URL
https://opencores.org/ocsvn/twofish/twofish/trunk
Subversion Repositories twofish
[/] [twofish/] [trunk/] [vhdl/] [twofish_cbc_encryption_monte_carlo_testbench_256bits.vhd] - Rev 15
Go to most recent revision | Compare with Previous | Blame | View Log
-- Twofish_cbc_encryption_monte_carlo_testbench_256bits.vhd -- Copyright (C) 2006 Spyros Ninos -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this library; see the file COPYING. If not, write to: -- -- Free Software Foundation -- 59 Temple Place - Suite 330 -- Boston, MA 02111-1307, USA. -- -- description : this file is the testbench for the Encryption Monte Carlo KAT of the twofish cipher with 256 bit key -- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_textio.all; use ieee.std_logic_arith.all; use std.textio.all; entity cbc_encryption_monte_carlo_testbench256 is end cbc_encryption_monte_carlo_testbench256; architecture cbc_encryption256_monte_carlo_testbench_arch of cbc_encryption_monte_carlo_testbench256 is component reg128 port ( in_reg128 : in std_logic_vector(127 downto 0); out_reg128 : out std_logic_vector(127 downto 0); enable_reg128, reset_reg128, clk_reg128 : in std_logic ); end component; component twofish_keysched256 port ( odd_in_tk256, even_in_tk256 : in std_logic_vector(7 downto 0); in_key_tk256 : in std_logic_vector(255 downto 0); out_key_up_tk256, out_key_down_tk256 : out std_logic_vector(31 downto 0) ); end component; component twofish_whit_keysched256 port ( in_key_twk256 : in std_logic_vector(255 downto 0); out_K0_twk256, out_K1_twk256, out_K2_twk256, out_K3_twk256, out_K4_twk256, out_K5_twk256, out_K6_twk256, out_K7_twk256 : out std_logic_vector(31 downto 0) ); end component; component twofish_encryption_round256 port ( in1_ter256, in2_ter256, in3_ter256, in4_ter256, in_Sfirst_ter256, in_Ssecond_ter256, in_Sthird_ter256, in_Sfourth_ter256, in_key_up_ter256, in_key_down_ter256 : in std_logic_vector(31 downto 0); out1_ter256, out2_ter256, out3_ter256, out4_ter256 : out std_logic_vector(31 downto 0) ); end component; component twofish_data_input port ( in_tdi : in std_logic_vector(127 downto 0); out_tdi : out std_logic_vector(127 downto 0) ); end component; component twofish_data_output port ( in_tdo : in std_logic_vector(127 downto 0); out_tdo : out std_logic_vector(127 downto 0) ); end component; component demux128 port ( in_demux128 : in std_logic_vector(127 downto 0); out1_demux128, out2_demux128 : out std_logic_vector(127 downto 0); selection_demux128 : in std_logic ); end component; component mux128 port ( in1_mux128, in2_mux128 : in std_logic_vector(127 downto 0); selection_mux128 : in std_logic; out_mux128 : out std_logic_vector(127 downto 0) ); end component; component twofish_S256 port ( in_key_ts256 : in std_logic_vector(255 downto 0); out_Sfirst_ts256, out_Ssecond_ts256, out_Sthird_ts256, out_Sfourth_ts256 : out std_logic_vector(31 downto 0) ); end component; FILE input_file : text is in "twofish_cbc_encryption_monte_carlo_testvalues_256bits.txt"; FILE output_file : text is out "twofish_cbc_encryption_monte_carlo_256bits_results.txt"; -- we create the functions that transform a number to text -- transforming a signle digit to a character function digit_to_char(number : integer range 0 to 9) return character is begin case number is when 0 => return '0'; when 1 => return '1'; when 2 => return '2'; when 3 => return '3'; when 4 => return '4'; when 5 => return '5'; when 6 => return '6'; when 7 => return '7'; when 8 => return '8'; when 9 => return '9'; end case; end; -- transforming multi-digit number to text function to_text(int_number : integer range 0 to 9999) return string is variable our_text : string (1 to 4) := (others => ' '); variable thousands, hundreds, tens, ones : integer range 0 to 9; begin ones := int_number mod 10; tens := ((int_number mod 100) - ones) / 10; hundreds := ((int_number mod 1000) - (int_number mod 100)) / 100; thousands := (int_number - (int_number mod 1000)) / 1000; our_text(1) := digit_to_char(thousands); our_text(2) := digit_to_char(hundreds); our_text(3) := digit_to_char(tens); our_text(4) := digit_to_char(ones); return our_text; end; signal odd_number, even_number : std_logic_vector(7 downto 0); signal input_data, output_data, to_encr_reg128, from_tdi_to_xors, to_output_whit_xors, from_xors_to_tdo, to_mux, to_demux, from_input_whit_xors, to_round, to_input_mux : std_logic_vector(127 downto 0) ; signal twofish_key : std_logic_vector(255 downto 0); signal key_up, key_down, Sfirst, Ssecond, Sthird, Sfourth, from_xor0, from_xor1, from_xor2, from_xor3, K0,K1,K2,K3, K4,K5,K6,K7 : std_logic_vector(31 downto 0); signal clk : std_logic := '0'; signal mux_selection : std_logic := '0'; signal demux_selection: std_logic := '0'; signal enable_encr_reg : std_logic := '0'; signal reset : std_logic := '0'; signal enable_round_reg : std_logic := '0'; -- begin the testbench arch description begin -- getting data to encrypt data_input: twofish_data_input port map ( in_tdi => input_data, out_tdi => from_tdi_to_xors ); -- producing whitening keys K0..7 the_whitening_step: twofish_whit_keysched256 port map ( in_key_twk256 => twofish_key, out_K0_twk256 => K0, out_K1_twk256 => K1, out_K2_twk256 => K2, out_K3_twk256 => K3, out_K4_twk256 => K4, out_K5_twk256 => K5, out_K6_twk256 => K6, out_K7_twk256 => K7 ); -- performing the input whitening XORs from_xor0 <= K0 XOR from_tdi_to_xors(127 downto 96); from_xor1 <= K1 XOR from_tdi_to_xors(95 downto 64); from_xor2 <= K2 XOR from_tdi_to_xors(63 downto 32); from_xor3 <= K3 XOR from_tdi_to_xors(31 downto 0); from_input_whit_xors <= from_xor0 & from_xor1 & from_xor2 & from_xor3; round_reg: reg128 port map ( in_reg128 => from_input_whit_xors, out_reg128 => to_input_mux, enable_reg128 => enable_round_reg, reset_reg128 => reset, clk_reg128 => clk ); input_mux: mux128 port map ( in1_mux128 => to_input_mux, in2_mux128 => to_mux, out_mux128 => to_round, selection_mux128 => mux_selection ); -- creating a round the_keysched_of_the_round: twofish_keysched256 port map ( odd_in_tk256 => odd_number, even_in_tk256 => even_number, in_key_tk256 => twofish_key, out_key_up_tk256 => key_up, out_key_down_tk256 => key_down ); producing_the_Skeys: twofish_S256 port map ( in_key_ts256 => twofish_key, out_Sfirst_ts256 => Sfirst, out_Ssecond_ts256 => Ssecond, out_Sthird_ts256 => Sthird, out_Sfourth_ts256 => Sfourth ); the_encryption_circuit: twofish_encryption_round256 port map ( in1_ter256 => to_round(127 downto 96), in2_ter256 => to_round(95 downto 64), in3_ter256 => to_round(63 downto 32), in4_ter256 => to_round(31 downto 0), in_Sfirst_ter256 => Sfirst, in_Ssecond_ter256 => Ssecond, in_Sthird_ter256 => Sthird, in_Sfourth_ter256 => Sfourth, in_key_up_ter256 => key_up, in_key_down_ter256 => key_down, out1_ter256 => to_encr_reg128(127 downto 96), out2_ter256 => to_encr_reg128(95 downto 64), out3_ter256 => to_encr_reg128(63 downto 32), out4_ter256 => to_encr_reg128(31 downto 0) ); encr_reg: reg128 port