && (!IsVector(fetchbuf0_instr))) || !SUP_VECTOR); vqueued2 <= IsVector(fetchbuf0_instr) && vqe0 < vl-2 && !vechain; end end // If an irq is active during a vector instruction fetch, claim the vector instruction // is finished queueing even though it may not be. It'll pick up where it left off after // the exception is processed. if (hirq) begin if (IsVector(fetchbuf0_instr) && IsVector(fetchbuf1_instr) && vechain) begin queued1 <= TRUE; queued2 <= TRUE; end else if (IsVector(fetchbuf0_instr)) begin queued1 <= TRUE; if (vqe0 < vl-2) queued2 <= TRUE; else queued2 <= iqentry_v[tail1]==`INV; end end end end end // One available else if (fetchbuf0_v) begin if (fetchbuf0_instr[`INSTRUCTION_OP]!=`NOP) begin if (iqentry_v[tail0]==`INV) begin canq1 <= !IsVex(fetchbuf0_instr) || rf_vra0 || !SUP_VECTOR; queued1 <= (((!IsVex(fetchbuf0_instr) || rf_vra0) && (!IsVector(fetchbuf0_instr))) || !SUP_VECTOR); end if (iqentry_v[tail1]==`INV) begin canq2 <= IsVector(fetchbuf0_instr) && vqe0 < vl-2 && SUP_VECTOR; vqueued2 <= IsVector(fetchbuf0_instr) && vqe0 < vl-2 && !vechain; end if (hirq) begin if (IsVector(fetchbuf0_instr)) begin queued1 <= TRUE; if (vqe0 < vl-2) queued2 <= iqentry_v[tail1]==`INV; end end end else queuedNop <= TRUE; end else if (fetchbuf1_v) begin if (fetchbuf1_instr[`INSTRUCTION_OP]!=`NOP) begin if (iqentry_v[tail0]==`INV) begin canq1 <= !IsVex(fetchbuf1_instr) || rf_vra1 || !SUP_VECTOR; queued1 <= ( ((!IsVex(fetchbuf1_instr) || rf_vra1) && (!IsVector(fetchbuf1_instr))) || !SUP_VECTOR); end if (iqentry_v[tail1]==`INV) begin canq2 <= IsVector(fetchbuf1_instr) && vqe1 < vl-2 && SUP_VECTOR; vqueued2 <= IsVector(fetchbuf1_instr) && vqe1 < vl-2; end if (hirq) begin if (IsVector(fetchbuf1_instr)) begin queued1 <= TRUE; if (vqe1 < vl-2) queued2 <= iqentry_v[tail1]==`INV; end end end else queuedNop <= TRUE; end //else no instructions available to queue end else begin // One available if (fetchbuf0_v && fetchbuf0_thrd != branchmiss_thrd) begin if (fetchbuf0_instr[`INSTRUCTION_OP]!=`NOP) begin if (iqentry_v[tail0]==`INV) begin canq1 <= !IsVex(fetchbuf0_instr) || rf_vra0 || !SUP_VECTOR; queued1 <= ( ((!IsVex(fetchbuf0_instr) || rf_vra0) && (!IsVector(fetchbuf0_instr))) || !SUP_VECTOR); end if (iqentry_v[tail1]==`INV) begin canq2 <= IsVector(fetchbuf0_instr) && vqe0 < vl-2 && SUP_VECTOR; vqueued2 <= IsVector(fetchbuf0_instr) && vqe0 < vl-2 && !vechain; end end else queuedNop <= TRUE; end else if (fetchbuf1_v && fetchbuf1_thrd != branchmiss_thrd) begin if (fetchbuf1_instr[`INSTRUCTION_OP]!=`NOP) begin if (iqentry_v[tail0]==`INV) begin canq1 <= !IsVex(fetchbuf1_instr) || rf_vra1 || !SUP_VECTOR; queued1 <= ( ((!IsVex(fetchbuf1_instr) || rf_vra1) && (!IsVector(fetchbuf1_instr))) || !SUP_VECTOR); end if (iqentry_v[tail1]==`INV) begin canq2 <= IsVector(fetchbuf1_instr) && vqe1 < vl-2 && SUP_VECTOR; vqueued2 <= IsVector(fetchbuf0_instr) && vqe0 < vl-2 && !vechain; end end else queuedNop <= TRUE; end else queuedNop <= TRUE; end end // // Branchmiss seems to be sticky sometimes during simulation. For instance branch miss // and cache miss at same time. The branchmiss should clear before the core continues // so the positive edge is detected to avoid incrementing the sequnce number too many // times. wire pebm; edge_det uedbm (.rst(rst), .clk(clk), .ce(1'b1), .i(branchmiss), .pe(pebm), .ne(), .ee() ); reg [5:0] ld_time; reg [63:0] wc_time_dat; reg [63:0] wc_times; always @(posedge tm_clk_i) begin if (|ld_time) wc_time <= wc_time_dat; else begin wc_time[31:0] <= wc_time[31:0] + 32'd1; if (wc_time[31:0] >= TM_CLKFREQ-1) begin wc_time[31:0] <= 32'd0; wc_time[63:32] <= wc_time[63:32] + 32'd1; end end end // Monster clock domain. // Like to move some of this to clocking under different always blocks in order // to help out the toolset's synthesis, but it ain't gonna be easy. // Simulation doesn't like it if things are under separate always blocks. // Synthesis doesn't like it if things are under the same always block. //always @(posedge clk) //begin // branchmiss <= excmiss|fcu_branchmiss; // misspc <= excmiss ? excmisspc : fcu_misspc; // missid <= excmiss ? (|iqentry_exc[head0] ? head0 : head1) : fcu_sourceid; // branchmiss_thrd <= excmiss ? excthrd : fcu_thrd; //end always @(posedge clk) if (rst) begin `ifdef SUPPORT_SMT mstatus[0] <= 64'h0007; // select register set #0 for thread 0 mstatus[1] <= 64'h8007; // select register set #2 for thread 1 `else mstatus <= 64'h0007; // select register set #0 for thread 0 `endif for (n = 0; n < QENTRIES; n = n + 1) begin iqentry_v[n] <= `INV; iqentry_iv[n] <= `INV; iqentry_is[n] <= 3'b00; iqentry_done[n] <= FALSE; iqentry_cmt[n] <= FALSE; iqentry_out[n] <= FALSE; iqentry_agen[n] <= FALSE; iqentry_sn[n] <= 32'd0; iqentry_pt[n] <= FALSE; iqentry_bt[n] <= FALSE; iqentry_br[n] <= FALSE; iqentry_aq[n] <= FALSE; iqentry_rl[n] <= FALSE; iqentry_alu0[n] <= FALSE; iqentry_alu[n] <= FALSE; iqentry_alu0_issue[n] <= FALSE; iqentry_alu1_issue[n] <= FALSE; iqentry_fpu[n] <= FALSE; iqentry_fpu1_issue[n] <= FALSE; iqentry_fpu2_issue[n] <= FALSE; iqentry_fsync[n] <= FALSE; iqentry_fc[n] <= FALSE; iqentry_fcu_issue[n] <= FALSE; iqentry_jmp[n] <= FALSE; iqentry_ldcmp[n] <= FALSE; iqentry_load[n] <= FALSE; iqentry_rtop[n] <= FALSE; iqentry_sei[n] <= FALSE; iqentry_shft48[n] <= FALSE; iqentry_sync[n] <= FALSE; iqentry_ven[n] <= 6'd0; iqentry_vl[n] <= 8'd0; iqentry_we[n] <= 8'h00; iqentry_rfw[n] <= FALSE; iqentry_rmw[n] <= FALSE; iqentry_pc[n] <= RSTPC; iqentry_instr[n] <= `NOP_INSN; iqentry_insln[n] <= 4'd4; iqentry_preload[n] <= FALSE; iqentry_mem[n] <= FALSE; iqentry_memndx[n] <= FALSE; iqentry_memissue[n] <= FALSE; iqentry_mem_islot[n] <= 3'd0; iqentry_memdb[n] <= FALSE; iqentry_memsb[n] <= FALSE; iqentry_tgt[n] <= 6'd0; iqentry_imm[n] <= 1'b0; iqentry_a0[n] <= 64'd0; iqentry_a1[n] <= 64'd0; iqentry_a2[n] <= 64'd0; iqentry_a3[n] <= 64'd0; iqentry_a1_v[n] <= `INV; iqentry_a2_v[n] <= `INV; iqentry_a3_v[n] <= `INV; iqentry_a1_s[n] <= 5'd0; iqentry_a2_s[n] <= 5'd0; iqentry_a3_s[n] <= 5'd0; iqentry_canex[n] <= FALSE; end bwhich <= 2'b00; dram0 <= `DRAMSLOT_AVAIL; dram1 <= `DRAMSLOT_AVAIL; dram2 <= `DRAMSLOT_AVAIL; dram0_instr <= `NOP_INSN; dram1_instr <= `NOP_INSN; dram2_instr <= `NOP_INSN; dram0_addr <= 32'h0; dram1_addr <= 32'h0; dram2_addr <= 32'h0; L1_adr <= RSTPC; invic <= FALSE; tail0 <= 3'd0; tail1 <= 3'd1; head0 <= 0; head1 <= 1; head2 <= 2; head3 <= 3; head4 <= 4; head5 <= 5; head6 <= 6; head7 <= 7; panic = `PANIC_NONE; alu0_dataready <= 0; alu1_dataready <= 0; alu0_sourceid <= 5'd0; alu1_sourceid <= 5'd0; `ifdef SIM alu0_pc <= RSTPC; alu0_instr <= `NOP_INSN; alu0_argA <= 64'h0; alu0_argB <= 64'h0; alu0_argC <= 64'h0; alu0_argI <= 64'h0; alu0_bt <= 1'b0; alu0_mem <= 1'b0; alu0_shft48 <= 1'b0; alu0_thrd <= 1'b0; alu0_tgt <= 6'h00; alu0_ven <= 6'd0; alu1_pc <= RSTPC; alu1_instr <= `NOP_INSN; alu1_argA <= 64'h0; alu1_argB <= 64'h0; alu1_argC <= 64'h0; alu1_argI <= 64'h0; alu1_bt <= 1'b0; alu1_mem <= 1'b0; alu1_shft48 <= 1'b0; alu1_thrd <= 1'b0; alu1_tgt <= 6'h00; alu1_ven <= 6'd0; `endif fcu_dataready <= 0; fcu_instr <= `NOP_INSN; fcu_retadr_v <= 0; dramA_v <= 0; dramB_v <= 0; dramC_v <= 0; I <= 0; icstate <= IDLE; bstate <= BIDLE; tick <= 64'd0; bte_o <= 2'b00; cti_o <= 3'b000; cyc_o <= `LOW; stb_o <= `LOW; we_o <= `LOW; sel_o <= 8'h00; sr_o <= `LOW; cr_o <= `LOW; adr_o <= RSTPC; icl_o <= `LOW; // instruction cache load cr0 <= 64'd0; cr0[13:8] <= 6'd0; // select register set #0 cr0[30] <= TRUE; // enable data caching cr0[32] <= TRUE; // enable branch predictor cr0[16] <= 1'b0; // disable SMT cr0[17] <= 1'b0; // sequence number reset = 1 pcr <= 32'd0; pcr2 <= 64'd0; for (n = 0; n < PREGS; n = n + 1) rf_v[n] <= `VAL; tgtq <= FALSE; fp1_rm <= 3'd0; // round nearest even - default rounding mode fp2_rm <= 3'd0; waitctr <= 64'd0; for (n = 0; n < 16; n = n + 1) badaddr[n] <= 64'd0; sbl <= 32'h0; sbu <= 32'hFFFFFFFF; // Vector vqe0 <= 6'd0; vqet0 <= 6'd0; vqe1 <= 6'd0; vqet1 <= 6'd0; vl <= 7'd62; for (n = 0; n < 8; n = n + 1) vm[n] <= 64'h7FFFFFFFFFFFFFFF; nop_fetchbuf <= 4'h0; seq_num <= 5'd0; seq_num1 <= 5'd0; fcu_done <= `TRUE; sema <= 64'h0; tvec[0] <= RSTPC; pmr <= 64'hFFFFFFFFFFFFFFFF; pmr[0] <= `ID1_AVAIL; pmr[1] <= `ID2_AVAIL; pmr[2] <= `ID3_AVAIL; pmr[8] <= `ALU0_AVAIL; pmr[9] <= `ALU1_AVAIL; pmr[16] <= `FPU1_AVAIL; pmr[17] <= `FPU2_AVAIL; pmr[24] <= `MEM1_AVAIL; pmr[25] <= `MEM2_AVAIL; pmr[26] <= `MEM3_AVAIL; pmr[32] <= `FCU_AVAIL; for (n = 0; n < `WB_DEPTH; n = n + 1) begin wb_v[n] <= 1'b0; wb_rmw[n] <= 1'b0; wb_id[n] <= {QENTRIES{1'b0}}; end wb_en <= `TRUE; wbo_id <= {QENTRIES{1'b0}}; `ifdef SIM wb_merges <= 32'd0; `endif end else begin if (|fb_panic) panic <= fb_panic; begin branchmiss <= excmiss|fcu_branchmiss; misspc <= excmiss ? excmisspc : fcu_misspc; missid <= excmiss ? (|iqentry_exc[head0] ? head0 : head1) : fcu_sourceid; branchmiss_thrd <= excmiss ? excthrd : fcu_thrd; end // The following signals only pulse // Instruction decode output should only pulse once for a queue entry. We // want the decode to be invalidated after a clock cycle so that it isn't // inadvertently used to update the queue at a later point. id1_vi <= `INV; if (`NUM_IDU > 1) id2_vi <= `INV; if (`NUM_IDU > 2) id3_vi <= `INV; if (iqentry_v[nid] && iqentry_sn[nid] > iqentry_sn[fcu_id[`QBITS]]) fcu_dataready <= `INV; ld_time <= {ld_time[4:0],1'b0}; wc_times <= wc_time; rf_vra0 <= regIsValid[Ra0s]; rf_vra1 <= regIsValid[Ra1s]; if (vqe0 >= vl) begin vqe0 <= 6'd0; vqet0 <= 6'h0; end if (vqe1 >= vl) begin vqe1 <= 6'd0; vqet1 <= 6'h0; end // Turn off vector chaining indicator when chained instructions are done. if ((vqe0 >= vl || vqe0==6'd0) && (vqe1 >= vl || vqe1==6'd0)) `ifdef SUPPORT_SMT mstatus[0][32] <= 1'b0; `else mstatus[32] <= 1'b0; `endif nop_fetchbuf <= 4'h0; excmiss <= FALSE; invic <= FALSE; tick <= tick + 64'd1; alu0_ld <= FALSE; alu1_ld <= FALSE; fpu1_ld <= FALSE; fpu2_ld <= FALSE; fcu_ld <= FALSE; fcu_retadr_v <= FALSE; dramA_v <= FALSE; dramB_v <= FALSE; dramC_v <= FALSE; cr0[17] <= 1'b0; if (waitctr != 64'd0) waitctr <= waitctr - 64'd1; if (IsFlowCtrl(iqentry_instr[fcu_id[`QBITS]]) && iqentry_v[fcu_id[`QBITS]] && !iqentry_done[fcu_id[`QBITS]] && iqentry_out[fcu_id[`QBITS]]) fcu_timeout <= fcu_timeout + 8'd1; if (branchmiss) begin for (n = 1; n < PREGS; n = n + 1) if (~livetarget[n]) begin if (branchmiss_thrd) begin if (n >= 128) rf_v[n] <= `VAL; end else begin if (n < 128) rf_v[n] <= `VAL; end end if (|iqentry_0_latestID) if (iqentry_thrd[0]==branchmiss_thrd) rf_source[ {iqentry_tgt[0][7:0]} ] <= { 1'b0, iqentry_mem[0], 3'd0 }; if (|iqentry_1_latestID) if (iqentry_thrd[1]==branchmiss_thrd) rf_source[ {iqentry_tgt[1][7:0]} ] <= { 1'b0, iqentry_mem[1], 3'd1 }; if (|iqentry_2_latestID) if (iqentry_thrd[2]==branchmiss_thrd) rf_source[ {iqentry_tgt[2][7:0]} ] <= { 1'b0, iqentry_mem[2], 3'd2 }; if (|iqentry_3_latestID) if (iqentry_thrd[3]==branchmiss_thrd) rf_source[ {iqentry_tgt[3][7:0]} ] <= { 1'b0, iqentry_mem[3], 3'd3 }; if (|iqentry_4_latestID) if (iqentry_thrd[4]==branchmiss_thrd) rf_source[ {iqentry_tgt[4][7:0]} ] <= { 1'b0, iqentry_mem[4], 3'd4 }; if (|iqentry_5_latestID) if (iqentry_thrd[5]==branchmiss_thrd) rf_source[ {iqentry_tgt[5][7:0]} ] <= { 1'b0, iqentry_mem[5], 3'd5 }; if (|iqentry_6_latestID) if (iqentry_thrd[6]==branchmiss_thrd) rf_source[ {iqentry_tgt[6][7:0]} ] <= { 1'b0, iqentry_mem[6], 3'd6 }; if (|iqentry_7_latestID) if (iqentry_thrd[7]==branchmiss_thrd) rf_source[ {iqentry_tgt[7][7:0]} ] <= { 1'b0, iqentry_mem[7], 3'd7 }; end // The source for the register file data might have changed since it was // placed on the commit bus. So it's needed to check that the source is // still as expected to validate the register. if (commit0_v) begin if (!rf_v[ {commit0_tgt[7:0]} ]) // rf_v[ {commit0_tgt[7:0]} ] <= rf_source[ commit0_tgt[7:0] ] == commit0_id || (branchmiss && iqentry_source[ commit0_id[`QBITS] ]); rf_v[ {commit0_tgt[7:0]} ] <= regIsValid[{commit0_tgt[7:0]}];//rf_source[ commit0_tgt[4:0] ] == commit0_id || (branchmiss && iqentry_source[ commit0_id[`QBITS] ]); if (commit0_tgt[5:0] != 6'd0) $display("r%d <- %h v[%d]<-%d", commit0_tgt, commit0_bus, regIsValid[commit0_tgt[5:0]], rf_source[ {commit0_tgt[7:0]} ] == commit0_id || (branchmiss && iqentry_source[ commit0_id[`QBITS] ])); if (commit0_tgt[5:0]==6'd30 && commit0_bus==64'd0) $display("FP <= 0"); end if (commit1_v && `NUM_CMT > 1) begin if (!rf_v[ {commit1_tgt[7:0]} ]) begin if ({commit1_tgt[7:0]}=={commit0_tgt[7:0]}) rf_v[ {commit1_tgt[7:0]} ] <= regIsValid[{commit0_tgt[7:0]}] | regIsValid[{commit1_tgt[7:0]}]; /* (rf_source[ commit0_tgt[4:0] ] == commit0_id || (branchmiss && iqentry_source[ commit0_id[`QBITS] ])) || (rf_source[ commit1_tgt[4:0] ] == commit1_id || (branchmiss && iqentry_source[ commit1_id[`QBITS] ])); */ else rf_v[ {commit1_tgt[7:0]} ] <= regIsValid[{commit1_tgt[7:0]}];//rf_source[ commit1_tgt[4:0] ] == commit1_id || (branchmiss && iqentry_source[ commit1_id[`QBITS] ]); end if (commit1_tgt[5:0] != 6'd0) $display("r%d <- %h v[%d]<-%d", commit1_tgt, commit1_bus, regIsValid[commit1_tgt[5:0]], rf_source[ {commit1_tgt[7:0]} ] == commit1_id || (branchmiss && iqentry_source[ commit1_id[`QBITS] ])); if (commit1_tgt[5:0]==6'd30 && commit1_bus==64'd0) $display("FP <= 0"); end rf_v[0] <= 1; // // ENQUEUE // // place up to two instructions from the fetch buffer into slots in the IQ. // note: they are placed in-order, and they are expected to be executed // 0, 1, or 2 of the fetch buffers may have valid data // 0, 1, or 2 slots in the instruction queue may be available. // if we notice that one of the instructions in the fetch buffer is a predicted branch, // (set branchback/backpc and delete any instructions after it in fetchbuf) // // enqueue fetchbuf0 and fetchbuf1, but only if there is room, // and ignore fetchbuf1 if fetchbuf0 has a backwards branch in it. // // also, do some instruction-decode ... set the operand_valid bits in the IQ // appropriately so that the DATAINCOMING stage does not have to look at the opcode // if (!branchmiss) // don't bother doing anything if there's been a branch miss case ({fetchbuf0_v, fetchbuf1_v}) 2'b00: ; // do nothing 2'b01: if (canq1) begin if (IsVector(fetchbuf1_instr) && SUP_VECTOR) begin vqe1 <= vqe1 + 4'd1; if (IsVCmprss(fetchbuf1_instr)) begin if (vm[fetchbuf1_instr[25:23]][vqe1]) vqet1 <= vqet1 + 4'd1; end else vqet1 <= vqet1 + 4'd1; if (vqe1 >= vl-2) nop_fetchbuf <= fetchbuf ? 