URL
https://opencores.org/ocsvn/threeaesc/threeaesc/trunk
Subversion Repositories threeaesc
[/] [threeaesc/] [trunk/] [aes_c_1/] [src/] [aes_enc.vhd] - Rev 2
Compare with Previous | Blame | View Log
-- Copyright (c) 2011 Antonio de la Piedra -- This program is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 3 of the License, or -- (at your option) any later version. -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- You should have received a copy of the GNU General Public License -- along with this program. If not, see <http://www.gnu.org/licenses/>. library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.std_logic_ARITH.ALL; use IEEE.std_logic_UNSIGNED.ALL; use work.aes_lib.all; entity aes_enc is port( clk: in std_logic; rst : in std_logic; block_in : in std_logic_vector(127 downto 0); sub_key : in std_logic_vector(127 downto 0); load : in std_logic; enc : in std_logic; last : in std_logic; block_out : out std_logic_vector(127 downto 0)); end aes_enc; architecture Behavioral of aes_enc is signal reg: std_logic_vector(127 downto 0); signal key_reg_delayed: std_logic_vector(127 downto 0); signal sub_tmp_0 : std_logic_vector(7 downto 0); signal sub_tmp_1 : std_logic_vector(7 downto 0); signal sub_tmp_2 : std_logic_vector(7 downto 0); signal sub_tmp_3 : std_logic_vector(7 downto 0); signal sub_tmp_mix_0 : std_logic_vector(7 downto 0); signal sub_tmp_mix_1 : std_logic_vector(7 downto 0); signal sub_tmp_mix_2 : std_logic_vector(7 downto 0); signal sub_tmp_mix_3 : std_logic_vector(7 downto 0); signal sub_tmp_key_0 : std_logic_vector(7 downto 0); signal sub_tmp_key_1 : std_logic_vector(7 downto 0); signal sub_tmp_key_2 : std_logic_vector(7 downto 0); signal sub_tmp_key_3 : std_logic_vector(7 downto 0); signal key_reg : std_logic_vector(127 downto 0); begin S_BOX_DUAL_1: entity work.dual_mem(rtl) port map (clk, '0', reg(7 downto 0), reg(15 downto 8), (others=>'0'), sub_tmp_0, sub_tmp_1); S_BOX_DUAL_2: entity work.dual_mem(rtl) port map (clk, '0', reg(23 downto 16), reg(31 downto 24), (others=>'0'), sub_tmp_2, sub_tmp_3); sum_proc_1: process(clk, rst, block_in, sub_key) variable reg_v : std_logic_vector(127 downto 0); variable key_reg_v : std_logic_vector(127 downto 0); begin if rising_edge(clk) then if rst = '1' then reg_v := (others=>'0'); key_reg_v := (others=>'0'); elsif load = '1' then -- The current state is arranged to: -- { 0,5,a,f; 4,9,e,3; 8,d,2,7; c,1,6,b; } as -- Gaj & Chodowiec describe in "FPGA and ASIC Implementations of AES" from -- Cryptographic Engineering, Çetin Kaya Koç, Springer, 2009. reg_v := block_in(95 downto 88) & block_in(55 downto 48) & block_in(15 downto 8) & block_in(103 downto 96) & -- (b,6,1,c) block_in(63 downto 56) & block_in(23 downto 16) & block_in(111 downto 104) & block_in(71 downto 64) & -- (7,2,d,8) block_in(31 downto 24) & block_in(119 downto 112) & block_in(79 downto 72) & block_in(39 downto 32) & -- (3,e,9,4) block_in(127 downto 120) & block_in(87 downto 80) & block_in(47 downto 40) & block_in(7 downto 0); -- (f,a,5,0) key_reg_v := sub_key; elsif enc = '1' then reg_v := to_stdlogicvector(to_bitvector(reg_v) ror 32); key_reg_v := to_stdlogicvector(to_bitvector(key_reg_v) ror 32); end if; end if; reg <= reg_v; key_reg <= key_reg_v; end process; MIX_COL: process(sub_tmp_0, sub_tmp_1, sub_tmp_2, sub_tmp_3, last) begin if last = '0' then sub_tmp_mix_0 <= gfmult2(sub_tmp_0) xor gfmult3(sub_tmp_1) xor sub_tmp_2 xor sub_tmp_3; sub_tmp_mix_1 <= sub_tmp_0 xor gfmult2(sub_tmp_1) xor gfmult3(sub_tmp_2) xor sub_tmp_3; sub_tmp_mix_2 <= sub_tmp_0 xor sub_tmp_1 xor gfmult2(sub_tmp_2) xor gfmult3(sub_tmp_3); sub_tmp_mix_3 <= gfmult3(sub_tmp_0) xor sub_tmp_1 xor sub_tmp_2 xor gfmult2(sub_tmp_3); else sub_tmp_mix_0 <= sub_tmp_0; sub_tmp_mix_1 <= sub_tmp_1; sub_tmp_mix_2 <= sub_tmp_2; sub_tmp_mix_3 <= sub_tmp_3; end if; end process; ADD_KEY: process(key_reg_delayed, sub_tmp_mix_0, sub_tmp_mix_1, sub_tmp_mix_2, sub_tmp_mix_3) begin sub_tmp_key_0 <= sub_tmp_mix_0 xor key_reg_delayed(7 downto 0); sub_tmp_key_1 <= sub_tmp_mix_1 xor key_reg_delayed(15 downto 8); sub_tmp_key_2 <= sub_tmp_mix_2 xor key_reg_delayed(23 downto 16); sub_tmp_key_3 <= sub_tmp_mix_3 xor key_reg_delayed(31 downto 24); end process; FF_DELAY: process(clk, key_reg) begin if rising_edge(clk) then key_reg_delayed <= key_reg; end if; end process; gen_output: process(enc, clk, sub_tmp_key_0, sub_tmp_key_1, sub_tmp_key_2, sub_tmp_key_3) variable out_buffer_v : std_logic_vector(127 downto 0); begin if rising_edge(clk) then if enc = '1' then out_buffer_v := out_buffer_v(127 downto 32) & sub_tmp_key_3 & sub_tmp_key_2 & sub_tmp_key_1 & sub_tmp_key_0; out_buffer_v := to_stdlogicvector(to_bitvector(out_buffer_v) ror 32); end if; end if; block_out <= out_buffer_v; end process; end Behavioral;