map ( in_reg128 => to_encr_reg128, out_reg128 => to_demux, enable_reg128 => enable_encr_reg, reset_reg128 => reset, clk_reg128 => clk ); output_demux: demux128 port map ( in_demux128 => to_demux, out1_demux128 => to_output_whit_xors, out2_demux128 => to_mux, selection_demux128 => demux_selection ); -- don't forget the last swap !!! from_xors_to_tdo(127 downto 96) <= K4 XOR to_output_whit_xors(63 downto 32); from_xors_to_tdo(95 downto 64) <= K5 XOR to_output_whit_xors(31 downto 0); from_xors_to_tdo(63 downto 32) <= K6 XOR to_output_whit_xors(127 downto 96); from_xors_to_tdo(31 downto 0) <= K7 XOR to_output_whit_xors(95 downto 64); taking_the_output: twofish_data_output port map ( in_tdo => from_xors_to_tdo, out_tdo => output_data ); -- we create the clock clk <= not clk after 50 ns; -- period 100 ns cbc_emc_proc: process variable key_f, -- key input from file pt_f, -- plaintext from file ct_f, iv_f : line; -- ciphertext from file variable key_v : std_logic_vector(255 downto 0); -- key vector input variable pt_v , -- plaintext vector ct_v, iv_v : std_logic_vector(127 downto 0); -- ciphertext vector variable counter_10000 : integer range 0 to 9999 := 0; -- counter for the 10.000 repeats in the 400 next ones variable counter_400 : integer range 0 to 399 := 0; -- counter for the 400 repeats variable round : integer range 0 to 16 := 0; -- holds the rounds variable PT, CT, CV, CTj_1 : std_logic_vector(127 downto 0) := (others => '0'); begin while not endfile(input_file) loop readline(input_file, key_f); readline(input_file, iv_f); readline(input_file, pt_f); readline(input_file,ct_f); hread(key_f,key_v); hread(iv_f, iv_v); hread(pt_f,pt_v); hread(ct_f,ct_v); twofish_key <= key_v; PT := pt_v; CV := iv_v; for counter_10000 in 0 to 9999 loop input_data <= PT xor CV; wait for 25 ns; reset <= '1'; wait for 50 ns; reset <= '0'; mux_selection <= '0'; demux_selection <= '1'; enable_encr_reg <= '0'; enable_round_reg <= '0'; wait for 50 ns; enable_round_reg <= '1'; wait for 50 ns; enable_round_reg <= '0'; -- the first round even_number <= "00001000"; -- 8 odd_number <= "00001001"; -- 9 wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; demux_selection <= '1'; mux_selection <= '1'; -- the rest 15 rounds for round in 1 to 15 loop even_number <= conv_std_logic_vector(((round*2)+8), 8); odd_number <= conv_std_logic_vector(((round*2)+9), 8); wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; end loop; -- taking final results demux_selection <= '0'; wait for 25 ns; CTj_1 := CT; CT := output_data; if ( counter_10000 = 0 ) then PT := CV; else PT := CTj_1; end if; -- counter_10000 = 0 CV := CT; assert false report "I=" & to_text(counter_400) & " R=" & to_text(counter_10000) severity note; end loop; -- counter_10000 hwrite(key_f, key_v); hwrite(iv_f, iv_v); hwrite(pt_f, pt_v); hwrite(ct_f,output_data); writeline(output_file,key_f); writeline(output_file, iv_f); writeline(output_file,pt_f); writeline(output_file,ct_f); assert (ct_v = output_data) report "file entry and encryption result DO NOT match!!! :( " severity failure; assert (ct_v /= output_data) report "Encryption I=" & to_text(counter_400) &" OK" severity note; counter_400 := counter_400 + 1; end loop; assert false report "***** CBC Encryption Monte Carlo Test with 256 bits key size ended succesfully! :) *****" severity failure; end process cbc_emc_proc; end cbc_encryption256_monte_carlo_testbench_arch;
Go to most recent revision | Compare with Previous | Blame | View Log