4'b0100 : 4'b0001; enque1(tail0, fetchbuf1_thrd ? seq_num1 : seq_num, vqe1); if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; tgtq <= FALSE; if (fetchbuf1_rfw) begin rf_source[ Rt1s ] <= { 1'b0, fetchbuf1_memld, tail0 }; // top bit indicates ALU/MEM bus rf_v [Rt1s] <= `INV; end if (canq2 && vqe1 < vl-2) begin vqe1 <= vqe1 + 4'd2; if (IsVCmprss(fetchbuf1_instr)) begin if (vm[fetchbuf1_instr[25:23]][vqe1+6'd1]) vqet1 <= vqet1 + 4'd2; end else vqet1 <= vqet1 + 4'd2; enque1(tail1, fetchbuf1_thrd ? seq_num1 + 5'd1 : seq_num + 5'd1, vqe1 + 6'd1); if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd2; else seq_num <= seq_num + 5'd2; tgtq <= FALSE; if (fetchbuf1_rfw) begin rf_source[ Rt1s ] <= { 1'b0, fetchbuf1_memld, tail1 }; // top bit indicates ALU/MEM bus rf_v [Rt1s] <= `INV; end end end else begin enque1(tail0, fetchbuf1_thrd ? seq_num1 : seq_num, 6'd0); if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; tgtq <= FALSE; if (fetchbuf1_rfw) begin rf_source[ Rt1s ] <= { 1'b0, fetchbuf1_memld, tail0 }; // top bit indicates ALU/MEM bus rf_v [Rt1s] <= `INV; end end end 2'b10: if (canq1) begin // $display("queued1: %d", queued1); // if (!IsBranch(fetchbuf0_instr)) panic <= `PANIC_FETCHBUFBEQ; // if (!predict_taken0) panic <= `PANIC_FETCHBUFBEQ; // // this should only happen when the first instruction is a BEQ-backwards and the IQ // happened to be full on the previous cycle (thus we deleted fetchbuf1 but did not // enqueue fetchbuf0) ... probably no need to check for LW -- sanity check, just in case // if (IsVector(fetchbuf0_instr) && SUP_VECTOR) begin vqe0 <= vqe0 + 4'd1; if (IsVCmprss(fetchbuf0_instr)) begin if (vm[fetchbuf0_instr[25:23]][vqe0]) vqet0 <= vqet0 + 4'd1; end else vqet0 <= vqet0 + 4'd1; if (vqe0 >= vl-2) nop_fetchbuf <= fetchbuf ? 4'b1000 : 4'b0010; enque0(tail0, fetchbuf0_thrd ? seq_num1 : seq_num, vqe0); if (fetchbuf0_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; tgtq <= FALSE; if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0, fetchbuf0_memld, tail0 }; // top bit indicates ALU/MEM bus rf_v[Rt0s] <= `INV; end if (canq2) begin if (vqe0 < vl-2) begin vqe0 <= vqe0 + 4'd2; if (IsVCmprss(fetchbuf0_instr)) begin if (vm[fetchbuf0_instr[25:23]][vqe0+6'd1]) vqet0 <= vqet0 + 4'd2; end else vqet0 <= vqet0 + 4'd2; enque0(tail1, fetchbuf0_thrd ? seq_num1 + 5'd1 : seq_num+5'd1, vqe0 + 6'd1); if (fetchbuf0_thrd) seq_num1 <= seq_num1 + 5'd2; else seq_num <= seq_num + 5'd2; tgtq <= FALSE; if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0, fetchbuf0_memld, tail1 }; // top bit indicates ALU/MEM bus rf_v[Rt0s] <= `INV; end end end end else begin enque0(tail0, fetchbuf0_thrd ? seq_num1 : seq_num, 6'd0); if (fetchbuf0_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; tgtq <= FALSE; if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0, fetchbuf0_memld, tail0 }; // top bit indicates ALU/MEM bus rf_v[Rt0s] <= `INV; end end end 2'b11: if (canq1) begin // // if the first instruction is a predicted branch, enqueue it & stomp on all following instructions // but only if the following instruction is in the same thread. Otherwise we want to queue two. // if (take_branch0 && fetchbuf1_thrd==fetchbuf0_thrd) begin tgtq <= FALSE; enque0(tail0,fetchbuf0_thrd ? seq_num1 : seq_num,6'd0); if (fetchbuf0_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= {1'b0,fetchbuf0_memld, tail0}; rf_v [ Rt0s ] <= `INV; end end else begin // fetchbuf0 doesn't contain a predicted branch // // so -- we can enqueue 1 or 2 instructions, depending on space in the IQ // update the rf_v and rf_source bits separately (at end) // the problem is that if we do have two instructions, // they may interact with each other, so we have to be // careful about where things point. // // enqueue the first instruction ... // if (IsVector(fetchbuf0_instr) && SUP_VECTOR) begin vqe0 <= vqe0 + 4'd1; if (IsVCmprss(fetchbuf0_instr)) begin if (vm[fetchbuf0_instr[25:23]][vqe0]) vqet0 <= vqet0 + 4'd1; end else vqet0 <= vqet0 + 4'd1; if (vqe0 >= vl-2) nop_fetchbuf <= fetchbuf ? 4'b1000 : 4'b0010; end tgtq <= FALSE; if (vqe0 < vl || !IsVector(fetchbuf0_instr)) begin enque0(tail0, fetchbuf0_thrd ? seq_num1 : seq_num, vqe0); if (fetchbuf0_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; // // if there is room for a second instruction, enqueue it // if (canq2) begin if (vechain && IsVector(fetchbuf1_instr) && Ra1s != Rt0s // And there is no dependency && Rb1s != Rt0s && Rc1s != Rt0s ) begin `ifdef SUPPORT_SMT mstatus[0][32] <= 1'b1; `else mstatus[32] <= 1'b1; `endif vqe1 <= vqe1 + 4'd1; if (IsVCmprss(fetchbuf1_instr)) begin if (vm[fetchbuf1_instr[25:23]][vqe1]) vqet1 <= vqet1 + 4'd1; end else vqet1 <= vqet1 + 4'd1; if (vqe1 >= vl-2) nop_fetchbuf <= fetchbuf ? 4'b0100 : 4'b0001; enque1(tail1, fetchbuf1_thrd==fetchbuf0_thrd && fetchbuf1_thrd==1'b1 ? seq_num1 + 5'd1 : fetchbuf1_thrd==fetchbuf0_thrd && fetchbuf1_thrd==1'b0 ? seq_num + 5'd1 : fetchbuf1_thrd ? seq_num1 + 5'd1: seq_num + 5'd1, 6'd0); if (fetchbuf1_thrd==fetchbuf0_thrd) begin if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd2; else seq_num <= seq_num + 5'd2; end else begin if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; end // SOURCE 1 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a1_v [tail1] <= regIsValid[Ra1s]; iqentry_a1_s [tail1] <= rf_source [Ra1s]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Ra1 == Rt0) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a1_v [tail1] <= `INV; iqentry_a1_s [tail1] <= { 1'b0, fetchbuf0_mem &IsLoad(fetchbuf0_instr), tail0 }; end // if no overlap, get info from rf_v and rf_source else begin iqentry_a1_v [tail1] <= regIsValid[Ra1s]; iqentry_a1_s [tail1] <= rf_source [Ra1s]; end // SOURCE 2 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a2_v [tail1] <= regIsValid[Rb1s]; iqentry_a2_s [tail1] <= rf_source[ Rb1s ]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Rb1s == Rt0s) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a2_v [tail1] <= `INV; iqentry_a2_s [tail1] <= { 1'b0, fetchbuf0_mem &IsLoad(fetchbuf0_instr), tail0 }; end // if no overlap, get info from rf_v and rf_source else begin iqentry_a2_v [tail1] <= regIsValid[Rb1s]; iqentry_a2_s [tail1] <= rf_source[ Rb1s ]; end // SOURCE 3 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a3_v [tail1] <= regIsValid[Rc1s]; iqentry_a3_s [tail1] <= rf_source[ Rc1s ]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Rc1 == Rt0) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a3_v [tail1] <= `INV; iqentry_a3_s [tail1] <= { 1'b0, fetchbuf0_mem &IsLoad(fetchbuf0_instr), tail0 }; end // if no overlap, get info from rf_v and rf_source else begin iqentry_a3_v [tail1] <= regIsValid[Rc1s]; iqentry_a3_s [tail1] <= rf_source[ Rc1s ]; end // if the two instructions enqueued target the same register, // make sure only the second writes to rf_v and rf_source. // first is allowed to update rf_v and rf_source only if the // second has no target // if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0,fetchbuf0_memld, tail0 }; rf_v [ Rt0s] <= `INV; end if (fetchbuf1_rfw) begin rf_source[ Rt1s ] <= { 1'b0,fetchbuf1_memld, tail1 }; rf_v [ Rt1s ] <= `INV; end end // If there was a vector instruction in fetchbuf0, we really // want to queue the next vector element, not the next // instruction waiting in fetchbuf1. else if (IsVector(fetchbuf0_instr) && SUP_VECTOR && vqe0 < vl-1) begin vqe0 <= vqe0 + 4'd2; if (IsVCmprss(fetchbuf0_instr)) begin if (vm[fetchbuf0_instr[25:23]][vqe0+6'd1]) vqet0 <= vqet0 + 4'd2; end else vqet0 <= vqet0 + 4'd2; if (vqe0 >= vl-3) nop_fetchbuf <= fetchbuf ? 4'b1000 : 4'b0010; if (vqe0 < vl-1) begin enque0(tail1, fetchbuf0_thrd ? seq_num1 + 5'd1 : seq_num + 5'd1, vqe0 + 6'd1); if (fetchbuf0_thrd) seq_num1 <= seq_num1 + 5'd2; else seq_num <= seq_num + 5'd2; // SOURCE 1 ... iqentry_a1_v [tail1] <= regIsValid[Ra0s]; iqentry_a1_s [tail1] <= rf_source [Ra0s]; // SOURCE 2 ... iqentry_a2_v [tail1] <= regIsValid[Rb0s]; iqentry_a2_s [tail1] <= rf_source[ Rb0s ]; // SOURCE 3 ... iqentry_a3_v [tail1] <= regIsValid[Rc0s]; iqentry_a3_s [tail1] <= rf_source[ Rc0s ]; // if the two instructions enqueued target the same register, // make sure only the second writes to rf_v and rf_source. // first is allowed to update rf_v and rf_source only if the // second has no target (BEQ or SW) // if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0, fetchbuf0_memld, tail1 }; rf_v [ Rt0s ] <= `INV; end end end else if (IsVector(fetchbuf1_instr) && SUP_VECTOR) begin vqe1 <= 6'd1; if (IsVCmprss(fetchbuf1_instr)) begin if (vm[fetchbuf1_instr[25:23]][IsVector(fetchbuf0_instr)? 6'd0:vqe1+6'd1]) vqet1 <= 6'd1; else vqet1 <= 6'd0; end else vqet1 <= 6'd1; if (IsVector(fetchbuf0_instr) && SUP_VECTOR) nop_fetchbuf <= fetchbuf ? 4'b1000 : 4'b0010; enque1(tail1, fetchbuf1_thrd==fetchbuf0_thrd && fetchbuf1_thrd==1'b1 ? seq_num1 + 5'd1 : fetchbuf1_thrd==fetchbuf0_thrd && fetchbuf1_thrd==1'b0 ? seq_num + 5'd1 : fetchbuf1_thrd ? seq_num1 + 5'd1: seq_num + 5'd1, 6'd0); if (fetchbuf1_thrd==fetchbuf0_thrd) begin if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd2; else seq_num <= seq_num + 5'd2; end else begin if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd1; else seq_num <= seq_num + 5'd1; end // SOURCE 1 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a1_v [tail1] <= regIsValid[Ra1s]; iqentry_a1_s [tail1] <= rf_source [Ra1s]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Ra1 == Rt0) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a1_v [tail1] <= `INV; iqentry_a1_s [tail1] <= { 1'b0, fetchbuf0_mem &IsLoad(fetchbuf0_instr), tail0 }; end // if no overlap, get info from rf_v and rf_source else begin iqentry_a1_v [tail1] <= regIsValid[Ra1s]; iqentry_a1_s [tail1] <= rf_source [Ra1s]; end // SOURCE 2 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a2_v [tail1] <= regIsValid[Rb1s]; iqentry_a2_s [tail1] <= rf_source[ Rb1s ]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Rb1s == Rt0s) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a2_v [tail1] <= `INV; iqentry_a2_s [tail1] <= { 1'b0, fetchbuf0_mem &IsLoad(fetchbuf0_instr), tail0 }; end // if no overlap, get info from rf_v and rf_source else begin iqentry_a2_v [tail1] <= regIsValid[Rb1s]; iqentry_a2_s [tail1] <= rf_source[ Rb1s ]; end // SOURCE 3 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a3_v [tail1] <= regIsValid[Rc1s]; iqentry_a3_s [tail1] <= rf_source[ Rc1s ]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Rc1 == Rt0) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a3_v [tail1] <= `INV; iqentry_a3_s [tail1] <= { 1'b0, fetchbuf0_mem &IsLoad(fetchbuf0_instr), tail0 }; end // if no overlap, get info from rf_v and rf_source else begin iqentry_a3_v [tail1] <= regIsValid[Rc1s]; iqentry_a3_s [tail1] <= rf_source[ Rc1s ]; end // if the two instructions enqueued target the same register, // make sure only the second writes to rf_v and rf_source. // first is allowed to update rf_v and rf_source only if the // second has no target // if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0,fetchbuf0_memld, tail0 }; rf_v [ Rt0s] <= `INV; end if (fetchbuf1_rfw) begin rf_source[ Rt1s ] <= { 1'b0,fetchbuf1_memld, tail1 }; rf_v [ Rt1s ] <= `INV; end end else begin // enque1(tail1, seq_num + 5'd1, 6'd0); enque1(tail1, fetchbuf1_thrd==fetchbuf0_thrd && fetchbuf1_thrd==1'b1 ? seq_num1 + 5'd1 : fetchbuf1_thrd==fetchbuf0_thrd && fetchbuf1_thrd==1'b0 ? seq_num + 5'd1 : fetchbuf1_thrd ? seq_num1: seq_num, 6'd0); if (fetchbuf1_thrd==fetchbuf0_thrd) begin if (fetchbuf1_thrd) seq_num1 <= seq_num1 + 5'd2; else seq_num <= seq_num + 5'd2; end else begin seq_num1 <= seq_num1 + 5'd1; seq_num <= seq_num + 5'd1; end // SOURCE 1 ... // if previous instruction writes nothing to RF, then get info from rf_v and rf_source if (~fetchbuf0_rfw) begin iqentry_a1_v [tail1] <= regIsValid[Ra1s]; iqentry_a1_s [tail1] <= rf_source [Ra1s]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Ra1s == Rt0s) begin iqentry_a1_v [tail1] <= `INV; iqentry_a1_s [tail1] <= { 1'b0, fetchbuf0_memld, tail0 }; end // if no overlap, get info from regIsValid and rf_source else begin iqentry_a1_v [tail1] <= regIsValid[Ra1s]; iqentry_a1_s [tail1] <= rf_source [Ra1s]; end // SOURCE 2 ... // if the argument is an immediate or not needed, we're done $display("Rb1s=%h, Rt0s=%h", Rb1s, Rt0s); $display("instr=%h", fetchbuf1_instr); // if previous instruction writes nothing to RF, then get info from regIsValid and rf_source if (~fetchbuf0_rfw) begin $display("fetchbuf0_rfw=0"); iqentry_a2_v [tail1] <= regIsValid[Rb1s]; iqentry_a2_s [tail1] <= rf_source[ Rb1s ]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Rb1s == Rt0s) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a2_v [tail1] <= `INV; iqentry_a2_s [tail1] <= { 1'b0, fetchbuf0_memld, tail0 }; end // if no overlap, get info from regIsValid and rf_source else begin $display("No overlap"); iqentry_a2_v [tail1] <= regIsValid[Rb1s]; iqentry_a2_s [tail1] <= rf_source[ Rb1s ]; end // SOURCE 3 ... // if previous instruction writes nothing to RF, then get info from regIsValid and rf_source if (~fetchbuf0_rfw) begin iqentry_a3_v [tail1] <= regIsValid[Rc1s]; iqentry_a3_s [tail1] <= rf_source[ Rc1s ]; end // otherwise, previous instruction does write to RF ... see if overlap else if (Rc1s == Rt0s) begin // if the previous instruction is a LW, then grab result from memq, not the iq iqentry_a3_v [tail1] <= `INV; iqentry_a3_s [tail1] <= { 1'b0, fetchbuf0_memld, tail0 }; end // if no overlap, get info from regIsValid and rf_source else begin iqentry_a3_v [tail1] <= regIsValid[Rc1s]; iqentry_a3_s [tail1] <= rf_source[ Rc1s ]; end // if the two instructions enqueued target the same register, // make sure only the second writes to regIsValid and rf_source. // first is allowed to update regIsValid and rf_source only if the // second has no target (BEQ or SW) // if (fetchbuf0_rfw) begin rf_source[ Rt0s ] <= { 1'b0,fetchbuf0_memld, tail0 }; rf_v [ Rt0s] <= `INV; $display("r%dx (%d) Invalidated", Rt0s, Rt0s[4:0]); end else $display("No rfw"); if (fetchbuf1_rfw) begin rf_source[ Rt1s ] <= { 1'b0,fetchbuf1_memld, tail1 }; $display("r%dx (%d) Invalidated", Rt1s, Rt1s[4:0]); rf_v [ Rt1s ] <= `INV; end else $display("No rfw"); end end // ends the "if IQ[tail1] is available" clause else begin // only first instruction was enqueued if (fetchbuf0_rfw) begin $display("r%dx (%d) Invalidated 1", Rt0s, Rt0s[4:0]); rf_source[ Rt0s ] <= {1'b0,fetchbuf0_memld, tail0}; rf_v [ Rt0s ] <= `INV; end end end end // ends the "else fetchbuf0 doesn't have a backwards branch" clause end endcase if (pebm) begin if (branchmiss_thrd==1'b0) seq_num <= seq_num + 5'd3; else seq_num1 <= seq_num1 + 5'd3; end // // DATAINCOMING // // wait for operand/s to appear on alu busses and puts them into // the iqentry_a1 and iqentry_a2 slots (if appropriate) // as well as the appropriate iqentry_res slots (and setting valid bits) // // put results into the appropriate instruction entries // // This chunk of code has to be before the enqueue stage so that the agen bit // can be reset to zero by enqueue. // put results into the appropriate instruction entries // if (IsMul(alu0_instr)|IsDivmod(alu0_instr)|alu0_shft48) begin if (alu0_done) begin alu0_dataready <= `TRUE; end end if (alu0_v) begin iqentry_tgt [ alu0_id[`QBITS] ] <= alu0_tgt; iqentry_res [ alu0_id[`QBITS] ] <= alu0_bus; iqentry_exc [ alu0_id[`QBITS] ] <= alu0_exc; iqentry_done[ alu0_id[`QBITS] ] <= !iqentry_mem[ alu0_id[`QBITS] ] && alu0_done; iqentry_cmt[ alu0_id[`QBITS] ] <= !iqentry_mem[ alu0_id[`QBITS] ] && alu0_done; iqentry_out [ alu0_id[`QBITS] ] <= `INV; iqentry_agen[ alu0_id[`QBITS] ] <= `VAL;//!iqentry_fc[alu0_id[`QBITS]]; // RET alu0_dataready <= FALSE; end if (alu1_v && `NUM_ALU > 1) begin iqentry_tgt [ alu1_id[`QBITS] ] <= alu1_tgt; iqentry_res [ alu1_id[`QBITS] ] <= alu1_bus; iqentry_exc [ alu1_id[`QBITS] ] <= alu1_exc; iqentry_done[ alu1_id[`QBITS] ] <= !iqentry_mem[ alu1_id[`QBITS] ] && alu1_done; iqentry_cmt[ alu1_id[`QBITS] ] <= !iqentry_mem[ alu1_id[`QBITS] ] && alu1_done; iqentry_out [ alu1_id[`QBITS] ] <= `INV; iqentry_agen[ alu1_id[`QBITS] ] <= `VAL;//!iqentry_fc[alu0_id[`QBITS]]; // RET alu1_dataready <= FALSE; end if (fpu1_v) begin iqentry_res [ fpu1_id[`QBITS] ] <= fpu1_bus; iqentry_a0 [ fpu1_id[`QBITS] ] <= fpu1_status; iqentry_exc [ fpu1_id[`QBITS] ] <= fpu1_exc; iqentry_done[ fpu1_id[`QBITS] ] <= fpu1_done; iqentry_cmt[ fpu1_id[`QBITS] ] <= fpu1_done; iqentry_out [ fpu1_id[`QBITS] ] <= `INV; //iqentry_agen[ fpu_id[`QBITS] ] <= `VAL; // RET fpu1_dataready <= FALSE; end if (fpu2_v && `NUM_FPU > 1) begin iqentry_res [ fpu2_id[`QBITS] ] <= fpu2_bus; iqentry_a0 [ fpu2_id[`QBITS] ] <= fpu2_status; iqentry_exc [ fpu2_id[`QBITS] ] <= fpu2_exc; iqentry_done[ fpu2_id[`QBITS] ] <= fpu2_done; iqentry_cmt[ fpu2_id[`QBITS] ] <= fpu2_done; iqentry_out [ fpu2_id[`QBITS] ] <= `INV; //iqentry_agen[ fpu_id[`QBITS] ] <= `VAL; // RET fpu2_dataready <= FALSE; end if (fcu_wr & ~fcu_done) begin if (fcu_ld) waitctr <= fcu_argA; iqentry_res [ fcu_id[`QBITS] ] <= fcu_bus; iqentry_exc [ fcu_id[`QBITS] ] <= fcu_exc; if (IsWait(fcu_instr)) begin iqentry_done [ fcu_id[`QBITS] ] <= (waitctr==64'd1) || signal_i[fcu_argA[4:0]|fcu_argI[4:0]]; iqentry_cmt [ fcu_id[`QBITS] ] <= (waitctr==64'd1) || signal_i[fcu_argA[4:0]|fcu_argI[4:0]]; fcu_done <= `TRUE; end else begin iqentry_done[ fcu_id[`QBITS] ] <= `TRUE; iqentry_cmt[ fcu_id[`QBITS] ] <= `TRUE; fcu_done <= `TRUE; end // if (IsWait(fcu_instr) ? (waitctr==64'd1) || signal_i[fcu_argA[4:0]|fcu_argI[4:0]] : !IsMem(fcu_instr) && !IsImmp(fcu_instr)) // iqentry_instr[ dram_id[`QBITS]] <= `NOP_INSN; // Only safe place to propagate the miss pc is a0. iqentry_a0[ fcu_id[`QBITS] ] <= fcu_misspc; // Update branch taken indicator. if (IsJAL(fcu_instr) || IsRet(fcu_instr) || IsBrk(fcu_instr) || IsRTI(fcu_instr) ) begin iqentry_bt[ fcu_id[`QBITS] ] <= `VAL; // Only safe place to propagate the miss pc is a0. // iqentry_a0[ fcu_id[`QBITS] ] <= fcu_misspc; end else if (IsBranch(fcu_instr)) begin iqentry_bt[ fcu_id[`QBITS] ] <= fcu_takb; // iqentry_a0[ fcu_id[`QBITS] ] <= fcu_misspc; end iqentry_out [ fcu_id[`QBITS] ] <= `INV; //iqentry_agen[ fcu_id[`QBITS] ] <= `VAL;//!IsRet(fcu_instr); fcu_dataready <= `VAL; //fcu_dataready <= fcu_branchmiss || !iqentry_agen[ fcu_id[`QBITS] ] || !(iqentry_mem[ fcu_id[`QBITS] ] && IsLoad(iqentry_instr[fcu_id[`QBITS]])); //fcu_instr[`INSTRUCTION_OP] <= fcu_branchmiss|| (!IsMem(fcu_instr) && !IsWait(fcu_instr))? `NOP : fcu_instr[`INSTRUCTION_OP]; // to clear branchmiss end // Clear a branch miss when target instruction is fetched. if (fcu_branchmiss) begin if ((fetchbuf0_v && fetchbuf0_pc==misspc) || (fetchbuf1_v && fetchbuf1_pc==misspc)) fcu_clearbm <= `TRUE; //fcu_instr[`INSTRUCTION_OP] <= `NOP; //iqentry_instr[fcu_id][`INSTRUCTION_OP] <= `NOP; end // if (dram_v && iqentry_v[ dram_id[`QBITS] ] && iqentry_mem[ dram_id[`QBITS] ] ) begin // if data for stomped instruction, ignore if (mem1_available && dramA_v && iqentry_v[ dramA_id[`QBITS] ] && iqentry_load[ dramA_id[`QBITS] ]) begin // if data for stomped instruction, ignore iqentry_res [ dramA_id[`QBITS] ] <= dramA_bus; iqentry_exc [ dramA_id[`QBITS] ] <= dramA_exc; iqentry_done[ dramA_id[`QBITS] ] <= `VAL; iqentry_out [ dramA_id[`QBITS] ] <= `INV; iqentry_cmt[ dramA_id[`QBITS] ] <= `VAL; iqentry_aq [ dramA_id[`QBITS] ] <= `INV; // if (iqentry_lptr[dram0_id[`QBITS]]) // wbrcd[pcr[5:0]] <= 1'b1; end if (mem2_available && `NUM_MEM > 1 && dramB_v && iqentry_v[ dramB_id[`QBITS] ] && iqentry_load[ dramB_id[`QBITS] ]) begin // if data for stomped instruction, ignore iqentry_res [ dramB_id[`QBITS] ] <= dramB_bus; iqentry_exc [ dramB_id[`QBITS] ] <= dramB_exc; iqentry_done[ dramB_id[`QBITS] ] <= `VAL; iqentry_out [ dramB_id[`QBITS] ] <= `INV; iqentry_cmt[ dramB_id[`QBITS] ] <= `VAL; iqentry_aq [ dramB_id[`QBITS] ] <= `INV; // if (iqentry_lptr[dram1_id[`QBITS]]) // wbrcd[pcr[5:0]] <= 1'b1; end if (mem3_available && `NUM_MEM > 2 && dramC_v && iqentry_v[ dramC_id[`QBITS] ] && iqentry_load[ dramC_id[`QBITS] ]) begin // if data for stomped instruction, ignore iqentry_res [ dramC_id[`QBITS] ] <= dramC_bus; iqentry_exc [ dramC_id[`QBITS] ] <= dramC_exc; iqentry_done[ dramC_id[`QBITS] ] <= `VAL; iqentry_out [ dramC_id[`QBITS] ] <= `INV; iqentry_cmt[ dramC_id[`QBITS] ] <= `VAL; iqentry_aq [ dramC_id[`QBITS] ] <= `INV; // if (iqentry_lptr[dram2_id[`QBITS]]) // wbrcd[pcr[5:0]] <= 1'b1; end // // set the IQ entry == DONE as soon as the SW is let loose to the memory system // if (mem1_available && dram0 == `DRAMSLOT_BUSY && IsStore(dram0_instr)) begin if ((alu0_v && (dram0_id[`QBITS] == alu0_id[`QBITS])) || (alu1_v && (dram0_id[`QBITS] == alu1_id[`QBITS]))) panic <= `PANIC_MEMORYRACE; iqentry_done[ dram0_id[`QBITS] ] <= `VAL; iqentry_out[ dram0_id[`QBITS] ] <= `INV; end if (mem2_available && `NUM_MEM > 1 && dram1 == `DRAMSLOT_BUSY && IsStore(dram1_instr)) begin if ((alu0_v && (dram1_id[`QBITS] == alu0_id[`QBITS])) || (alu1_v && (dram1_id[`QBITS] == alu1_id[`QBITS]))) panic <= `PANIC_MEMORYRACE; iqentry_done[ dram1_id[`QBITS] ] <= `VAL; iqentry_out[ dram1_id[`QBITS] ] <= `INV; end if (mem3_available && `NUM_MEM > 2 && dram2 == `DRAMSLOT_BUSY && IsStore(dram2_instr)) begin if ((alu0_v && (dram2_id[`QBITS] == alu0_id[`QBITS])) || (alu1_v && (dram2_id[`QBITS] == alu1_id[`QBITS]))) panic <= `PANIC_MEMORYRACE; iqentry_done[ dram2_id[`QBITS] ] <= `VAL; iqentry_out[ dram2_id[`QBITS] ] <= `INV; end // // see if anybody else wants the results ... look at lots of buses: // - fpu_bus // - alu0_bus // - alu1_bus // - fcu_bus // - dram_bus // - commit0_bus // - commit1_bus // for (n = 0; n < QENTRIES; n = n + 1) begin if (`NUM_FPU > 0) setargs(n,{1'b0,fpu1_id},fpu1_v,fpu1_bus); if (`NUM_FPU > 1) setargs(n,{1'b0,fpu2_id},fpu2_v,fpu2_bus); setargs(n,{1'b0,alu0_id},alu0_v,alu0_bus); if (`NUM_ALU > 1) setargs(n,{1'b0,alu1_id},alu1_v,alu1_bus); setargs(n,{1'b0,fcu_id},fcu_wr,fcu_bus); setargs(n,{1'b0,dramA_id},dramA_v,dramA_bus); if (`NUM_MEM > 1) setargs(n,{1'b0,dramB_id},dramB_v,dramB_bus); if (`NUM_MEM > 2) setargs(n,{1'b0,dramC_id},dramC_v,dramC_bus); setargs(n,commit0_id,commit0_v,commit0_bus); if (`NUM_CMT > 1) setargs(n,commit1_id,commit1_v,commit1_bus); setinsn(n[`QBITS],id1_ido,id1_available&id1_vo,id1_bus); if (`NUM_IDU > 1) setinsn(n[`QBITS],id2_ido,id2_available&id2_vo,id2_bus); if (`NUM_IDU > 2) setinsn(n[`QBITS],id3_ido,id3_available&id3_vo,id3_bus); end // // ISSUE // // determines what instructions are ready to go, then places them // in the various ALU queues. // also invalidates instructions following a branch-miss BEQ or any JALR (STOMP logic) // for (n = 0; n < QENTRIES; n = n + 1) if (id1_available) begin if (iqentry_id1issue[n] && !iqentry_iv[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin id1_vi <= `VAL; id1_id <= n[4:0]; id1_instr <= iqentry_rtop[n] ? ( iqentry_a3_v[n] ? iqentry_a3[n] `ifdef FU_BYPASS : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : (iqentry_a3_s[n] == alu1_id) ? alu1_bus `endif : `NOP_INSN) : iqentry_instr[n]; id1_ven <= iqentry_ven[n]; id1_vl <= iqentry_vl[n]; id1_thrd <= iqentry_thrd[n]; id1_Rt <= iqentry_tgt[n][4:0]; id1_pt <= iqentry_pt[n]; end end if (`NUM_IDU > 1) begin for (n = 0; n < QENTRIES; n = n + 1) if (id2_available) begin if (iqentry_id2issue[n] && !iqentry_iv[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin id2_vi <= `VAL; id2_id <= n[4:0]; id2_instr <= iqentry_rtop[n] ? ( iqentry_a3_v[n] ? iqentry_a3[n] `ifdef FU_BYPASS : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : (iqentry_a3_s[n] == alu1_id) ? alu1_bus `endif : `NOP_INSN) : iqentry_instr[n]; id2_ven <= iqentry_ven[n]; id2_vl <= iqentry_vl[n]; id2_thrd <= iqentry_thrd[n]; id2_Rt <= iqentry_tgt[n][4:0]; id2_pt <= iqentry_pt[n]; end end end if (`NUM_IDU > 2) begin for (n = 0; n < QENTRIES; n = n + 1) if (id3_available) begin if (iqentry_id3issue[n] && !iqentry_iv[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin id3_vi <= `VAL; id3_id <= n[4:0]; id3_instr <= iqentry_rtop[n] ? ( iqentry_a3_v[n] ? iqentry_a3[n] `ifdef FU_BYPASS : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : (iqentry_a3_s[n] == alu1_id) ? alu1_bus `endif : `NOP_INSN) : iqentry_instr[n]; id3_ven <= iqentry_ven[n]; id3_vl <= iqentry_vl[n]; id3_thrd <= iqentry_thrd[n]; id3_Rt <= iqentry_tgt[n][4:0]; id3_pt <= iqentry_pt[n]; end end end for (n = 0; n < QENTRIES; n = n + 1) if (iqentry_alu0_issue[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin if (alu0_available & alu0_done) begin alu0_sourceid <= n[3:0]; alu0_instr <= iqentry_rtop[n] ? ( `ifdef FU_BYPASS iqentry_a3_v[n] ? iqentry_a3[n] : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : (iqentry_a3_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus) `else iqentry_a3[n]) `endif : iqentry_instr[n]; alu0_bt <= iqentry_bt[n]; alu0_mem <= iqentry_mem[n]; alu0_shft48 <= iqentry_shft48[n]; alu0_pc <= iqentry_pc[n]; alu0_argA <= `ifdef FU_BYPASS iqentry_a1_v[n] ? iqentry_a1[n] : (iqentry_a1_s[n] == alu0_id) ? alu0_bus : (iqentry_a1_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus; `else iqentry_a1[n]; `endif alu0_argB <= iqentry_imm[n] ? iqentry_a0[n] `ifdef FU_BYPASS : (iqentry_a2_v[n] ? iqentry_a2[n] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus : (iqentry_a2_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus); `else : iqentry_a2[n]; `endif alu0_argC <= `ifdef FU_BYPASS iqentry_a3_v[n] ? iqentry_a3[n] : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : alu1_bus; `else iqentry_a3[n]; `endif alu0_argI <= iqentry_a0[n]; alu0_tgt <= IsVeins(iqentry_instr[n]) ? {6'h0,1'b1,iqentry_tgt[n][4:0]} | (( iqentry_a2_v[n] ? iqentry_a2[n][5:0] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus[5:0] : (iqentry_a2_s[n] == alu1_id) ? alu1_bus[5:0] : {4{16'h0000}})) << 6 : iqentry_tgt[n]; alu0_ven <= iqentry_ven[n]; alu0_thrd <= iqentry_thrd[n]; alu0_dataready <= IsSingleCycle(iqentry_instr[n]); alu0_ld <= TRUE; iqentry_out[n] <= `VAL; // if it is a memory operation, this is the address-generation step ... collect result into arg1 if (iqentry_mem[n]) begin iqentry_a1_v[n] <= `INV; iqentry_a1_s[n] <= n[3:0]; end end end if (`NUM_ALU > 1) begin for (n = 0; n < QENTRIES; n = n + 1) if (iqentry_alu1_issue[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin if (alu1_available && alu1_done) begin if (iqentry_alu0[n]) panic <= `PANIC_ALU0ONLY; alu1_sourceid <= n[3:0]; alu1_instr <= iqentry_instr[n]; alu1_bt <= iqentry_bt[n]; alu1_mem <= iqentry_mem[n]; alu1_shft48 <= iqentry_shft48[n]; alu1_pc <= iqentry_pc[n]; alu1_argA <= `ifdef FU_BYPASS iqentry_a1_v[n] ? iqentry_a1[n] : (iqentry_a1_s[n] == alu0_id) ? alu0_bus : (iqentry_a1_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus; `else iqentry_a1[n]; `endif alu1_argB <= iqentry_imm[n] ? iqentry_a0[n] `ifdef FU_BYPASS : (iqentry_a2_v[n] ? iqentry_a2[n] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus : (iqentry_a2_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus); `else : iqentry_a2[n]; `endif alu1_argC <= `ifdef FU_BYPASS iqentry_a3_v[n] ? iqentry_a3[n] : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : alu1_bus; `else iqentry_a3[n]; `endif alu1_argI <= iqentry_a0[n]; alu1_tgt <= IsVeins(iqentry_instr[n]) ? {6'h0,1'b1,iqentry_tgt[n][4:0]} | ((iqentry_a2_v[n] ? iqentry_a2[n][5:0] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus[5:0] : (iqentry_a2_s[n] == alu1_id) ? alu1_bus[5:0] : {4{16'h0000}})) << 6 : iqentry_tgt[n]; alu1_ven <= iqentry_ven[n]; alu1_dataready <= IsSingleCycle(iqentry_instr[n]); alu1_ld <= TRUE; iqentry_out[n] <= `VAL; // if it is a memory operation, this is the address-generation step ... collect result into arg1 if (iqentry_mem[n]) begin iqentry_a1_v[n] <= `INV; iqentry_a1_s[n] <= n[3:0]; end end end end for (n = 0; n < QENTRIES; n = n + 1) if (iqentry_fpu1_issue[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin if (fpu1_available & fpu1_done) begin fpu1_sourceid <= n[3:0]; fpu1_instr <= iqentry_instr[n]; fpu1_pc <= iqentry_pc[n]; fpu1_argA <= `ifdef FU_BYPASS iqentry_a1_v[n] ? iqentry_a1[n] : (iqentry_a1_s[n] == alu0_id) ? alu0_bus : (iqentry_a1_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus; `else iqentry_a1[n]; `endif fpu1_argB <= `ifdef FU_BYPASS (iqentry_a2_v[n] ? iqentry_a2[n] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus : (iqentry_a2_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus); `else iqentry_a2[n]; `endif fpu1_argC <= `ifdef FU_BYPASS iqentry_a3_v[n] ? iqentry_a3[n] : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : alu1_bus; `else iqentry_a3[n]; `endif fpu1_argI <= iqentry_a0[n]; fpu1_dataready <= `VAL; fpu1_ld <= TRUE; iqentry_out[n] <= `VAL; end end for (n = 0; n < QENTRIES; n = n + 1) if (`NUM_FPU > 1 && iqentry_fpu2_issue[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin if (fpu2_available & fpu2_done) begin fpu2_sourceid <= n[3:0]; fpu2_instr <= iqentry_instr[n]; fpu2_pc <= iqentry_pc[n]; fpu2_argA <= `ifdef FU_BYPASS iqentry_a1_v[n] ? iqentry_a1[n] : (iqentry_a1_s[n] == alu0_id) ? alu0_bus : (iqentry_a1_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus; `else iqentry_a1[n]; `endif fpu2_argB <= `ifdef FU_BYPASS (iqentry_a2_v[n] ? iqentry_a2[n] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus : (iqentry_a2_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus); `else iqentry_a2[n]; `endif fpu2_argC <= `ifdef FU_BYPASS iqentry_a3_v[n] ? iqentry_a3[n] : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : alu1_bus; `else iqentry_a3[n]; `endif fpu2_argI <= iqentry_a0[n]; fpu2_dataready <= `VAL; fpu2_ld <= TRUE; iqentry_out[n] <= `VAL; end end for (n = 0; n < QENTRIES; n = n + 1) if (iqentry_fcu_issue[n] && !(iqentry_v[n] && iqentry_stomp[n])) begin if (fcu_done) begin fcu_sourceid <= n[3:0]; fcu_instr <= iqentry_instr[n]; fcu_insln <= iqentry_insln[n]; fcu_pc <= iqentry_pc[n]; fcu_nextpc <= iqentry_pc[n] + iqentry_insln[n]; fcu_brdisp <= {{52{iqentry_instr[n][31]}},iqentry_instr[n][31:21],1'b0}; fcu_call <= IsCall(iqentry_instr[n])|IsJAL(iqentry_instr[n]); fcu_bt <= iqentry_bt[n]; fcu_pc <= iqentry_pc[n]; fcu_argA <= iqentry_a1_v[n] ? iqentry_a1[n] : (iqentry_a1_s[n] == alu0_id) ? alu0_bus : (iqentry_a1_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus; `ifdef SUPPORT_SMT fcu_argB <= IsRTI(iqentry_instr[n]) ? epc0[iqentry_thrd[n]] `else fcu_argB <= IsRTI(iqentry_instr[n]) ? epc0 `endif : (iqentry_a2_v[n] ? iqentry_a2[n] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus : (iqentry_a2_s[n] == fpu1_id && `NUM_FPU > 0) ? fpu1_bus : alu1_bus); waitctr <= iqentry_imm[n] ? iqentry_a0[n] : (iqentry_a2_v[n] ? iqentry_a2[n] : (iqentry_a2_s[n] == alu0_id) ? alu0_bus : alu1_bus); fcu_argC <= iqentry_a3_v[n] ? iqentry_a3[n] : (iqentry_a3_s[n] == alu0_id) ? alu0_bus : alu1_bus; fcu_argI <= iqentry_a0[n]; fcu_thrd <= iqentry_thrd[n]; fcu_dataready <= `VAL; fcu_clearbm <= `FALSE; fcu_retadr_v <= `INV; fcu_ld <= TRUE; fcu_timeout <= 8'h00; iqentry_out[n] <= `VAL; fcu_done <= `FALSE; end end // // MEMORY // // update the memory queues and put data out on bus if appropriate // // // dram0, dram1, dram2 are the "state machines" that keep track // of three pipelined DRAM requests. if any has the value "00", // then it can accept a request (which bumps it up to the value "01" // at the end of the cycle). once it hits the value "11" the request // is finished and the dram_bus takes the value. if it is a store, the // dram_bus value is not used, but the dram_v value along with the // dram_id value signals the waiting memq entry that the store is // completed and the instruction can commit. // // if (dram0 != `DRAMSLOT_AVAIL) dram0 <= dram0 + 2'd1; // if (dram1 != `DRAMSLOT_AVAIL) dram1 <= dram1 + 2'd1; // if (dram2 != `DRAMSLOT_AVAIL) dram2 <= dram2 + 2'd1; // // grab requests that have finished and put them on the dram_bus if (mem1_available && dram0 == `DRAMREQ_READY) begin dram0 <= `DRAMSLOT_AVAIL; dramA_v <= dram0_load; dramA_id <= dram0_id; dramA_exc <= dram0_exc; dramA_bus <= fnDati(dram0_instr,dram0_addr,rdat0); if (IsStore(dram0_instr)) $display("m[%h] <- %h", dram0_addr, dram0_data); end // else // dramA_v <= `INV; if (mem2_available && dram1 == `DRAMREQ_READY && `NUM_MEM > 1) begin dram1 <= `DRAMSLOT_AVAIL; dramB_v <= dram1_load; dramB_id <= dram1_id; dramB_exc <= dram1_exc; dramB_bus <= fnDati(dram1_instr,dram1_addr,rdat1); if (IsStore(dram1_instr)) $display("m[%h] <- %h", dram1_addr, dram1_data); end // else // dramB_v <= `INV; if (mem3_available && dram2 == `DRAMREQ_READY && `NUM_MEM > 2) begin dram2 <= `DRAMSLOT_AVAIL; dramC_v <= dram2_load; dramC_id <= dram2_id; dramC_exc <= dram2_exc; dramC_bus <= fnDati(dram2_instr,dram2_addr,rdat2); if (IsStore(dram2_instr)) $display("m[%h] <- %h", dram2_addr, dram2_data); end // else // dramC_v <= `INV; // // determine if the instructions ready to issue can, in fact, issue. // "ready" means that the instruction has valid operands but has not gone yet iqentry_memissue <= memissue; missue_count <= issue_count; // // take requests that are ready and put them into DRAM slots if (dram0 == `DRAMSLOT_AVAIL) dram0_exc <= `FLT_NONE; if (dram1 == `DRAMSLOT_AVAIL) dram1_exc <= `FLT_NONE; if (dram2 == `DRAMSLOT_AVAIL) dram2_exc <= `FLT_NONE; for (n = 0; n < QENTRIES; n = n + 1) if (iqentry_v[n] && iqentry_stomp[n]) begin iqentry_v[n] <= `INV; iqentry_iv[n] <= `INV; if (dram0_id[`QBITS] == n[`QBITS]) dram0 <= `DRAMSLOT_AVAIL; if (dram1_id[`QBITS] == n[`QBITS]) dram1 <= `DRAMSLOT_AVAIL; if (dram2_id[`QBITS] == n[`QBITS]) dram2 <= `DRAMSLOT_AVAIL; end last_issue = 8; for (n = 0; n < QENTRIES; n = n + 1) if (~iqentry_stomp[n] && iqentry_memissue[n] && iqentry_agen[n] && ~iqentry_out[n] && ~iqentry_done[n]) begin if (mem1_available && dram0 == `DRAMSLOT_AVAIL) begin dramA_v <= `INV; dram0 <= `DRAMSLOT_BUSY; dram0_id <= { 1'b1, n[`QBITS] }; dram0_instr <= iqentry_instr[n]; dram0_rmw <= iqentry_rmw[n]; dram0_preload <= iqentry_preload[n]; dram0_tgt <= iqentry_tgt[n]; dram0_data <= iqentry_memndx[n] ? iqentry_a3[n] : iqentry_a2[n]; dram0_addr <= iqentry_a1[n]; // if (ol[iqentry_thrd[n]]==`OL_USER) // dram0_seg <= (iqentry_Ra[n]==5'd30 || iqentry_Ra[n]==5'd31) ? {ss[iqentry_thrd[n]],13'd0} : {ds[iqentry_thrd[n]],13'd0}; // else dram0_unc <= iqentry_a1[n][31:20]==12'hFFD || !dce || IsVolatileLoad(iqentry_instr[n]); dram0_memsize <= MemSize(iqentry_instr[n]); dram0_load <= iqentry_load[n]; dram0_ol <= (iqentry_Ra[n][4:0]==5'd31 || iqentry_Ra[n][4:0]==5'd30) ? ol[iqentry_thrd[n]] : dl[iqentry_thrd[n]]; // Once the memory op is issued reset the a1_v flag. // This will cause the a1 bus to look for new data from memory (a1_s is pointed to a memory bus) // This is used for the load and compare instructions. iqentry_a1_v[n] <= `INV; last_issue = n; end end if (last_issue < 8) iqentry_out[last_issue] <= `VAL; for (n = 0; n < QENTRIES; n = n + 1) if (~iqentry_stomp[n] && iqentry_memissue[n] && iqentry_agen[n] && ~iqentry_out[n] && ~iqentry_done[n]) begin if (mem2_available && n < last_issue && `NUM_MEM > 1) begin if (dram1 == `DRAMSLOT_AVAIL) begin dramB_v <= `INV; dram1 <= `DRAMSLOT_BUSY; dram1_id <= { 1'b1, n[`QBITS] }; dram1_instr <= iqentry_instr[n]; dram1_rmw <= iqentry_rmw[n]; dram1_preload <= iqentry_preload[n]; dram1_tgt <= iqentry_tgt[n]; dram1_data <= iqentry_memndx[n] ? iqentry_a3[n] : iqentry_a2[n]; dram1_addr <= iqentry_a1[n]; // if (ol[iqentry_thrd[n]]==`OL_USER) // dram1_seg <= (iqentry_Ra[n]==5'd30 || iqentry_Ra[n]==5'd31) ? {ss[iqentry_thrd[n]],13'd0} : {ds[iqentry_thrd[n]],13'd0}; // else dram1_unc <= iqentry_a1[n][31:20]==12'hFFD || !dce || IsVolatileLoad(iqentry_instr[n]); dram1_memsize <= MemSize(iqentry_instr[n]); dram1_load <= iqentry_load[n]; dram1_ol <= (iqentry_Ra[n][4:0]==5'd31 || iqentry_Ra[n][4:0]==5'd30) ? ol[iqentry_thrd[n]] : dl[iqentry_thrd[n]]; iqentry_a1_v[n] <= `INV; last_issue = n; end end end if (last_issue < 8) iqentry_out[last_issue] <= `VAL; for (n = 0; n < QENTRIES; n = n + 1) if (~iqentry_stomp[n] && iqentry_memissue[n] && iqentry_agen[n] && ~iqentry_out[n] && ~iqentry_done[n]) begin if (mem3_available && n < last_issue && `NUM_MEM > 2) begin if (dram2 == `DRAMSLOT_AVAIL) begin dramC_v <= `INV; dram2 <= `DRAMSLOT_BUSY; dram2_id <= { 1'b1, n[`QBITS] }; dram2_instr <= iqentry_instr[n]; dram2_rmw <= iqentry_rmw[n]; dram2_preload <= iqentry_preload[n]; dram2_tgt <= iqentry_tgt[n]; dram2_data <= iqentry_memndx[n] ? iqentry_a3[n] : iqentry_a2[n]; dram2_addr <= iqentry_a1[n]; // if (ol[iqentry_thrd[n]]==`OL_USER) // dram2_seg <= (iqentry_Ra[n]==5'd30 || iqentry_Ra[n]==5'd31) ? {ss[iqentry_thrd[n]],13'd0} : {ds[iqentry_thrd[n]],13'd0}; // else dram2_unc <= iqentry_a1[n][31:20]==12'hFFD || !dce || IsVolatileLoad(iqentry_instr[n]); dram2_memsize <= MemSize(iqentry_instr[n]); dram2_load <= iqentry_load[n]; dram2_ol <= (iqentry_Ra[n][4:0]==5'd31 || iqentry_Ra[n][4:0]==5'd30) ? ol[iqentry_thrd[n]] : dl[iqentry_thrd[n]]; iqentry_a1_v[n] <= `INV; end end end if (last_issue < 8) iqentry_out[last_issue] <= `VAL; // It's better to check a sequence number here because if the code is in a // loop that such that the previous iteration of the loop is still in the // queue the PC could match when we don;t really want a prefix for that // iteration. for (n = 0; n < QENTRIES; n = n + 1) begin if (!iqentry_v[n]) iqentry_done[n] <= FALSE; end // // COMMIT PHASE (dequeue only ... not register-file update) // // look at head0 and head1 and let 'em write to the register file if they are ready // // always @(posedge clk) begin: commit_phase oddball_commit(commit0_v, head0); if (`NUM_CMT > 1) oddball_commit(commit1_v, head1); // Fetch and queue are limited to two instructions per cycle, so we might as // well limit retiring to two instructions max to conserve logic. // if (~|panic) casez ({ iqentry_v[head0], iqentry_cmt[head0], iqentry_v[head1], iqentry_cmt[head1], iqentry_v[head2], iqentry_cmt[head2]}) // retire 3 6'b0?_0?_0?: if (head0 != tail0 && head1 != tail0 && head2 != tail0) begin head_inc(3); end else if (head0 != tail0 && head1 != tail0) begin head_inc(2); end else if (head0 != tail0) begin head_inc(1); end 6'b0?_0?_10: ; 6'b0?_0?_11: if (`NUM_CMT > 2 || iqentry_tgt[head2][4:0]==5'd0) begin iqentry_v[head2] <= `INV; head_inc(3); end else begin head_inc(2); end // retire 1 (wait for regfile for head1) 6'b0?_10_??: head_inc(1); // retire 2 6'b0?_11_0?, 6'b0?_11_10: if (`NUM_CMT > 1 || iqentry_tgt[head1]==12'd0) begin iqentry_v[head1] <= `INV; head_inc(2); end else begin head_inc(1); end 6'b0?_11_11: if (`NUM_CMT > 2 || (`NUM_CMT > 1 && iqentry_tgt[head2] == 12'd0)) begin iqentry_v[head1] <= `INV; iqentry_v[head2] <= `INV; head_inc(3); end else if (`NUM_CMT > 1 || iqentry_tgt[head1]==12'd0) begin iqentry_v[head1] <= `INV; head_inc(2); end else head_inc(1); 6'b10_??_??: ; 6'b11_0?_0?: if (head1 != tail0 && head2 != tail0) begin iqentry_v[head0] <= `INV; head_inc(3); end else if (head1 != tail0) begin iqentry_v[head0] <= `INV; head_inc(2); end else begin iqentry_v[head0] <= `INV; head_inc(1); end 6'b11_0?_10: if (head1 != tail0) begin iqentry_v[head0] <= `INV; head_inc(2); end else begin iqentry_v[head0] <= `INV; head_inc(1); end 6'b11_0?_11: if (head1 != tail0) begin if (`NUM_CMT > 2 || iqentry_tgt[head2]==12'd0) begin iqentry_v[head0] <= `INV; iqentry_v[head2] <= `INV; head_inc(3); end else begin iqentry_v[head0] <= `INV; head_inc(2); end end else begin iqentry_v[head0] <= `INV; head_inc(1); end 6'b11_10_??: begin iqentry_v[head0] <= `INV; head_inc(1); end 6'b11_11_0?: if (`NUM_CMT > 1 && head2 != tail0) begin iqentry_v[head0] <= `INV; iqentry_v[head1] <= `INV; head_inc(3); end else if (iqentry_tgt[head1]== 12'd0 && head2 != tail0) begin iqentry_v[head0] <= `INV; iqentry_v[head1] <= `INV; head_inc(3); end else if (`NUM_CMT > 1 || iqentry_tgt[head1]==12'd0) begin iqentry_v[head0] <= `INV; iqentry_v[head1] <= `INV; head_inc(2); end else begin iqentry_v[head0] <= `INV; head_inc(1); end 6'b11_11_10: if (`NUM_CMT > 1 || iqentry_tgt[head1]==12'd0) begin iqentry_v[head0] <= `INV; iqentry_v[head1] <= `INV; head_inc(2); end else begin iqentry_v[head0] <= `INV; head_inc(1); end 6'b11_11_11: if (`NUM_CMT > 2 || (`NUM_CMT > 1 && iqentry_tgt[head2]==12'd0)) begin iqentry_v[head0] <= `INV; iqentry_v[head1] <= `INV; iqentry_v[head2] <= `INV; head_inc(3); end else if (`NUM_CMT > 1 || iqentry_tgt[head1]==12'd0) begin iqentry_v[head0] <= `INV; iqentry_v[head1] <= `INV; head_inc(2); end else begin iqentry_v[head0] <= `INV; head_inc(1); end endcase rf_source[0] <= 0; L1_wr0 <= FALSE; L1_wr1 <= FALSE; L1_invline <= FALSE; icnxt <= FALSE; L2_nxt <= FALSE; // Instruction cache state machine. // On a miss first see if the instruction is in the L2 cache. No need to go to // the BIU on an L1 miss. // If not the machine will wait until the BIU loads the L2 cache. // Capture the previous ic state, used to determine how long to wait in // icstate #4. picstate <= icstate; case(icstate) IDLE: // If the bus unit is busy doing an update involving L1_adr or L2_adr // we have to wait. if (bstate != B7 && bstate != B9) begin if (!ihit0) begin L1_adr <= {pcr[5:0],pc0[31:3],3'h0}; L2_adr <= {pcr[5:0],pc0[31:3],3'h0}; L1_invline <= TRUE; icwhich <= 2'b00; iccnt <= 3'b00; icstate <= IC2; end else if (!ihit1 && `WAYS > 1) begin `ifdef SUPPORT_SMT L1_adr <= {pcr[5:0],pc1[31:3],3'h0}; L2_adr <= {pcr[5:0],pc1[31:3],3'h0}; `else L1_adr <= {pcr[5:0],pc0plus6[31:3],3'h0}; L2_adr <= {pcr[5:0],pc0plus6[31:3],3'h0}; `endif L1_invline <= TRUE; icwhich <= 2'b01; iccnt <= 3'b00; icstate <= IC2; end else if (!ihit2 && `WAYS > 2) begin `ifdef SUPPORT_SMT L1_adr <= {pcr[5:0],pc2[31:3],3'h0}; L2_adr <= {pcr[5:0],pc2[31:3],3'h0}; `else L1_adr <= {pcr[5:0],pc0plus12[31:3],3'h0}; L2_adr <= {pcr[5:0],pc0plus12[31:3],3'h0}; `endif L1_invline <= TRUE; icwhich <= 2'b10; iccnt <= 3'b00; icstate <= IC2; end end IC2: icstate <= IC3; IC3: icstate <= IC3a; IC3a: icstate <= IC4; // If data was in the L2 cache already there's no need to wait on the // BIU to retrieve data. It can be determined if the hit signal was // already active when this state was entered in which case waiting // will do no good. // The IC machine will stall in this state until the BIU has loaded the // L2 cache. IC4: if (ihitL2 && picstate==IC3a) begin L1_en <= 9'h1FF; L1_wr0 <= TRUE; L1_wr1 <= TRUE && `WAYS > 1; L1_wr2 <= TRUE && `WAYS > 2; L1_adr <= L2_adr; L2_rdat <= L2_dato; icstate <= IC5; end else if (bstate!=B9) ; else begin L1_en <= 9'h1FF; L1_wr0 <= TRUE; L1_wr1 <= TRUE && `WAYS > 1; L1_wr2 <= TRUE && `WAYS > 2; L1_adr <= L2_adr; L2_rdat <= L2_dato; icstate <= IC5; end IC5: begin L1_en <= 9'h000; L1_wr0 <= FALSE; L1_wr1 <= FALSE; L1_wr2 <= FALSE; icstate <= IC6; end IC6: icstate <= IC7; IC7: icstate <= IC8; IC8: begin icstate <= IDLE; icnxt <= TRUE; end default: icstate <= IDLE; endcase if (mem1_available && dram0_load) case(dram0) `DRAMSLOT_AVAIL: ; `DRAMSLOT_BUSY: dram0 <= dram0 + !dram0_unc; 3'd2: dram0 <= dram0 + 3'd1; 3'd3: dram0 <= dram0 + 3'd1; 3'd4: if (dhit0) dram0 <= `DRAMREQ_READY; else dram0 <= `DRAMSLOT_REQBUS; `DRAMSLOT_REQBUS: ; `DRAMSLOT_HASBUS: ; `DRAMREQ_READY: ; endcase if (mem2_available && dram1_load && `NUM_MEM > 1) case(dram1) `DRAMSLOT_AVAIL: ; `DRAMSLOT_BUSY: dram1 <= dram1 + !dram1_unc; 3'd2: dram1 <= dram1 + 3'd1; 3'd3: dram1 <= dram1 + 3'd1; 3'd4: if (dhit1) dram1 <= `DRAMREQ_READY; else dram1 <= `DRAMSLOT_REQBUS; `DRAMSLOT_REQBUS: ; `DRAMSLOT_HASBUS: ; `DRAMREQ_READY: ; endcase if (mem3_available && dram2_load && `NUM_MEM > 2) case(dram2) `DRAMSLOT_AVAIL: ; `DRAMSLOT_BUSY: dram2 <= dram2 + !dram2_unc; 3'd2: dram2 <= dram2 + 3'd1; 3'd3: dram2 <= dram2 + 3'd1; 3'd4: if (dhit2) dram2 <= `DRAMREQ_READY; else dram2 <= `DRAMSLOT_REQBUS; `DRAMSLOT_REQBUS: ; `DRAMSLOT_HASBUS: ; `DRAMREQ_READY: ; endcase // Bus Interface Unit (BIU) // Interfaces to the external bus which is WISHBONE compatible. // Stores take precedence over other operations. // Next data cache read misses are serviced. // Uncached data reads are serviced. // Finally L2 instruction cache misses are serviced. case(bstate) BIDLE: begin isCAS <= FALSE; isAMO <= FALSE; isInc <= FALSE; isSpt <= FALSE; isRMW <= FALSE; rdvq <= 1'b0; errq <= 1'b0; exvq <= 1'b0; bwhich <= 2'b00; preload <= FALSE; `ifdef HAS_WB if (wb_v[0] & wb_en) begin cyc_o <= `HIGH; stb_o <= `HIGH; we_o <= `HIGH; sel_o <= wb_sel[0]; adr_o <= wb_addr[0]; dat_o <= wb_data[0]; ol_o <= wb_ol[0]; wbo_id <= wb_id[0]; bstate <= wb_rmw[0] ? B12 : B1; end begin for (j = 1; j < `WB_DEPTH; j = j + 1) begin wb_v[j-1] <= wb_v[j]; wb_id[j-1] <= wb_id[j]; wb_rmw[j-1] <= wb_rmw[j]; wb_sel[j-1] <= wb_sel[j]; wb_addr[j-1] <= wb_addr[j]; wb_data[j-1] <= wb_data[j]; wb_ol[j-1] <= wb_ol[j]; end wb_v[`WB_DEPTH-1] <= `INV; wb_rmw[`WB_DEPTH-1] <= `FALSE; end // if (|wb_v) // ; // else `endif if (~|wb_v && mem1_available && dram0==`DRAMSLOT_BUSY && dram0_rmw) begin `ifdef SUPPORT_DBG if (dbg_smatch0|dbg_lmatch0) begin dramA_v <= `TRUE; dramA_id <= dram0_id; dramA_exc <= `FLT_DBG; dramA_bus <= 64'h0; dram0 <= `DRAMSLOT_AVAIL; end else `endif begin isRMW <= dram0_rmw; isCAS <= IsCAS(dram0_instr); isAMO <= IsAMO(dram0_instr); isInc <= IsInc(dram0_instr); casid <= dram0_id; bwhich <= 2'b00; dram0 <= `DRAMSLOT_HASBUS; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram0_instr,dram0_addr); adr_o <= dram0_addr; dat_o <= fnDato(dram0_instr,dram0_data); ol_o <= dram0_ol; bstate <= B12; end end else if (~|wb_v && mem2_available && dram1==`DRAMSLOT_BUSY && dram1_rmw && `NUM_MEM > 1) begin `ifdef SUPPORT_DBG if (dbg_smatch1|dbg_lmatch1) begin dramB_v <= `TRUE; dramB_id <= dram1_id; dramB_exc <= `FLT_DBG; dramB_bus <= 64'h0; dram1 <= `DRAMSLOT_AVAIL; end else `endif begin isRMW <= dram1_rmw; isCAS <= IsCAS(dram1_instr); isAMO <= IsAMO(dram1_instr); isInc <= IsInc(dram1_instr); casid <= dram1_id; bwhich <= 2'b01; dram1 <= `DRAMSLOT_HASBUS; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram1_instr,dram1_addr); adr_o <= dram1_addr; dat_o <= fnDato(dram1_instr,dram1_data); ol_o <= dram1_ol; bstate <= B12; end end else if (~|wb_v && mem3_available && dram2==`DRAMSLOT_BUSY && dram2_rmw && `NUM_MEM > 2) begin `ifdef SUPPORT_DBG if (dbg_smatch2|dbg_lmatch2) begin dramC_v <= `TRUE; dramC_id <= dram2_id; dramC_exc <= `FLT_DBG; dramC_bus <= 64'h0; dram2 <= `DRAMSLOT_AVAIL; end else `endif begin isRMW <= dram2_rmw; isCAS <= IsCAS(dram2_instr); isAMO <= IsAMO(dram2_instr); isInc <= IsInc(dram2_instr); casid <= dram2_id; bwhich <= 2'b10; dram2 <= `DRAMSLOT_HASBUS; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram2_instr,dram2_addr); adr_o <= dram2_addr; dat_o <= fnDato(dram2_instr,dram2_data); ol_o <= dram2_ol; bstate <= B12; end end else if (mem1_available && dram0==`DRAMSLOT_BUSY && IsStore(dram0_instr)) begin `ifdef SUPPORT_DBG if (dbg_smatch0) begin dramA_v <= `TRUE; dramA_id <= dram0_id; dramA_exc <= `FLT_DBG; dramA_bus <= 64'h0; dram0 <= `DRAMSLOT_AVAIL; end else `endif begin bwhich <= 2'b00; `ifndef HAS_WB dram0 <= `DRAMSLOT_HASBUS; dram0_instr[`INSTRUCTION_OP] <= `NOP; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram0_instr,dram0_addr); adr_o <= dram0_addr; dat_o <= fnDato(dram0_instr,dram0_data); ol_o <= dram0_ol; bstate <= B1; `else if (wbptr<`WB_DEPTH-1) begin dram0 <= `DRAMREQ_READY; dram0_instr[`INSTRUCTION_OP] <= `NOP; wb_update( dram0_id, `FALSE, fnSelect(dram0_instr,dram0_addr), dram0_ol, dram0_addr, fnDato(dram0_instr,dram0_data) ); iqentry_done[ dram0_id[`QBITS] ] <= `VAL; iqentry_out[ dram0_id[`QBITS] ] <= `INV; end `endif // cr_o <= IsSWC(dram0_instr); end end else if (mem2_available && dram1==`DRAMSLOT_BUSY && IsStore(dram1_instr) && `NUM_MEM > 1) begin `ifdef SUPPORT_DBG if (dbg_smatch1) begin dramB_v <= `TRUE; dramB_id <= dram1_id; dramB_exc <= `FLT_DBG; dramB_bus <= 64'h0; dram1 <= `DRAMSLOT_AVAIL; end else `endif begin bwhich <= 2'b01; `ifndef HAS_WB dram1 <= `DRAMSLOT_HASBUS; dram1_instr[`INSTRUCTION_OP] <= `NOP; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram1_instr,dram1_addr); adr_o <= dram1_addr; dat_o <= fnDato(dram1_instr,dram1_data); ol_o <= dram1_ol; bstate <= B1; `else if (wbptr<`WB_DEPTH-1) begin dram1 <= `DRAMREQ_READY; dram1_instr[`INSTRUCTION_OP] <= `NOP; wb_update( dram1_id, `FALSE, fnSelect(dram1_instr,dram1_addr), dram1_ol, dram1_addr, fnDato(dram1_instr,dram1_data) ); iqentry_done[ dram1_id[`QBITS] ] <= `VAL; iqentry_out[ dram1_id[`QBITS] ] <= `INV; end `endif // cr_o <= IsSWC(dram0_instr); end end else if (mem3_available && dram2==`DRAMSLOT_BUSY && IsStore(dram2_instr) && `NUM_MEM > 2) begin `ifdef SUPPORT_DBG if (dbg_smatch2) begin dramC_v <= `TRUE; dramC_id <= dram2_id; dramC_exc <= `FLT_DBG; dramC_bus <= 64'h0; dram2 <= `DRAMSLOT_AVAIL; end else `endif begin bwhich <= 2'b10; `ifndef HAS_WB dram2 <= `DRAMSLOT_HASBUS; dram2_instr[`INSTRUCTION_OP] <= `NOP; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram2_instr,dram2_addr); adr_o <= dram2_addr; dat_o <= fnDato(dram2_instr,dram2_data); ol_o <= dram2_ol; bstate <= B1; `else if (wbptr<`WB_DEPTH-1) begin dram2 <= `DRAMREQ_READY; dram2_instr[`INSTRUCTION_OP] <= `NOP; wb_update( dram2_id, `FALSE, fnSelect(dram2_instr,dram2_addr), dram2_ol, dram2_addr, fnDato(dram2_instr,dram2_data) ); iqentry_done[ dram2_id[`QBITS] ] <= `VAL; iqentry_out[ dram2_id[`QBITS] ] <= `INV; end `endif // cr_o <= IsSWC(dram0_instr); end end // Check for read misses on the data cache else if (mem1_available && !dram0_unc && dram0==`DRAMSLOT_REQBUS && dram0_load) begin `ifdef SUPPORT_DBG if (dbg_lmatch0) begin dramA_v <= `TRUE; dramA_id <= dram0_id; dramA_exc <= `FLT_DBG; dramA_bus <= 64'h0; dram0 <= `DRAMSLOT_AVAIL; end else `endif begin dram0 <= `DRAMSLOT_HASBUS; bwhich <= 2'b00; preload <= dram0_preload; bstate <= B2; end end else if (~|wb_v && mem2_available && !dram1_unc && dram1==`DRAMSLOT_REQBUS && dram1_load && `NUM_MEM > 1) begin `ifdef SUPPORT_DBG if (dbg_lmatch1) begin dramB_v <= `TRUE; dramB_id <= dram1_id; dramB_exc <= `FLT_DBG; dramB_bus <= 64'h0; dram1 <= `DRAMSLOT_AVAIL; end else `endif begin dram1 <= `DRAMSLOT_HASBUS; bwhich <= 2'b01; preload <= dram1_preload; bstate <= B2; end end else if (~|wb_v && mem3_available && !dram2_unc && dram2==`DRAMSLOT_REQBUS && dram2_load && `NUM_MEM > 2) begin `ifdef SUPPORT_DBG if (dbg_lmatch2) begin dramC_v <= `TRUE; dramC_id <= dram2_id; dramC_exc <= `FLT_DBG; dramC_bus <= 64'h0; dram2 <= `DRAMSLOT_AVAIL; end else `endif begin dram2 <= `DRAMSLOT_HASBUS; preload <= dram2_preload; bwhich <= 2'b10; bstate <= B2; end end else if (~|wb_v && mem1_available && dram0_unc && dram0==`DRAMSLOT_BUSY && dram0_load) begin `ifdef SUPPORT_DBG if (dbg_lmatch0) begin dramA_v <= `TRUE; dramA_id <= dram0_id; dramA_exc <= `FLT_DBG; dramA_bus <= 64'h0; dram0 <= `DRAMSLOT_AVAIL; end else `endif begin bwhich <= 2'b00; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram0_instr,dram0_addr); adr_o <= {dram0_addr[31:3],3'b0}; sr_o <= IsLWR(dram0_instr); ol_o <= dram0_ol; bstate <= B12; end end else if (~|wb_v && mem2_available && dram1_unc && dram1==`DRAMSLOT_BUSY && dram1_load && `NUM_MEM > 1) begin `ifdef SUPPORT_DBG if (dbg_lmatch1) begin dramB_v <= `TRUE; dramB_id <= dram1_id; dramB_exc <= `FLT_DBG; dramB_bus <= 64'h0; dram1 <= `DRAMSLOT_AVAIL; end else `endif begin bwhich <= 2'b01; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram1_instr,dram1_addr); adr_o <= {dram1_addr[31:3],3'b0}; sr_o <= IsLWR(dram1_instr); ol_o <= dram1_ol; bstate <= B12; end end else if (~|wb_v && mem3_available && dram2_unc && dram2==`DRAMSLOT_BUSY && dram2_load && `NUM_MEM > 2) begin `ifdef SUPPORT_DBG if (dbg_lmatch2) begin dramC_v <= `TRUE; dramC_id <= dram2_id; dramC_exc <= `FLT_DBG; dramC_bus <= 64'h0; dram2 <= 2'd0; end else `endif begin bwhich <= 2'b10; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram2_instr,dram2_addr); adr_o <= {dram2_addr[31:3],3'b0}; sr_o <= IsLWR(dram2_instr); ol_o <= dram2_ol; bstate <= B12; end end // Check for L2 cache miss else if (~|wb_v && !ihitL2) begin cti_o <= 3'b001; bte_o <= 2'b00;//2'b01; // 4 beat burst wrap cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= 8'hFF; icl_o <= `HIGH; iccnt <= 3'd0; // adr_o <= icwhich ? {pc0[31:5],5'b0} : {pc1[31:5],5'b0}; // L2_adr <= icwhich ? {pc0[31:5],5'b0} : {pc1[31:5],5'b0}; adr_o <= {pcr[5:0],L1_adr[31:5],5'h0}; ol_o <= ol[0]; L2_adr <= {pcr[5:0],L1_adr[31:5],5'h0}; L2_xsel <= 1'b0; bstate <= B7; end end // Terminal state for a store operation. // Note that if only a single memory channel is selected, bwhich will be a // constant 0. This should cause the extra code to be removed. B1: if (acki|err_i) begin isStore <= `TRUE; cyc_o <= `LOW; stb_o <= `LOW; we_o <= `LOW; sel_o <= 8'h00; cr_o <= 1'b0; // This isn't a good way of doing things; the state should be propagated // to the commit stage, however since this is a store we know there will // be no change of program flow. So the reservation status bit is set // here. The author wanted to avoid the complexity of propagating the // input signal to the commit stage. It does mean that the SWC // instruction should be surrounded by SYNC's. if (cr_o) sema[0] <= rbi_i; `ifdef HAS_WB for (n = 0; n < QENTRIES; n = n + 1) begin if (wbo_id[n]) begin iqentry_exc[n] <= wrv_i|err_i ? `FLT_DWF : `FLT_NONE; if (err_i|wrv_i) begin iqentry_a1[n] <= adr_o; wb_v <= 8'h00; // Invalidate write buffer if there is a problem with the store wb_en <= `FALSE; // and disable write buffer end iqentry_cmt[n] <= `VAL; iqentry_aq[n] <= `INV; end end `else case(bwhich) 2'd0: if (mem1_available) begin dram0 <= `DRAMREQ_READY; iqentry_exc[dram0_id[`QBITS]] <= wrv_i|err_i ? `FLT_DWF : `FLT_NONE; if (err_i|wrv_i) iqentry_a1[dram0_id[`QBITS]] <= adr_o; iqentry_cmt[ dram0_id[`QBITS] ] <= `VAL; iqentry_aq[ dram0_id[`QBITS] ] <= `INV; //iqentry_out[ dram0_id[`QBITS] ] <= `INV; end 2'd1: if (`NUM_MEM > 1) begin dram1 <= `DRAMREQ_READY; iqentry_exc[dram1_id[`QBITS]] <= wrv_i|err_i ? `FLT_DWF : `FLT_NONE; if (err_i|wrv_i) iqentry_a1[dram1_id[`QBITS]] <= adr_o; iqentry_cmt[ dram1_id[`QBITS] ] <= `VAL; iqentry_aq[ dram1_id[`QBITS] ] <= `INV; //iqentry_out[ dram1_id[`QBITS] ] <= `INV; end 2'd2: if (`NUM_MEM > 2) begin dram2 <= `DRAMREQ_READY; iqentry_exc[dram2_id[`QBITS]] <= wrv_i|err_i ? `FLT_DWF : `FLT_NONE; if (err_i|wrv_i) iqentry_a1[dram2_id[`QBITS]] <= adr_o; iqentry_cmt[ dram2_id[`QBITS] ] <= `VAL; iqentry_aq[ dram2_id[`QBITS] ] <= `INV; //iqentry_out[ dram2_id[`QBITS] ] <= `INV; end default: ; endcase `endif bstate <= B19; end B2: begin dccnt <= 2'd0; case(bwhich) 2'd0: begin cti_o <= 3'b001; bte_o <= 2'b01; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram0_instr,dram0_addr); adr_o <= {dram0_addr[31:5],5'b0}; ol_o <= dram0_ol; bstate <= B2d; end 2'd1: if (`NUM_MEM > 1) begin cti_o <= 3'b001; bte_o <= 2'b01; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram1_instr,dram1_addr); adr_o <= {dram1_addr[31:5],5'b0}; ol_o <= dram1_ol; bstate <= B2d; end 2'd2: if (`NUM_MEM > 2) begin cti_o <= 3'b001; bte_o <= 2'b01; cyc_o <= `HIGH; stb_o <= `HIGH; sel_o <= fnSelect(dram2_instr,dram2_addr); adr_o <= {dram2_addr[31:5],5'b0}; ol_o <= dram2_ol; bstate <= B2d; end default: if (~acki) bstate <= BIDLE; endcase end // Data cache load terminal state B2d: if (ack_i|err_i) begin errq <= errq | err_i; rdvq <= rdvq | rdv_i; if (!preload) // A preload instruction ignores any error case(bwhich) 2'd0: if (err_i|rdv_i) begin iqentry_a1[dram0_id[`QBITS]] <= adr_o; iqentry_exc[dram0_id[`QBITS]] <= err_i ? `FLT_DBE : `FLT_DRF; end 2'd1: if ((err_i|rdv_i) && `NUM_MEM > 1) begin iqentry_a1[dram1_id[`QBITS]] <= adr_o; iqentry_exc[dram1_id[`QBITS]] <= err_i ? `FLT_DBE : `FLT_DRF; end 2'd2: if ((err_i|rdv_i) && `NUM_MEM > 2) begin iqentry_a1[dram2_id[`QBITS]] <= adr_o; iqentry_exc[dram2_id[`QBITS]] <= err_i ? `FLT_DBE : `FLT_DRF; end default: ; endcase dccnt <= dccnt + 2'd1; adr_o[4:3] <= adr_o[4:3] + 2'd1; bstate <= B2d; if (dccnt==2'd2) cti_o <= 3'b111; if (dccnt==2'd3) begin cti_o <= 3'b000; bte_o <= 2'b00; cyc_o <= `LOW; stb_o <= `LOW; sel_o <= 8'h00; bstate <= B4; end end B3: begin stb_o <= `HIGH; bstate <= B2d; end B4: bstate <= B5; B5: bstate <= B6; B6: begin case(bwhich) 2'd0: dram0 <= `DRAMSLOT_BUSY; // causes retest of dhit 2'd1: dram1 <= `DRAMSLOT_BUSY; 2'd2: dram2 <= `DRAMSLOT_BUSY; default: ; endcase if (~ack_i) bstate <= BIDLE; end // Ack state for instruction cache load B7: if (ack_i|err_i) begin errq <= errq | err_i; exvq <= exvq | exv_i; // L1_en <= 9'h3 << {L2_xsel,L2_adr[4:3],1'b0}; // L1_wr0 <= `TRUE; // L1_wr1 <= `TRUE; // L1_adr <= L2_adr; if (err_i) L2_rdat <= {9{11'b0,4'd7,1'b0,`FLT_IBE,2'b00,`BRK}}; else L2_rdat <= {dat_i[31:0],{4{dat_i}}}; iccnt <= iccnt + 3'd1; //stb_o <= `LOW; if (iccnt==3'd3) cti_o <= 3'b111; if (iccnt==3'd4) begin cti_o <= 3'b000; bte_o <= 2'b00; // linear burst cyc_o <= `LOW; stb_o <= `LOW; sel_o <= 8'h00; icl_o <= `LOW; bstate <= B9; end else begin L2_adr[4:3] <= L2_adr[4:3] + 2'd1; if (L2_adr[4:3]==2'b11) L2_xsel <= 1'b1; end end B9: begin L1_wr0 <= `FALSE; L1_wr1 <= `FALSE; L1_wr2 <= `FALSE; L1_en <= 9'h1FF; L2_xsel <= 1'b0; if (~ack_i) begin bstate <= BIDLE; L2_nxt <= TRUE; end end B12: if (ack_i|err_i) begin if (isCAS) begin iqentry_res [ casid[`QBITS] ] <= (dat_i == cas); iqentry_exc [ casid[`QBITS] ] <= err_i ? `FLT_DRF : rdv_i ? `FLT_DRF : `FLT_NONE; iqentry_done[ casid[`QBITS] ] <= `VAL; iqentry_instr[ casid[`QBITS]] <= `NOP_INSN; iqentry_out [ casid[`QBITS] ] <= `INV; if (err_i | rdv_i) iqentry_a1[casid[`QBITS]] <= adr_o; if (dat_i == cas) begin stb_o <= `LOW; we_o <= `TRUE; bstate <= B15; end else begin cas <= dat_i; cyc_o <= `LOW; stb_o <= `LOW; sel_o <= 8'h00; case(bwhich) 2'b00: dram0 <= `DRAMREQ_READY; 2'b01: dram1 <= `DRAMREQ_READY; 2'b10: dram2 <= `DRAMREQ_READY; default: ; endcase bstate <= B19; end end else if (isRMW) begin rmw_instr <= iqentry_instr[casid[`QBITS]]; rmw_argA <= dat_i; if (isSpt) begin rmw_argB <= 64'd1 << iqentry_a1[casid[`QBITS]][63:58]; rmw_argC <= iqentry_instr[casid[`QBITS]][5:0]==`R2 ? iqentry_a3[casid[`QBITS]][64] << iqentry_a1[casid[`QBITS]][63:58] : iqentry_a2[casid[`QBITS]][64] << iqentry_a1[casid[`QBITS]][63:58]; end else if (isInc) begin rmw_argB <= iqentry_instr[casid[`QBITS]][5:0]==`R2 ? {{59{iqentry_instr[casid[`QBITS]][22]}},iqentry_instr[casid[`QBITS]][22:18]} : {{59{iqentry_instr[casid[`QBITS]][17]}},iqentry_instr[casid[`QBITS]][17:13]}; end else begin // isAMO iqentry_res [ casid[`QBITS] ] <= dat_i; rmw_argB <= iqentry_instr[casid[`QBITS]][31] ? {{59{iqentry_instr[casid[`QBITS]][20:16]}},iqentry_instr[casid[`QBITS]][20:16]} : iqentry_a2[casid[`QBITS]]; end iqentry_exc [ casid[`QBITS] ] <= err_i ? `FLT_DRF : rdv_i ? `FLT_DRF : `FLT_NONE; if (err_i | rdv_i) iqentry_a1[casid[`QBITS]] <= adr_o; stb_o <= `LOW; bstate <= B20; end else begin cyc_o <= `LOW; stb_o <= `LOW; sel_o <= 8'h00; sr_o <= `LOW; xdati <= dat_i; case(bwhich) 2'b00: begin dram0 <= `DRAMREQ_READY; iqentry_exc [ dram0_id[`QBITS] ] <= err_i ? `FLT_DRF : rdv_i ? `FLT_DRF : `FLT_NONE; if (err_i|rdv_i) iqentry_a1[dram0_id[`QBITS]] <= adr_o; end 2'b01: if (`NUM_MEM > 1) begin dram1 <= `DRAMREQ_READY; iqentry_exc [ dram1_id[`QBITS] ] <= err_i ? `FLT_DRF : rdv_i ? `FLT_DRF : `FLT_NONE; if (err_i|rdv_i) iqentry_a1[dram1_id[`QBITS]] <= adr_o; end 2'b10: if (`NUM_MEM > 2) begin dram2 <= `DRAMREQ_READY; iqentry_exc [ dram2_id[`QBITS] ] <= err_i ? `FLT_DRF : rdv_i ? `FLT_DRF : `FLT_NONE; if (err_i|rdv_i) iqentry_a1[dram2_id[`QBITS]] <= adr_o; end default: ; endcase bstate <= B19; end end // Three cycles to detemrine if there's a cache hit during a store. B16: begin case(bwhich) 2'd0: if (dhit0) begin dram0 <= `DRAMREQ_READY; bstate <= B17; end 2'd1: if (dhit1) begin dram1 <= `DRAMREQ_READY; bstate <= B17; end 2'd2: if (dhit2) begin dram2 <= `DRAMREQ_READY; bstate <= B17; end default: bstate <= BIDLE; endcase end B17: bstate <= B18; B18: bstate <= B19; B19: if (~acki) begin bstate <= BIDLE; isStore <= `FALSE; end B20: if (~ack_i) begin stb_o <= `HIGH; we_o <= `HIGH; dat_o <= fnDato(rmw_instr,rmw_res); bstate <= B1; end B21: if (~ack_i) begin stb_o <= `HIGH; bstate <= B12; end default: bstate <= BIDLE; endcase if (!branchmiss) begin case({fetchbuf0_v, fetchbuf1_v}) 2'b00: ; 2'b01: if (canq1) begin tail0 <= idp1(tail0); tail1 <= idp1(tail1); end 2'b10: if (canq1) begin tail0 <= idp1(tail0); tail1 <= idp1(tail1); end 2'b11: if (canq1) begin if (IsBranch(fetchbuf0_instr) && predict_taken0 && fetchbuf0_thrd==fetchbuf1_thrd) begin tail0 <= idp1(tail0); tail1 <= idp1(tail1); end else begin if (vqe0 < vl || !IsVector(fetchbuf0_instr)) begin if (canq2) begin tail0 <= idp2(tail0); tail1 <= idp2(tail1); end else begin // queued1 will be true tail0 <= idp1(tail0); tail1 <= idp1(tail1); end end end end endcase end `ifndef SUPPORT_SMT else begin // if branchmiss if (iqentry_stomp[0] & ~iqentry_stomp[7]) begin tail0 <= 3'd0; tail1 <= 3'd1; end else if (iqentry_stomp[1] & ~iqentry_stomp[0]) begin tail0 <= 3'd1; tail1 <= 3'd2; end else if (iqentry_stomp[2] & ~iqentry_stomp[1]) begin tail0 <= 3'd2; tail1 <= 3'd3; end else if (iqentry_stomp[3] & ~iqentry_stomp[2]) begin tail0 <= 3'd3; tail1 <= 3'd4; end else if (iqentry_stomp[4] & ~iqentry_stomp[3]) begin tail0 <= 3'd4; tail1 <= 3'd5; end else if (iqentry_stomp[5] & ~iqentry_stomp[4]) begin tail0 <= 3'd5; tail1 <= 3'd6; end else if (iqentry_stomp[6] & ~iqentry_stomp[5]) begin tail0 <= 3'd6; tail1 <= 3'd7; end else if (iqentry_stomp[7] & ~iqentry_stomp[6]) begin tail0 <= 3'd7; tail1 <= 3'd0; end // otherwise, it is the last instruction in the queue that has been mispredicted ... do nothing end `endif /* if (pebm) seq_num <= seq_num + 5'd3; else if (queued2) seq_num <= seq_num + 5'd2; else if (queued1) seq_num <= seq_num + 5'd1; */ // #5 rf[0] = 0; rf_v[0] = 1; rf_source[0] = 0; $display("\n\n\n\n\n\n\n\n"); $display("TIME %0d", $time); $display("%h #", pc0); `ifdef SUPPORT_SMT $display ("Regfile: %d", rgs[0]); for (n=0; n < 32; n=n+4) begin $display("%d: %h %d %o %d: %h %d %o %d: %h %d %o %d: %h %d %o#", n[4:0]+0, urf1.urf10.mem[{rgs[0],1'b0,n[4:2],2'b00}], regIsValid[n+0], rf_source[n+0], n[4:0]+1, urf1.urf10.mem[{rgs[0],1'b0,n[4:2],2'b01}], regIsValid[n+1], rf_source[n+1], n[4:0]+2, urf1.urf10.mem[{rgs[0],1'b0,n[4:2],2'b10}], regIsValid[n+2], rf_source[n+2], n[4:0]+3, urf1.urf10.mem[{rgs[0],1'b0,n[4:2],2'b11}], regIsValid[n+3], rf_source[n+3] ); end $display ("Regfile: %d", rgs[1]); for (n=128; n < 160; n=n+4) begin $display("%d: %h %d %o %d: %h %d %o %d: %h %d %o %d: %h %d %o#", n[4:0]+0, urf1.urf10.mem[{rgs[1],1'b0,n[4:2],2'b00}], regIsValid[n+0], rf_source[n+0], n[4:0]+1, urf1.urf10.mem[{rgs[1],1'b0,n[4:2],2'b01}], regIsValid[n+1], rf_source[n+1], n[4:0]+2, urf1.urf10.mem[{rgs[1],1'b0,n[4:2],2'b10}], regIsValid[n+2], rf_source[n+2], n[4:0]+3, urf1.urf10.mem[{rgs[1],1'b0,n[4:2],2'b11}], regIsValid[n+3], rf_source[n+3] ); end `else $display ("Regfile: %d", rgs); for (n=0; n < 32; n=n+4) begin $display("%d: %h %d %o %d: %h %d %o %d: %h %d %o %d: %h %d %o#", n[4:0]+0, urf1.urf10.mem[{rgs,1'b0,n[4:2],2'b00}], regIsValid[n+0], rf_source[n+0], n[4:0]+1, urf1.urf10.mem[{rgs,1'b0,n[4:2],2'b01}], regIsValid[n+1], rf_source[n+1], n[4:0]+2, urf1.urf10.mem[{rgs,1'b0,n[4:2],2'b10}], regIsValid[n+2], rf_source[n+2], n[4:0]+3, urf1.urf10.mem[{rgs,1'b0,n[4:2],2'b11}], regIsValid[n+3], rf_source[n+3] ); end `endif `ifdef FCU_ENH $display("Call Stack:"); for (n = 0; n < 16; n = n + 4) $display("%c%d: %h %c%d: %h %c%d: %h %c%d: %h", ufb1.ursb1.rasp==n+0 ?">" : " ", n[4:0]+0, ufb1.ursb1.ras[n+0], ufb1.ursb1.rasp==n+1 ?">" : " ", n[4:0]+1, ufb1.ursb1.ras[n+1], ufb1.ursb1.rasp==n+2 ?">" : " ", n[4:0]+2, ufb1.ursb1.ras[n+2], ufb1.ursb1.rasp==n+3 ?">" : " ", n[4:0]+3, ufb1.ursb1.ras[n+3] ); $display("\n"); `endif // $display("Return address stack:"); // for (n = 0; n < 16; n = n + 1) // $display("%d %h", rasp+n[3:0], ras[rasp+n[3:0]]); $display("TakeBr:%d #", take_branch);//, backpc); $display("%c%c A: %d %h %h #", 45, fetchbuf?45:62, fetchbufA_v, fetchbufA_instr, fetchbufA_pc); $display("%c%c B: %d %h %h #", 45, fetchbuf?45:62, fetchbufB_v, fetchbufB_instr, fetchbufB_pc); $display("%c%c C: %d %h %h #", 45, fetchbuf?62:45, fetchbufC_v, fetchbufC_instr, fetchbufC_pc); $display("%c%c D: %d %h %h #", 45, fetchbuf?62:45, fetchbufD_v, fetchbufD_instr, fetchbufD_pc); for (i=0; i<QENTRIES; i=i+1) $display("%c%c %d: %c%c%c%c %d %d %c%c %c %c%h %d %o %h %h %h %d %o %h %d %o %h %d %o %d:%h %h %d#", (i[`QBITS]==head0)?"C":".", (i[`QBITS]==tail0)?"Q":".", i[`QBITS], iqentry_v[i] ? "v" : "-", iqentry_iv[i] ? "I" : "-", iqentry_done[i]?"d":"-", iqentry_out[i]?"o":"-", iqentry_bt[i], iqentry_memissue[i], iqentry_agen[i] ? "a": "-", iqentry_alu0_issue[i]?"0":iqentry_alu1_issue[i]?"1":"-", iqentry_stomp[i]?"s":"-", iqentry_fc[i] ? "F" : iqentry_mem[i] ? "M" : (iqentry_alu[i]==1'b1) ? "a" : (iqentry_alu[i]==1'bx) ? "X" : iqentry_fpu[i] ? "f" : "O", iqentry_instr[i], iqentry_tgt[i][4:0], iqentry_exc[i], iqentry_res[i], iqentry_a0[i], iqentry_a1[i], iqentry_a1_v[i], iqentry_a1_s[i], iqentry_a2[i], iqentry_a2_v[i], iqentry_a2_s[i], iqentry_a3[i], iqentry_a3_v[i], iqentry_a3_s[i], iqentry_thrd[i], iqentry_pc[i], iqentry_sn[i], iqentry_ven[i] ); $display("DRAM"); $display("%d %h %h %c%h %o #", dram0, dram0_addr, dram0_data, (IsFlowCtrl(dram0_instr) ? 98 : (IsMem(dram0_instr)) ? 109 : 97), dram0_instr, dram0_id); if (`NUM_MEM > 1) $display("%d %h %h %c%h %o #", dram1, dram1_addr, dram1_data, (IsFlowCtrl(dram1_instr) ? 98 : (IsMem(dram1_instr)) ? 109 : 97), dram1_instr, dram1_id); if (`NUM_MEM > 2) $display("%d %h %h %c%h %o #", dram2, dram2_addr, dram2_data, (IsFlowCtrl(dram2_instr) ? 98 : (IsMem(dram2_instr)) ? 109 : 97), dram2_instr, dram2_id); $display("%d %h %o %h #", dramA_v, dramA_bus, dramA_id, dramA_exc); if (`NUM_MEM > 1) $display("%d %h %o %h #", dramB_v, dramB_bus, dramB_id, dramB_exc); if (`NUM_MEM > 2) $display("%d %h %o %h #", dramC_v, dramC_bus, dramC_id, dramC_exc); $display("ALU"); $display("%d %h %h %h %c%h %d %o %h #", alu0_dataready, alu0_argI, alu0_argA, alu0_argB, (IsFlowCtrl(alu0_instr) ? 98 : IsMem(alu0_instr) ? 109 : 97), alu0_instr, alu0_bt, alu0_sourceid, alu0_pc); $display("%d %h %o 0 #", alu0_v, alu0_bus, alu0_id); if (`NUM_ALU > 1) begin $display("%d %h %h %h %c%h %d %o %h #", alu1_dataready, alu1_argI, alu1_argA, alu1_argB, (IsFlowCtrl(alu1_instr) ? 98 : IsMem(alu1_instr) ? 109 : 97), alu1_instr, alu1_bt, alu1_sourceid, alu1_pc); $display("%d %h %o 0 #", alu1_v, alu1_bus, alu1_id); end $display("FCU"); $display("%d %h %h %h %h #", fcu_v, fcu_bus, fcu_argI, fcu_argA, fcu_argB); $display("%c %h %h #", fcu_branchmiss?"m":" ", fcu_sourceid, fcu_misspc); $display("Commit"); $display("0: %c %h %o %d #", commit0_v?"v":" ", commit0_bus, commit0_id, commit0_tgt[4:0]); $display("1: %c %h %o %d #", commit1_v?"v":" ", commit1_bus, commit1_id, commit1_tgt[4:0]); $display("instructions committed: %d ticks: %d ", I, tick); $display("Write merges: %d", wb_merges); // // $display("\n\n\n\n\n\n\n\n"); // $display("TIME %0d", $time); // $display(" pc0=%h", pc0); // $display(" pc1=%h", pc1); // $display(" reg0=%h, v=%d, src=%o", rf[0], rf_v[0], rf_source[0]); // $display(" reg1=%h, v=%d, src=%o", rf[1], rf_v[1], rf_source[1]); // $display(" reg2=%h, v=%d, src=%o", rf[2], rf_v[2], rf_source[2]); // $display(" reg3=%h, v=%d, src=%o", rf[3], rf_v[3], rf_source[3]); // $display(" reg4=%h, v=%d, src=%o", rf[4], rf_v[4], rf_source[4]); // $display(" reg5=%h, v=%d, src=%o", rf[5], rf_v[5], rf_source[5]); // $display(" reg6=%h, v=%d, src=%o", rf[6], rf_v[6], rf_source[6]); // $display(" reg7=%h, v=%d, src=%o", rf[7], rf_v[7], rf_source[7]); // $display("Fetch Buffers:"); // $display(" %c%c fbA: v=%d instr=%h pc=%h %c%c fbC: v=%d instr=%h pc=%h", // fetchbuf?32:45, fetchbuf?32:62, fetchbufA_v, fetchbufA_instr, fetchbufA_pc, // fetchbuf?45:32, fetchbuf?62:32, fetchbufC_v, fetchbufC_instr, fetchbufC_pc); // $display(" %c%c fbB: v=%d instr=%h pc=%h %c%c fbD: v=%d instr=%h pc=%h", // fetchbuf?32:45, fetchbuf?32:62, fetchbufB_v, fetchbufB_instr, fetchbufB_pc, // fetchbuf?45:32, fetchbuf?62:32, fetchbufD_v, fetchbufD_instr, fetchbufD_pc); // $display(" branchback=%d backpc=%h", branchback, backpc); // $display("Instruction Queue:"); // for (i=0; i<8; i=i+1) // $display(" %c%c%d: v=%d done=%d out=%d agen=%d res=%h op=%d bt=%d tgt=%d a1=%h (v=%d/s=%o) a2=%h (v=%d/s=%o) im=%h pc=%h exc=%h", // (i[`QBITS]==head0)?72:32, (i[`QBITS]==tail0)?84:32, i, // iqentry_v[i], iqentry_done[i], iqentry_out[i], iqentry_agen[i], iqentry_res[i], iqentry_op[i], // iqentry_bt[i], iqentry_tgt[i], iqentry_a1[i], iqentry_a1_v[i], iqentry_a1_s[i], iqentry_a2[i], iqentry_a2_v[i], // iqentry_a2_s[i], iqentry_a0[i], iqentry_pc[i], iqentry_exc[i]); // $display("Scheduling Status:"); // $display(" iqentry0 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_0_issue, iqentry_0_islot, iqentry_stomp[0], iqentry_source[0], iqentry_memready[0], iqentry_memissue[0]); // $display(" iqentry1 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_1_issue, iqentry_1_islot, iqentry_stomp[1], iqentry_source[1], iqentry_memready[1], iqentry_memissue[1]); // $display(" iqentry2 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_2_issue, iqentry_2_islot, iqentry_stomp[2], iqentry_source[2], iqentry_memready[2], iqentry_memissue[2]); // $display(" iqentry3 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_3_issue, iqentry_3_islot, iqentry_stomp[3], iqentry_source[3], iqentry_memready[3], iqentry_memissue[3]); // $display(" iqentry4 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_4_issue, iqentry_4_islot, iqentry_stomp[4], iqentry_source[4], iqentry_memready[4], iqentry_memissue[4]); // $display(" iqentry5 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_5_issue, iqentry_5_islot, iqentry_stomp[5], iqentry_source[5], iqentry_memready[5], iqentry_memissue[5]); // $display(" iqentry6 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_6_issue, iqentry_6_islot, iqentry_stomp[6], iqentry_source[6], iqentry_memready[6], iqentry_memissue[6]); // $display(" iqentry7 issue=%d islot=%d stomp=%d source=%d - memready=%d memissue=%b", // iqentry_7_issue, iqentry_7_islot, iqentry_stomp[7], iqentry_source[7], iqentry_memready[7], iqentry_memissue[7]); // $display("ALU Inputs:"); // $display(" 0: avail=%d data=%d id=%o op=%d a1=%h a2=%h im=%h bt=%d", // alu0_available, alu0_dataready, alu0_sourceid, alu0_op, alu0_argA, // alu0_argB, alu0_argI, alu0_bt); // $display(" 1: avail=%d data=%d id=%o op=%d a1=%h a2=%h im=%h bt=%d", // alu1_available, alu1_dataready, alu1_sourceid, alu1_op, alu1_argA, // alu1_argB, alu1_argI, alu1_bt); // $display("ALU Outputs:"); // $display(" 0: v=%d bus=%h id=%o bmiss=%d misspc=%h missid=%o", // alu0_v, alu0_bus, alu0_id, alu0_branchmiss, alu0_misspc, alu0_sourceid); // $display(" 1: v=%d bus=%h id=%o bmiss=%d misspc=%h missid=%o", // alu1_v, alu1_bus, alu1_id, alu1_branchmiss, alu1_misspc, alu1_sourceid); // $display("DRAM Status:"); // $display(" OUT: v=%d data=%h tgt=%d id=%o", dram_v, dram_bus, dram_tgt, dram_id); // $display(" dram0: status=%h addr=%h data=%h op=%d tgt=%d id=%o", // dram0, dram0_addr, dram0_data, dram0_op, dram0_tgt, dram0_id); // $display(" dram1: status=%h addr=%h data=%h op=%d tgt=%d id=%o", // dram1, dram1_addr, dram1_data, dram1_op, dram1_tgt, dram1_id); // $display(" dram2: status=%h addr=%h data=%h op=%d tgt=%d id=%o", // dram2, dram2_addr, dram2_data, dram2_op, dram2_tgt, dram2_id); // $display("Commit Buses:"); // $display(" 0: v=%d id=%o data=%h", commit0_v, commit0_id, commit0_bus); // $display(" 1: v=%d id=%o data=%h", commit1_v, commit1_id, commit1_bus); // // $display("Memory Contents:"); // for (j=0; j<64; j=j+16) // $display(" %h %h %h %h %h %h %h %h %h %h %h %h %h %h %h %h", // m[j+0], m[j+1], m[j+2], m[j+3], m[j+4], m[j+5], m[j+6], m[j+7], // m[j+8], m[j+9], m[j+10], m[j+11], m[j+12], m[j+13], m[j+14], m[j+15]); $display(""); if (|panic) begin $display(""); $display("-----------------------------------------------------------------"); $display("-----------------------------------------------------------------"); $display("--------------- PANIC:%s -----------------", message[panic]); $display("-----------------------------------------------------------------"); $display("-----------------------------------------------------------------"); $display(""); $display("instructions committed: %d", I); $display("total execution cycles: %d", $time / 10); $display(""); end if (|panic && ~outstanding_stores) begin $finish; end for (n = 0; n < QENTRIES; n = n + 1) if (branchmiss) begin if (!setpred[n]) begin iqentry_instr[n][`INSTRUCTION_OP] <= `NOP; iqentry_done[n] <= `VAL; iqentry_cmt[n] <= `VAL; end end if (snr) begin seq_num <= 32'd0; seq_num1 <= 32'd0; end end // clock domain /* always @(posedge clk) if (rst) begin tail0 <= 3'd0; tail1 <= 3'd1; end else begin if (!branchmiss) begin case({fetchbuf0_v, fetchbuf1_v}) 2'b00: ; 2'b01: if (canq1) begin tail0 <= idp1(tail0); tail1 <= idp1(tail1); end 2'b10: if (canq1) begin tail0 <= idp1(tail0); tail1 <= idp1(tail1); end 2'b11: if (canq1) begin if (IsBranch(fetchbuf0_instr) && predict_taken0) begin tail0 <= idp1(tail0); tail1 <= idp1(tail1); end else begin if (vqe < vl || !IsVector(fetchbuf0_instr)) begin if (canq2) begin tail0 <= idp2(tail0); tail1 <= idp2(tail1); end else begin // queued1 will be true tail0 <= idp1(tail0); tail1 <= idp1(tail1); end end end end endcase end else begin // if branchmiss if (iqentry_stomp[0] & ~iqentry_stomp[7]) begin tail0 <= 3'd0; tail1 <= 3'd1; end else if (iqentry_stomp[1] & ~iqentry_stomp[0]) begin tail0 <= 3'd1; tail1 <= 3'd2; end else if (iqentry_stomp[2] & ~iqentry_stomp[1]) begin tail0 <= 3'd2; tail1 <= 3'd3; end else if (iqentry_stomp[3] & ~iqentry_stomp[2]) begin tail0 <= 3'd3; tail1 <= 3'd4; end else if (iqentry_stomp[4] & ~iqentry_stomp[3]) begin tail0 <= 3'd4; tail1 <= 3'd5; end else if (iqentry_stomp[5] & ~iqentry_stomp[4]) begin tail0 <= 3'd5; tail1 <= 3'd6; end else if (iqentry_stomp[6] & ~iqentry_stomp[5]) begin tail0 <= 3'd6; tail1 <= 3'd7; end else if (iqentry_stomp[7] & ~iqentry_stomp[6]) begin tail0 <= 3'd7; tail1 <= 3'd0; end // otherwise, it is the last instruction in the queue that has been mispredicted ... do nothing end end */ /* always @(posedge clk) if (rst) seq_num <= 5'd0; else begin if (pebm) seq_num <= seq_num + 5'd3; else if (queued2) seq_num <= seq_num + 5'd2; else if (queued1) seq_num <= seq_num + 5'd1; end */ task wb_update; input [`QBITS] id; input rmw; input [7:0] sel; input [1:0] ol; input [`ABITS] addr; input [63:0] data; begin if (wbptr > 0 && wb_addr[wbptr-1][AMSB:3]==addr[AMSB:3] && wb_ol[wbptr-1]==ol && wb_rmw[wbptr-1]==rmw) begin wb_sel[wbptr-1] <= wb_sel[wbptr-1] | sel; if (sel[0]) wb_data[wbptr-1][ 7: 0] <= data[ 7: 0]; if (sel[1]) wb_data[wbptr-1][15: 8] <= data[15: 8]; if (sel[2]) wb_data[wbptr-1][23:16] <= data[23:16]; if (sel[3]) wb_data[wbptr-1][31:24] <= data[31:24]; if (sel[4]) wb_data[wbptr-1][39:32] <= data[39:32]; if (sel[5]) wb_data[wbptr-1][47:40] <= data[47:40]; if (sel[6]) wb_data[wbptr-1][55:48] <= data[55:48]; if (sel[7]) wb_data[wbptr-1][63:56] <= data[63:56]; wb_id[wbptr-1] <= wb_id[wbptr-1] | (16'd1 << id); wb_merges <= wb_merges + 32'd1; end else begin wb_v[wbptr] <= wb_en; wb_id[wbptr] <= (16'd1 << id); wb_rmw[wbptr] <= rmw; wb_ol[wbptr] <= ol; wb_sel[wbptr] <= sel; wb_addr[wbptr] <= {addr[AMSB:3],3'b0}; wb_data[wbptr] <= data; end end endtask // Increment the head pointers // Also increments the instruction counter // Used when instructions are committed. // Also clear any outstanding state bits that foul things up. // task head_inc; input [`QBITS] amt; begin head0 <= head0 + amt; head1 <= head1 + amt; head2 <= head2 + amt; head3 <= head3 + amt; head4 <= head4 + amt; head5 <= head5 + amt; head6 <= head6 + amt; head7 <= head7 + amt; I <= I + amt; if (amt==3'd3) begin iqentry_agen[head0] <= `INV; iqentry_agen[head1] <= `INV; iqentry_agen[head2] <= `INV; iqentry_mem[head0] <= `FALSE; iqentry_mem[head1] <= `FALSE; iqentry_mem[head2] <= `FALSE; iqentry_iv[head0] <= `INV; iqentry_iv[head1] <= `INV; iqentry_iv[head2] <= `INV; iqentry_alu[head0] <= `FALSE; iqentry_alu[head1] <= `FALSE; iqentry_alu[head2] <= `FALSE; end else if (amt==3'd2) begin iqentry_agen[head0] <= `INV; iqentry_agen[head1] <= `INV; iqentry_mem[head0] <= `FALSE; iqentry_mem[head1] <= `FALSE; iqentry_iv[head0] <= `INV; iqentry_iv[head1] <= `INV; iqentry_alu[head0] <= `FALSE; iqentry_alu[head1] <= `FALSE; end else if (amt==3'd1) begin iqentry_agen[head0] <= `INV; iqentry_mem[head0] <= `FALSE; iqentry_iv[head0] <= `INV; iqentry_alu[head0] <= `FALSE; end end endtask task setargs; input [`QBITS] nn; input [4:0] id; input v; input [63:0] bus; begin if (iqentry_a1_v[nn] == `INV && iqentry_a1_s[nn] == id && iqentry_v[nn] == `VAL && v == `VAL) begin iqentry_a1[nn] <= bus; iqentry_a1_v[nn] <= `VAL; end if (iqentry_a2_v[nn] == `INV && iqentry_a2_s[nn] == id && iqentry_v[nn] == `VAL && v == `VAL) begin iqentry_a2[nn] <= bus; iqentry_a2_v[nn] <= `VAL; end if (iqentry_a3_v[nn] == `INV && iqentry_a3_s[nn] == id && iqentry_v[nn] == `VAL && v == `VAL) begin iqentry_a3[nn] <= bus; iqentry_a3_v[nn] <= `VAL; end end endtask task setinsn; input [`QBITS] nn; input [4:0] id; input v; input [127:0] bus; begin if (iqentry_iv[nn] == `INV && iqentry_is[nn] == id && iqentry_v[nn] == `VAL && v == `VAL) begin iqentry_iv [nn] <= `VAL; // iqentry_Rt [nn] <= bus[`IB_RT]; // iqentry_Rc [nn] <= bus[`IB_RC]; // iqentry_Ra [nn] <= bus[`IB_RA]; iqentry_a0 [nn] <= bus[`IB_CONST]; iqentry_imm [nn] <= bus[`IB_IMM]; iqentry_insln[nn] <= bus[`IB_LN]; iqentry_bt [nn] <= bus[`IB_BT]; iqentry_alu [nn] <= bus[`IB_ALU]; iqentry_alu0 [nn] <= bus[`IB_ALU0]; iqentry_fpu [nn] <= bus[`IB_FPU]; iqentry_fc [nn] <= bus[`IB_FC]; iqentry_canex[nn] <= bus[`IB_CANEX]; iqentry_load [nn] <= bus[`IB_LOAD]; iqentry_preload[nn]<= bus[`IB_PRELOAD]; iqentry_mem [nn] <= bus[`IB_MEM]; iqentry_memndx[nn] <= bus[`IB_MEMNDX]; iqentry_rmw [nn] <= bus[`IB_RMW]; iqentry_memdb[nn] <= bus[`IB_MEMDB]; iqentry_memsb[nn] <= bus[`IB_MEMSB]; iqentry_shft48[nn] <= bus[`IB_SHFT48]; iqentry_sei [nn] <= bus[`IB_SEI]; iqentry_aq [nn] <= bus[`IB_AQ]; iqentry_rl [nn] <= bus[`IB_RL]; iqentry_jmp [nn] <= bus[`IB_JMP]; iqentry_br [nn] <= bus[`IB_BR]; iqentry_sync [nn] <= bus[`IB_SYNC]; iqentry_fsync[nn] <= bus[`IB_FSYNC]; iqentry_rfw [nn] <= bus[`IB_RFW]; iqentry_we [nn] <= bus[`IB_WE]; end end endtask // Enqueue fetchbuf0 onto the tail of the instruction queue task enque0; input [`QBITS] tail; input [63:0] seqnum; input [5:0] venno; begin iqentry_exc[tail] <= `FLT_NONE; `ifdef SUPPORT_DBG if (dbg_imatchA) iqentry_exc[tail] <= `FLT_DBG; else if (dbg_ctrl[63]) iqentry_exc[tail] <= `FLT_SSM; `endif iqentry_sn [tail] <= seqnum; iqentry_v [tail] <= `VAL; iqentry_iv [tail] <= `INV; iqentry_is [tail] <= tail; iqentry_thrd [tail] <= fetchbuf0_thrd; iqentry_done [tail] <= `INV; iqentry_cmt [tail] <= `INV; iqentry_out [tail] <= `INV; iqentry_res [tail] <= `ZERO; iqentry_instr[tail] <= IsVLS(fetchbuf0_instr) ? (vm[fnM2(fetchbuf0_instr)] ? fetchbuf0_instr : `NOP_INSN) : fetchbuf0_instr; iqentry_pt [tail] <= predict_taken0; iqentry_agen [tail] <= `INV; iqentry_state[tail] <= IQS_IDLE; // If the previous instruction was a hardware interrupt and this instruction is a hardware interrupt // inherit the previous pc. //if (IsBrk(fetchbuf0_instr) && !fetchbuf0_instr[15] && // (IsBrk(iqentry_instr[idm1(tail)]) && !iqentry_instr[idm1(tail1)][15] && iqentry_v[idm1(tail)])) // iqentry_pc [tail] <= iqentry_pc[idm1(tail)]; //else iqentry_pc [tail] <= fetchbuf0_pc; iqentry_rtop [tail] <= IsRtop(fetchbuf0_instr); iqentry_tgt [tail] <= Rt0; iqentry_Ra [tail] <= Ra0; iqentry_Rb [tail] <= Rb0; iqentry_Rc [tail] <= Rc0; iqentry_vl [tail] <= vl; iqentry_ven [tail] <= venno; iqentry_exc [tail] <= `EXC_NONE; iqentry_a1 [tail] <= rfoa0; iqentry_a1_v [tail] <= Source1Valid(fetchbuf0_instr) | regIsValid[Ra0s]; iqentry_a1_s [tail] <= rf_source[Ra0s]; iqentry_a2 [tail] <= rfob0; iqentry_a2_v [tail] <= Source2Valid(fetchbuf0_instr) | regIsValid[Rb0s]; iqentry_a2_s [tail] <= rf_source[Rb0s]; iqentry_a3 [tail] <= rfoc0; iqentry_a3_v [tail] <= Source3Valid(fetchbuf0_instr) | regIsValid[Rc0s]; iqentry_a3_s [tail] <= rf_source[Rc0s]; end endtask // Enque fetchbuf1. Fetchbuf1 might be the second instruction to queue so some // of this code checks to see which tail it is being queued on. task enque1; input [`QBITS] tail; input [63:0] seqnum; input [5:0] venno; begin iqentry_exc[tail] <= `FLT_NONE; `ifdef SUPPORT_DBG if (dbg_imatchB) iqentry_exc[tail] <= `FLT_DBG; else if (dbg_ctrl[63]) iqentry_exc[tail] <= `FLT_SSM; `endif iqentry_sn [tail] <= seqnum; iqentry_v [tail] <= `VAL; iqentry_iv [tail] <= `INV; iqentry_is [tail] <= tail; iqentry_thrd [tail] <= fetchbuf1_thrd; iqentry_done [tail] <= `INV; iqentry_cmt [tail] <= `INV; iqentry_out [tail] <= `INV; iqentry_res [tail] <= `ZERO; iqentry_instr[tail] <= IsVLS(fetchbuf1_instr) ? (vm[fnM2(fetchbuf1_instr)] ? fetchbuf1_instr : `NOP_INSN) : fetchbuf1_instr; iqentry_pt [tail] <= predict_taken1; iqentry_agen [tail] <= `INV; iqentry_state[tail] <= IQS_IDLE; // If queing 2nd instruction must read from first if (tail==tail1) begin // If the previous instruction was a hardware interrupt and this instruction is a hardware interrupt // inherit the previous pc. // if (IsBrk(fetchbuf1_instr) && !fetchbuf1_instr[15] && // IsBrk(fetchbuf0_instr) && !fetchbuf0_instr[15]) // iqentry_pc [tail] <= fetchbuf0_pc; // else iqentry_pc [tail] <= fetchbuf1_pc; end else begin // If the previous instruction was a hardware interrupt and this instruction is a hardware interrupt // inherit the previous pc. // if (IsBrk(fetchbuf1_instr) && !fetchbuf1_instr[15] && // (IsBrk(iqentry_instr[idp7(tail)]) && !iqentry_instr[idm1(tail)][15] && iqentry_v[idm1(tail)])) // iqentry_pc [tail] <= iqentry_pc[idm1(tail)]; // else iqentry_pc [tail] <= fetchbuf1_pc; end iqentry_rtop [tail] <= IsRtop(fetchbuf1_instr); iqentry_tgt [tail] <= Rt1; iqentry_Ra [tail] <= Ra1; iqentry_Rb [tail] <= Rb1; iqentry_Rc [tail] <= Rc1; iqentry_vl [tail] <= vl; iqentry_ven [tail] <= venno; iqentry_exc [tail] <= `EXC_NONE; iqentry_a1 [tail] <= rfoa1; iqentry_a1_v [tail] <= Source1Valid(fetchbuf1_instr) | regIsValid[Ra1s]; iqentry_a1_s [tail] <= rf_source[Ra1s]; iqentry_a2 [tail] <= rfob1; iqentry_a2_v [tail] <= Source2Valid(fetchbuf1_instr) | regIsValid[Rb1s]; iqentry_a2_s [tail] <= rf_source[Rb1s]; iqentry_a3 [tail] <= rfoc1; iqentry_a3_v [tail] <= Source3Valid(fetchbuf1_instr) | regIsValid[Rc1s]; iqentry_a3_s [tail] <= rf_source[Rc1s]; end endtask function IsOddball; input [`QBITS] head; if (|iqentry_exc[head]) IsOddball = TRUE; else case(iqentry_instr[head][`INSTRUCTION_OP]) `BRK: IsOddball = TRUE; `IVECTOR: case(iqentry_instr[head][`INSTRUCTION_S2]) `VSxx: IsOddball = TRUE; default: IsOddball = FALSE; endcase `RR: case(iqentry_instr[head][`INSTRUCTION_S2]) `VMOV: IsOddball = TRUE; `SEI,`RTI,`CACHEX: IsOddball = TRUE; default: IsOddball = FALSE; endcase `CSRRW,`REX,`CACHE,`FLOAT: IsOddball = TRUE; default: IsOddball = FALSE; endcase endfunction // This task takes care of commits for things other than the register file. task oddball_commit; input v; input [`QBITS] head; reg thread; begin thread = iqentry_thrd[head]; if (v) begin if (|iqentry_exc[head]) begin excmiss <= TRUE; `ifdef SUPPORT_SMT excmisspc <= {tvec[3'd0][31:8],ol[thread],5'h00}; excthrd <= iqentry_thrd[head]; badaddr[{thread,3'd0}] <= iqentry_a1[head]; epc0[thread] <= iqentry_pc[head]+ 32'd4; epc1[thread] <= epc0[thread]; epc2[thread] <= epc1[thread]; epc3[thread] <= epc2[thread]; epc4[thread] <= epc3[thread]; epc5[thread] <= epc4[thread]; epc6[thread] <= epc5[thread]; epc7[thread] <= epc6[thread]; epc8[thread] <= epc7[thread]; im_stack[thread] <= {im_stack[thread][27:0],im}; ol_stack[thread] <= {ol_stack[thread][13:0],ol[thread]}; pl_stack[thread] <= {pl_stack[thread][55:0],cpl[thread]}; rs_stack[thread] <= {rs_stack[thread][55:0],rgs[thread]}; cause[{thread,3'd0}] <= {8'd0,iqentry_exc[head]}; mstatus[thread][5:3] <= 3'd0; mstatus[thread][13:6] <= 8'h00; mstatus[thread][19:14] <= 6'd0; `else excmisspc <= {tvec[3'd0][31:8],ol,5'h00}; excthrd <= iqentry_thrd[head]; badaddr[{thread,3'd0}] <= iqentry_a1[head]; epc0 <= iqentry_pc[head]+ 32'd4; epc1 <= epc0; epc2 <= epc1; epc3 <= epc2; epc4 <= epc3; epc5 <= epc4; epc6 <= epc5; epc7 <= epc6; epc8 <= epc7; im_stack <= {im_stack[27:0],im}; ol_stack <= {ol_stack[13:0],ol}; pl_stack <= {pl_stack[55:0],cpl}; rs_stack <= {rs_stack[55:0],rgs}; cause[{thread,3'd0}] <= {8'd0,iqentry_exc[head]}; mstatus[5:3] <= 3'd0; mstatus[13:6] <= 8'h00; mstatus[19:14] <= 6'd0; `endif wb_en <= `TRUE; sema[0] <= 1'b0; ve_hold <= {vqet1,10'd0,vqe1,10'd0,vqet0,10'd0,vqe0}; `ifdef SUPPORT_DBG dbg_ctrl[62:55] <= {dbg_ctrl[61:55],dbg_ctrl[63]}; dbg_ctrl[63] <= FALSE; `endif end else case(iqentry_instr[head][`INSTRUCTION_OP]) `BRK: // BRK is treated as a nop unless it's a software interrupt or a // hardware interrupt at a higher priority than the current priority. if ((iqentry_instr[head][23:19] > 5'd0) || iqentry_instr[head][18:16] > im) begin excmiss <= TRUE; `ifdef SUPPORT_SMT excmisspc <= {tvec[3'd0][31:8],ol[thread],5'h00}; excthrd <= iqentry_thrd[head]; epc0[thread] <= iqentry_pc[head] + {iqentry_instr[head][23:19],2'b00}; epc1[thread] <= epc0[thread]; epc2[thread] <= epc1[thread]; epc3[thread] <= epc2[thread]; epc4[thread] <= epc3[thread]; epc5[thread] <= epc4[thread]; epc6[thread] <= epc5[thread]; epc7[thread] <= epc6[thread]; epc8[thread] <= epc7[thread]; im_stack[thread] <= {im_stack[thread][27:0],im}; ol_stack[thread] <= {ol_stack[thread][13:0],ol[thread]}; pl_stack[thread] <= {pl_stack[thread][55:0],cpl[thread]}; rs_stack[thread] <= {rs_stack[thread][55:0],rgs[thread]}; mstatus[thread][19:14] <= 6'd0; cause[{thread,3'd0}] <= {iqentry_instr[head][31:24],iqentry_instr[head][13:6]}; mstatus[thread][5:3] <= 3'd0; mstatus[thread][13:6] <= 8'h00; // For hardware interrupts only, set a new mask level // Select register set according to interrupt level if (iqentry_instr[head][23:19]==5'd0) begin mstatus[thread][2:0] <= 3'd7;//iqentry_instr[head][18:16]; mstatus[thread][42:40] <= iqentry_instr[head][18:16]; mstatus[thread][19:14] <= {3'b0,iqentry_instr[head][18:16]}; end else mstatus[thread][19:14] <= 6'd0; `else excmisspc <= {tvec[3'd0][31:8],ol,5'h00}; excthrd <= iqentry_thrd[head]; epc0 <= iqentry_pc[head] + {iqentry_instr[head][23:19],2'b00}; epc1 <= epc0; epc2 <= epc1; epc3 <= epc2; epc4 <= epc3; epc5 <= epc4; epc6 <= epc5; epc7 <= epc6; epc8 <= epc7; im_stack <= {im_stack[27:0],im}; ol_stack <= {ol_stack[13:0],ol}; pl_stack <= {pl_stack[55:0],cpl}; rs_stack <= {rs_stack[55:0],rgs}; mstatus[19:14] <= 6'd0; cause[{thread,3'd0}] <= {iqentry_instr[head][31:24],iqentry_instr[head][13:6]}; mstatus[5:3] <= 3'd0; mstatus[13:6] <= 8'h00; // For hardware interrupts only, set a new mask level // Select register set according to interrupt level if (iqentry_instr[head][23:19]==5'd0) begin mstatus[2:0] <= 3'd7;//iqentry_instr[head][18:16]; mstatus[42:40] <= iqentry_instr[head][18:16]; mstatus[19:14] <= {3'b0,iqentry_instr[head][18:16]}; end else mstatus[19:14] <= 6'd0; `endif sema[0] <= 1'b0; ve_hold <= {vqet1,10'd0,vqe1,10'd0,vqet0,10'd0,vqe0}; `ifdef SUPPORT_DBG dbg_ctrl[62:55] <= {dbg_ctrl[61:55],dbg_ctrl[63]}; dbg_ctrl[63] <= FALSE; `endif end `IVECTOR: casez(iqentry_tgt[head]) 8'b00100xxx: vm[iqentry_tgt[head][2:0]] <= iqentry_res[head]; 8'b00101111: vl <= iqentry_res[head]; default: ; endcase `R2: case(iqentry_instr[head][`INSTRUCTION_S2]) `R1: case(iqentry_instr[head][20:16]) `CHAIN_OFF: cr0[18] <= 1'b0; `CHAIN_ON: cr0[18] <= 1'b1; //`SETWB: wbrcd[pcr[5:0]] <= 1'b1; default: ; endcase `VMOV: casez(iqentry_tgt[head]) 12'b1111111_00???: vm[iqentry_tgt[head][2:0]] <= iqentry_res[head]; 12'b1111111_01111: vl <= iqentry_res[head]; default: ; endcase `ifdef SUPPORT_SMT `SEI: mstatus[thread][2:0] <= iqentry_res[head][2:0]; // S1 `else `SEI: mstatus[2:0] <= iqentry_res[head][2:0]; // S1 `endif `RTI: begin excmiss <= TRUE; `ifdef SUPPORT_SMT excmisspc <= epc0[thread]; excthrd <= thread; mstatus[thread][3:0] <= im_stack[thread][3:0]; mstatus[thread][5:4] <= ol_stack[thread][1:0]; mstatus[thread][13:6] <= pl_stack[thread][7:0]; mstatus[thread][19:14] <= rs_stack[thread][5:0]; im_stack[thread] <= {4'd15,im_stack[thread][27:4]}; ol_stack[thread] <= {2'd0,ol_stack[thread][15:2]}; pl_stack[thread] <= {8'h00,pl_stack[thread][63:8]}; rs_stack[thread] <= {8'h00,rs_stack[thread][63:8]}; epc0[thread] <= epc1[thread]; epc1[thread] <= epc2[thread]; epc2[thread] <= epc3[thread]; epc3[thread] <= epc4[thread]; epc4[thread] <= epc5[thread]; epc5[thread] <= epc6[thread]; epc6[thread] <= epc7[thread]; epc7[thread] <= epc8[thread]; epc8[thread] <= {tvec[0][31:8], ol[thread], 5'h0}; `else excmisspc <= epc0; excthrd <= thread; mstatus[3:0] <= im_stack[3:0]; mstatus[5:4] <= ol_stack[1:0]; mstatus[13:6] <= pl_stack[7:0]; mstatus[19:14] <= rs_stack[5:0]; im_stack <= {4'd15,im_stack[31:4]}; ol_stack <= {2'd0,ol_stack[15:2]}; pl_stack <= {8'h00,pl_stack[63:8]}; rs_stack <= {8'h00,rs_stack[63:8]}; epc0 <= epc1; epc1 <= epc2; epc2 <= epc3; epc3 <= epc4; epc4 <= epc5; epc5 <= epc6; epc6 <= epc7; epc7 <= epc8; epc8 <= {tvec[0][31:8], ol, 5'h0}; `endif sema[0] <= 1'b0; sema[iqentry_res[head][5:0]] <= 1'b0; vqe0 <= ve_hold[ 5: 0]; vqet0 <= ve_hold[21:16]; vqe1 <= ve_hold[37:32]; vqet1 <= ve_hold[53:48]; `ifdef SUPPORT_DBG dbg_ctrl[62:55] <= {FALSE,dbg_ctrl[62:56]}; dbg_ctrl[63] <= dbg_ctrl[55]; `endif end default: ; endcase `MEMNDX: case(iqentry_instr[head][`INSTRUCTION_S2]) `CACHEX: case(iqentry_instr[head][22:18]) 5'h03: invic <= TRUE; 5'h10: cr0[30] <= FALSE; 5'h11: cr0[30] <= TRUE; default: ; endcase default: ; endcase `CSRRW: begin write_csr(iqentry_instr[head][31:16],iqentry_a1[head],thread); end `REX: `ifdef SUPPORT_SMT // Can only redirect to a lower level if (ol[thread] < iqentry_instr[head][13:11]) begin mstatus[thread][5:3] <= iqentry_instr[head][13:11]; badaddr[{thread,iqentry_instr[head][13:11]}] <= badaddr[{thread,ol[thread]}]; cause[{thread,iqentry_instr[head][13:11]}] <= cause[{thread,ol[thread]}]; mstatus[thread][13:6] <= iqentry_instr[head][23:16] | iqentry_a1[head][7:0]; end `else if (ol < iqentry_instr[head][13:11]) begin mstatus[5:3] <= iqentry_instr[head][13:11]; badaddr[{thread,iqentry_instr[head][13:11]}] <= badaddr[{thread,ol}]; cause[{thread,iqentry_instr[head][13:11]}] <= cause[{thread,ol}]; mstatus[13:6] <= iqentry_instr[head][23:16] | iqentry_a1[head][7:0]; end `endif `CACHE: case(iqentry_instr[head][17:13]) 5'h03: invic <= TRUE; 5'h10: cr0[30] <= FALSE; 5'h11: cr0[30] <= TRUE; default: ; endcase `FLOAT: case(iqentry_instr[head][`INSTRUCTION_S2]) `FRM: begin fp1_rm <= iqentry_res[head][2:0]; fp2_rm <= iqentry_res[head][2:0]; end `FCX: begin fp1_sx <= fp1_sx & ~iqentry_res[head][5]; fp1_inex <= fp1_inex & ~iqentry_res[head][4]; fp1_dbzx <= fp1_dbzx & ~(iqentry_res[head][3]|iqentry_res[head][0]); fp1_underx <= fp1_underx & ~iqentry_res[head][2]; fp1_overx <= fp1_overx & ~iqentry_res[head][1]; fp1_giopx <= fp1_giopx & ~iqentry_res[head][0]; fp1_infdivx <= fp1_infdivx & ~iqentry_res[head][0]; fp1_zerozerox <= fp1_zerozerox & ~iqentry_res[head][0]; fp1_subinfx <= fp1_subinfx & ~iqentry_res[head][0]; fp1_infzerox <= fp1_infzerox & ~iqentry_res[head][0]; fp1_NaNCmpx <= fp1_NaNCmpx & ~iqentry_res[head][0]; fp1_swtx <= 1'b0; end `FDX: begin fp1_inexe <= fp1_inexe & ~iqentry_res[head][4]; fp1_dbzxe <= fp1_dbzxe & ~iqentry_res[head][3]; fp1_underxe <= fp1_underxe & ~iqentry_res[head][2]; fp1_overxe <= fp1_overxe & ~iqentry_res[head][1]; fp1_invopxe <= fp1_invopxe & ~iqentry_res[head][0]; end `FEX: begin fp1_inexe <= fp1_inexe | iqentry_res[head][4]; fp1_dbzxe <= fp1_dbzxe | iqentry_res[head][3]; fp1_underxe <= fp1_underxe | iqentry_res[head][2]; fp1_overxe <= fp1_overxe | iqentry_res[head][1]; fp1_invopxe <= fp1_invopxe | iqentry_res[head][0]; end default: begin // 31 to 29 is rounding mode // 28 to 24 are exception enables // 23 is nsfp // 22 is a fractie fp1_fractie <= iqentry_a0[head][22]; fp1_raz <= iqentry_a0[head][21]; // 20 is a 0 fp1_neg <= iqentry_a0[head][19]; fp1_pos <= iqentry_a0[head][18]; fp1_zero <= iqentry_a0[head][17]; fp1_inf <= iqentry_a0[head][16]; // 15 swtx // 14 fp1_inex <= fp1_inex | (fp1_inexe & iqentry_a0[head][14]); fp1_dbzx <= fp1_dbzx | (fp1_dbzxe & iqentry_a0[head][13]); fp1_underx <= fp1_underx | (fp1_underxe & iqentry_a0[head][12]); fp1_overx <= fp1_overx | (fp1_overxe & iqentry_a0[head][11]); //fp_giopx <= fp_giopx | (fp_giopxe & iqentry_res2[head][10]); //fp_invopx <= fp_invopx | (fp_invopxe & iqentry_res2[head][24]); // fp1_cvtx <= fp1_cvtx | (fp1_giopxe & iqentry_a0[head][7]); fp1_sqrtx <= fp1_sqrtx | (fp1_giopxe & iqentry_a0[head][6]); fp1_NaNCmpx <= fp1_NaNCmpx | (fp1_giopxe & iqentry_a0[head][5]); fp1_infzerox <= fp1_infzerox | (fp1_giopxe & iqentry_a0[head][4]); fp1_zerozerox <= fp1_zerozerox | (fp1_giopxe & iqentry_a0[head][3]); fp1_infdivx <= fp1_infdivx | (fp1_giopxe & iqentry_a0[head][2]); fp1_subinfx <= fp1_subinfx | (fp1_giopxe & iqentry_a0[head][1]); fp1_snanx <= fp1_snanx | (fp1_giopxe & iqentry_a0[head][0]); end endcase default: ; endcase // Once the flow control instruction commits, NOP it out to allow // pending stores to be issued. iqentry_instr[head][5:0] <= `NOP; end end endtask // CSR access tasks task read_csr; input [13:0] csrno; output [63:0] dat; input thread; begin `ifdef SUPPORT_SMT if (csrno[11:10] >= ol[thread]) `else if (csrno[11:10] >= ol) `endif casez(csrno[9:0]) `CSR_CR0: dat <= cr0; `CSR_HARTID: dat <= hartid; `CSR_TICK: dat <= tick; `CSR_PCR: dat <= pcr; `CSR_PCR2: dat <= pcr2; `CSR_PMR: dat <= pmr; `CSR_WBRCD: dat <= wbrcd; `CSR_SEMA: dat <= sema; `CSR_SBL: dat <= sbl; `CSR_SBU: dat <= sbu; `CSR_TCB: dat <= tcb; `CSR_FSTAT: dat <= {fp1_rgs,fp1_status}; `ifdef SUPPORT_DBG `CSR_DBAD0: dat <= dbg_adr0; `CSR_DBAD1: dat <= dbg_adr1; `CSR_DBAD2: dat <= dbg_adr2; `CSR_DBAD3: dat <= dbg_adr3; `CSR_DBCTRL: dat <= dbg_ctrl; `CSR_DBSTAT: dat <= dbg_stat; `endif `CSR_CAS: dat <= cas; `CSR_TVEC: dat <= tvec[csrno[2:0]]; `CSR_BADADR: dat <= badaddr[{thread,csrno[13:11]}]; `CSR_CAUSE: dat <= {48'd0,cause[{thread,csrno[13:11]}]}; `ifdef SUPPORT_SMT `CSR_IM_STACK: dat <= im_stack[thread]; `CSR_OL_STACK: dat <= ol_stack[thread]; `CSR_PL_STACK: dat <= pl_stack[thread]; `CSR_RS_STACK: dat <= rs_stack[thread]; `CSR_STATUS: dat <= mstatus[thread][63:0]; `CSR_EPC0: dat <= epc0[thread]; `CSR_EPC1: dat <= epc1[thread]; `CSR_EPC2: dat <= epc2[thread]; `CSR_EPC3: dat <= epc3[thread]; `CSR_EPC4: dat <= epc4[thread]; `CSR_EPC5: dat <= epc5[thread]; `CSR_EPC6: dat <= epc6[thread]; `CSR_EPC7: dat <= epc7[thread]; `else `CSR_IM_STACK: dat <= im_stack; `CSR_OL_STACK: dat <= ol_stack; `CSR_PL_STACK: dat <= pl_stack; `CSR_RS_STACK: dat <= rs_stack; `CSR_STATUS: dat <= mstatus[63:0]; `CSR_EPC0: dat <= epc0; `CSR_EPC1: dat <= epc1; `CSR_EPC2: dat <= epc2; `CSR_EPC3: dat <= epc3; `CSR_EPC4: dat <= epc4; `CSR_EPC5: dat <= epc5; `CSR_EPC6: dat <= epc6; `CSR_EPC7: dat <= epc7; `endif `CSR_CODEBUF: dat <= codebuf[csrno[5:0]]; `CSR_TIME: dat <= wc_times; `CSR_INFO: case(csrno[3:0]) 4'd0: dat <= "Finitron"; // manufacturer 4'd1: dat <= " "; 4'd2: dat <= "64 bit "; // CPU class 4'd3: dat <= " "; 4'd4: dat <= "FT64 "; // Name 4'd5: dat <= " "; 4'd6: dat <= 64'd1; // model # 4'd7: dat <= 64'd1; // serial number 4'd8: dat <= {32'd16384,32'd16384}; // cache sizes instruction,data 4'd9: dat <= 64'd0; default: dat <= 64'd0; endcase default: begin $display("Unsupported CSR:%h",csrno[10:0]); dat <= 64'hEEEEEEEEEEEEEEEE; end endcase else dat <= 64'h0; end endtask task write_csr; input [13:0] csrno; input [63:0] dat; input thread; begin `ifdef SUPPORT_SMT if (csrno[11:10] >= ol[thread]) `else if (csrno[11:10] >= ol) `endif case(csrno[13:12]) 2'd1: // CSRRW casez(csrno[9:0]) `CSR_CR0: cr0 <= dat; `CSR_PCR: pcr <= dat[31:0]; `CSR_PCR2: pcr2 <= dat; `CSR_PMR: case(`NUM_IDU) 0,1: pmr[0] <= 1'b1; 2: begin if (dat[1:0]==2'b00) pmr[1:0] <= 2'b01; else pmr[1:0] <= dat[1:0]; pmr[63:2] <= dat[63:2]; end 3: begin if (dat[2:0]==3'b000) pmr[2:0] <= 3'b001; else pmr[2:0] <= dat[2:0]; pmr[63:3] <= dat[63:3]; end default: pmr[0] <= 1'b1; endcase `CSR_WBRCD: wbrcd <= dat; `CSR_SEMA: sema <= dat; `CSR_SBL: sbl <= dat[31:0]; `CSR_SBU: sbu <= dat[31:0]; `CSR_TCB: tcb <= dat; `CSR_FSTAT: fpu1_csr[37:32] <= dat[37:32]; `CSR_BADADR: badaddr[{thread,csrno[13:11]}] <= dat; `CSR_CAUSE: cause[{thread,csrno[13:11]}] <= dat[15:0]; `ifdef SUPPORT_DBG `CSR_DBAD0: dbg_adr0 <= dat[AMSB:0]; `CSR_DBAD1: dbg_adr1 <= dat[AMSB:0]; `CSR_DBAD2: dbg_adr2 <= dat[AMSB:0]; `CSR_DBAD3: dbg_adr3 <= dat[AMSB:0]; `CSR_DBCTRL: dbg_ctrl <= dat; `endif `CSR_CAS: cas <= dat; `CSR_TVEC: tvec[csrno[2:0]] <= dat[31:0]; `ifdef SUPPORT_SMT `CSR_IM_STACK: im_stack[thread] <= dat[31:0]; `CSR_OL_STACK: ol_stack[thread] <= dat[15:0]; `CSR_PL_STACK: pl_stack[thread] <= dat; `CSR_RS_STACK: rs_stack[thread] <= dat; `CSR_STATUS: mstatus[thread][63:0] <= dat; `CSR_EPC0: epc0[thread] <= dat; `CSR_EPC1: epc1[thread] <= dat; `CSR_EPC2: epc2[thread] <= dat; `CSR_EPC3: epc3[thread] <= dat; `CSR_EPC4: epc4[thread] <= dat; `CSR_EPC5: epc5[thread] <= dat; `CSR_EPC6: epc6[thread] <= dat; `CSR_EPC7: epc7[thread] <= dat; `else `CSR_IM_STACK: im_stack <= dat[31:0]; `CSR_OL_STACK: ol_stack <= dat[15:0]; `CSR_PL_STACK: pl_stack <= dat; `CSR_RS_STACK: rs_stack <= dat; `CSR_STATUS: mstatus[63:0] <= dat; `CSR_EPC0: epc0 <= dat; `CSR_EPC1: epc1 <= dat; `CSR_EPC2: epc2 <= dat; `CSR_EPC3: epc3 <= dat; `CSR_EPC4: epc4 <= dat; `CSR_EPC5: epc5 <= dat; `CSR_EPC6: epc6 <= dat; `CSR_EPC7: epc7 <= dat; `endif `CSR_TIME: begin ld_time <= 6'h3f; wc_time_dat <= dat; end `CSR_CODEBUF: codebuf[csrno[5:0]] <= dat; default: ; endcase 2'd2: // CSRRS case(csrno[9:0]) `CSR_CR0: cr0 <= cr0 | dat; `CSR_PCR: pcr[31:0] <= pcr[31:0] | dat[31:0]; `CSR_PCR2: pcr2 <= pcr2 | dat; `CSR_PMR: pmr <= pmr | dat; `CSR_WBRCD: wbrcd <= wbrcd | dat; `ifdef SUPPORT_DBG `CSR_DBCTRL: dbg_ctrl <= dbg_ctrl | dat; `endif `CSR_SEMA: sema <= sema | dat; `ifdef SUPPORT_SMT `CSR_STATUS: mstatus[thread][63:0] <= mstatus[thread][63:0] | dat; `else `CSR_STATUS: mstatus[63:0] <= mstatus[63:0] | dat; `endif default: ; endcase 2'd3: // CSRRC case(csrno[9:0]) `CSR_CR0: cr0 <= cr0 & ~dat; `CSR_PCR: pcr <= pcr & ~dat; `CSR_PCR2: pcr2 <= pcr2 & ~dat; `CSR_PMR: begin if (dat[1:0]==2'b11) pmr[1:0] <= 2'b01; else pmr[1:0] <= pmr[1:0] & ~dat[1:0]; pmr[63:2] <= pmr[63:2] & ~dat[63:2]; end `CSR_WBRCD: wbrcd <= wbrcd & ~dat; `ifdef SUPPORT_DBG `CSR_DBCTRL: dbg_ctrl <= dbg_ctrl & ~dat; `endif `CSR_SEMA: sema <= sema & ~dat; `ifdef SUPPORT_SMT `CSR_STATUS: mstatus[thread][63:0] <= mstatus[thread][63:0] & ~dat; `else `CSR_STATUS: mstatus[63:0] <= mstatus[63:0] & ~dat; `endif default: ; endcase default: ; endcase end endtask /* task aluissue; input alu_idle; input [QENTRIES-1:0] iq_alu0; input [1:0] slot; begin if (alu_idle) begin if (could_issue[head0] && iqentry_alu[head0] && !iq_alu0[head0] // alu0only && !iqentry_issue[head0]) begin iqentry_issue[head0] = `TRUE; iqentry_islot[head0] = slot; end else if (could_issue[head1] && !iqentry_issue[head1] && iqentry_alu[head1] && !iq_alu0[head1]) begin iqentry_issue[head1] = `TRUE; iqentry_islot[head1] = slot; end else if (could_issue[head2] && !iqentry_issue[head2] && iqentry_alu[head2] && !iq_alu0[head2] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) ) begin iqentry_issue[head2] = `TRUE; iqentry_islot[head2] = slot; end else if (could_issue[head3] && !iqentry_issue[head3] && iqentry_alu[head3] && !iq_alu0[head3] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_issue[head3] = `TRUE; iqentry_islot[head3] = slot; end else if (could_issue[head4] && !iqentry_issue[head4] && iqentry_alu[head4] && !iq_alu0[head4] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_issue[head4] = `TRUE; iqentry_islot[head4] = slot; end else if (could_issue[head5] && !iqentry_issue[head5] && iqentry_alu[head5] && !iq_alu0[head5] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_issue[head5] = `TRUE; iqentry_islot[head5] = slot; end else if (could_issue[head6] && !iqentry_issue[head6] && iqentry_alu[head6] && !iq_alu0[head6] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_issue[head6] = `TRUE; iqentry_islot[head6] = slot; end else if (could_issue[head7] && !iqentry_issue[head7] && iqentry_alu[head7] && !iq_alu0[head7] && (!(iqentry_v[head1] && iqentry_sync[head1]) || !iqentry_v[head0]) && (!(iqentry_v[head2] && iqentry_sync[head2]) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && iqentry_sync[head3]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && iqentry_sync[head4]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && iqentry_sync[head5]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && iqentry_sync[head6]) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_issue[head7] = `TRUE; iqentry_islot[head7] = slot; end end end endtask task fpuissue; input fp_idle; input [1:0] slot; begin if (fp_idle) begin if (could_issue[head0] && iqentry_fpu[head0]) begin iqentry_fpu_issue[head0] = `TRUE; iqentry_fpu_islot[head0] = slot; end else if (could_issue[head1] && iqentry_fpu[head1]) begin iqentry_fpu_issue[head1] = `TRUE; iqentry_fpu_islot[head1] = slot; end else if (could_issue[head2] && iqentry_fpu[head2] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) ) begin iqentry_fpu_issue[head2] = `TRUE; iqentry_fpu_islot[head2] = slot; end else if (could_issue[head3] && iqentry_fpu[head3] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) ) begin iqentry_fpu_issue[head3] = `TRUE; iqentry_fpu_islot[head3] = slot; end else if (could_issue[head4] && iqentry_fpu[head4] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) ) begin iqentry_fpu_issue[head4] = `TRUE; iqentry_fpu_islot[head4] = slot; end else if (could_issue[head5] && iqentry_fpu[head5] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) ) begin iqentry_fpu_issue[head5] = `TRUE; iqentry_fpu_islot[head5] = slot; end else if (could_issue[head6] && iqentry_fpu[head6] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && (iqentry_sync[head5] || iqentry_fsync[head5])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) ) begin iqentry_fpu_issue[head6] = `TRUE; iqentry_fpu_islot[head6] = slot; end else if (could_issue[head7] && iqentry_fpu[head7] && (!(iqentry_v[head1] && (iqentry_sync[head1] || iqentry_fsync[head1])) || !iqentry_v[head0]) && (!(iqentry_v[head2] && (iqentry_sync[head2] || iqentry_fsync[head2])) || ((!iqentry_v[head0]) && (!iqentry_v[head1])) ) && (!(iqentry_v[head3] && (iqentry_sync[head3] || iqentry_fsync[head3])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2])) ) && (!(iqentry_v[head4] && (iqentry_sync[head4] || iqentry_fsync[head4])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3])) ) && (!(iqentry_v[head5] && (iqentry_sync[head5] || iqentry_fsync[head5])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4])) ) && (!(iqentry_v[head6] && (iqentry_sync[head6] || iqentry_fsync[head6])) || ((!iqentry_v[head0]) && (!iqentry_v[head1]) && (!iqentry_v[head2]) && (!iqentry_v[head3]) && (!iqentry_v[head4]) && (!iqentry_v[head5])) ) ) begin iqentry_fpu_issue[head7] = `TRUE; iqentry_fpu_islot[head7] = slot; end end end endtask */ endmodule module decoder5 (num, out); input [4:0] num; output [31:1] out; reg [31:1] out; always @(num) case (num) 5'd0 : out <= 31'b0000000000000000000000000000000; 5'd1 : out <= 31'b0000000000000000000000000000001; 5'd2 : out <= 31'b0000000000000000000000000000010; 5'd3 : out <= 31'b0000000000000000000000000000100; 5'd4 : out <= 31'b0000000000000000000000000001000; 5'd5 : out <= 31'b0000000000000000000000000010000; 5'd6 : out <= 31'b0000000000000000000000000100000; 5'd7 : out <= 31'b0000000000000000000000001000000; 5'd8 : out <= 31'b0000000000000000000000010000000; 5'd9 : out <= 31'b0000000000000000000000100000000; 5'd10: out <= 31'b0000000000000000000001000000000; 5'd11: out <= 31'b0000000000000000000010000000000; 5'd12: out <= 31'b0000000000000000000100000000000; 5'd13: out <= 31'b0000000000000000001000000000000; 5'd14: out <= 31'b0000000000000000010000000000000; 5'd15: out <= 31'b0000000000000000100000000000000; 5'd16: out <= 31'b0000000000000001000000000000000; 5'd17: out <= 31'b0000000000000010000000000000000; 5'd18: out <= 31'b0000000000000100000000000000000; 5'd19: out <= 31'b0000000000001000000000000000000; 5'd20: out <= 31'b0000000000010000000000000000000; 5'd21: out <= 31'b0000000000100000000000000000000; 5'd22: out <= 31'b0000000001000000000000000000000; 5'd23: out <= 31'b0000000010000000000000000000000; 5'd24: out <= 31'b0000000100000000000000000000000; 5'd25: out <= 31'b0000001000000000000000000000000; 5'd26: out <= 31'b0000010000000000000000000000000; 5'd27: out <= 31'b0000100000000000000000000000000; 5'd28: out <= 31'b0001000000000000000000000000000; 5'd29: out <= 31'b0010000000000000000000000000000; 5'd30: out <= 31'b0100000000000000000000000000000; 5'd31: out <= 31'b1000000000000000000000000000000; endcase endmodule module decoder6 (num, out); input [5:0] num; output [63:1] out; wire [63:0] out1; assign out1 = 64'd1 << num; assign out = out1[63:1]; endmodule module decoder7 (num, out); input [6:0] num; output [127:1] out; wire [127:0] out1; assign out1 = 128'd1 << num; assign out = out1[127:1]; endmodule module decoder8 (num, out); input [7:0] num; output [255:1] out; wire [255:0] out1; assign out1 = 256'd1 << num; assign out = out1[255:1]; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log