URL
https://opencores.org/ocsvn/twofish/twofish/trunk
Subversion Repositories twofish
[/] [twofish/] [trunk/] [vhdl/] [twofish_ecb_encryption_monte_carlo_testbench_128bits.vhd] - Rev 2
Go to most recent revision | Compare with Previous | Blame | View Log
-- Twofish_ecb_encryption_monte_carlo_testbench_128bits.vhd -- Copyright (C) 2006 Spyros Ninos -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this library; see the file COPYING. If not, write to: -- -- Free Software Foundation -- 59 Temple Place - Suite 330 -- Boston, MA 02111-1307, USA. -- -- description : this file is the testbench for the Encryption Monte Carlo KAT of the twofish cipher with 128 bit key -- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_textio.all; use ieee.std_logic_arith.all; use std.textio.all; entity ecb_encryption_monte_carlo_testbench128 is end ecb_encryption_monte_carlo_testbench128; architecture ecb_encryption128_monte_carlo_testbench_arch of ecb_encryption_monte_carlo_testbench128 is component reg128 port ( in_reg128 : in std_logic_vector(127 downto 0); out_reg128 : out std_logic_vector(127 downto 0); enable_reg128, reset_reg128, clk_reg128 : in std_logic ); end component; component twofish_keysched128 port ( odd_in_tk128, even_in_tk128 : in std_logic_vector(7 downto 0); in_key_tk128 : in std_logic_vector(127 downto 0); out_key_up_tk128, out_key_down_tk128 : out std_logic_vector(31 downto 0) ); end component; component twofish_whit_keysched128 port ( in_key_twk128 : in std_logic_vector(127 downto 0); out_K0_twk128, out_K1_twk128, out_K2_twk128, out_K3_twk128, out_K4_twk128, out_K5_twk128, out_K6_twk128, out_K7_twk128 : out std_logic_vector(31 downto 0) ); end component; component twofish_encryption_round128 port ( in1_ter128, in2_ter128, in3_ter128, in4_ter128, in_Sfirst_ter128, in_Ssecond_ter128, in_key_up_ter128, in_key_down_ter128 : in std_logic_vector(31 downto 0); out1_ter128, out2_ter128, out3_ter128, out4_ter128 : out std_logic_vector(31 downto 0) ); end component; component twofish_data_input port ( in_tdi : in std_logic_vector(127 downto 0); out_tdi : out std_logic_vector(127 downto 0) ); end component; component twofish_data_output port ( in_tdo : in std_logic_vector(127 downto 0); out_tdo : out std_logic_vector(127 downto 0) ); end component; component demux128 port ( in_demux128 : in std_logic_vector(127 downto 0); out1_demux128, out2_demux128 : out std_logic_vector(127 downto 0); selection_demux128 : in std_logic ); end component; component mux128 port ( in1_mux128, in2_mux128 : in std_logic_vector(127 downto 0); selection_mux128 : in std_logic; out_mux128 : out std_logic_vector(127 downto 0) ); end component; component twofish_S128 port ( in_key_ts128 : in std_logic_vector(127 downto 0); out_Sfirst_ts128, out_Ssecond_ts128 : out std_logic_vector(31 downto 0) ); end component; FILE input_file : text is in "twofish_ecb_encryption_monte_carlo_testvalues_128bits.txt"; FILE output_file : text is out "twofish_ecb_encryption_monte_carlo_128bits_results.txt"; -- we create the functions that transform a number to text -- transforming a signle digit to a character function digit_to_char(number : integer range 0 to 9) return character is begin case number is when 0 => return '0'; when 1 => return '1'; when 2 => return '2'; when 3 => return '3'; when 4 => return '4'; when 5 => return '5'; when 6 => return '6'; when 7 => return '7'; when 8 => return '8'; when 9 => return '9'; end case; end; -- transforming multi-digit number to text function to_text(int_number : integer range 0 to 9999) return string is variable our_text : string (1 to 4) := (others => ' '); variable thousands, hundreds, tens, ones : integer range 0 to 9; begin ones := int_number mod 10; tens := ((int_number mod 100) - ones) / 10; hundreds := ((int_number mod 1000) - (int_number mod 100)) / 100; thousands := (int_number - (int_number mod 1000)) / 1000; our_text(1) := digit_to_char(thousands); our_text(2) := digit_to_char(hundreds); our_text(3) := digit_to_char(tens); our_text(4) := digit_to_char(ones); return our_text; end; signal odd_number, even_number : std_logic_vector(7 downto 0); signal input_data, output_data, twofish_key, to_encr_reg128, from_tdi_to_xors, to_output_whit_xors, from_xors_to_tdo, to_mux, to_demux, from_input_whit_xors, to_round, to_input_mux : std_logic_vector(127 downto 0) ; signal key_up, key_down, Sfirst, Ssecond, from_xor0, from_xor1, from_xor2, from_xor3, K0,K1,K2,K3, K4,K5,K6,K7 : std_logic_vector(31 downto 0); signal clk : std_logic := '0'; signal mux_selection : std_logic := '0'; signal demux_selection: std_logic := '0'; signal enable_encr_reg : std_logic := '0'; signal reset : std_logic := '0'; signal enable_round_reg : std_logic := '0'; -- begin the testbench arch description begin -- getting data to encrypt data_input: twofish_data_input port map ( in_tdi => input_data, out_tdi => from_tdi_to_xors ); -- producing whitening keys K0..7 the_whitening_step: twofish_whit_keysched128 port map ( in_key_twk128 => twofish_key, out_K0_twk128 => K0, out_K1_twk128 => K1, out_K2_twk128 => K2, out_K3_twk128 => K3, out_K4_twk128 => K4, out_K5_twk128 => K5, out_K6_twk128 => K6, out_K7_twk128 => K7 ); -- performing the input whitening XORs from_xor0 <= K0 XOR from_tdi_to_xors(127 downto 96); from_xor1 <= K1 XOR from_tdi_to_xors(95 downto 64); from_xor2 <= K2 XOR from_tdi_to_xors(63 downto 32); from_xor3 <= K3 XOR from_tdi_to_xors(31 downto 0); from_input_whit_xors <= from_xor0 & from_xor1 & from_xor2 & from_xor3; round_reg: reg128 port map ( in_reg128 => from_input_whit_xors, out_reg128 => to_input_mux, enable_reg128 => enable_round_reg, reset_reg128 => reset, clk_reg128 => clk ); input_mux: mux128 port map ( in1_mux128 => to_input_mux, in2_mux128 => to_mux, out_mux128 => to_round, selection_mux128 => mux_selection ); -- creating a round the_keysched_of_the_round: twofish_keysched128 port map ( odd_in_tk128 => odd_number, even_in_tk128 => even_number, in_key_tk128 => twofish_key, out_key_up_tk128 => key_up, out_key_down_tk128 => key_down ); producing_the_Skeys: twofish_S128 port map ( in_key_ts128 => twofish_key, out_Sfirst_ts128 => Sfirst, out_Ssecond_ts128 => Ssecond ); the_encryption_circuit: twofish_encryption_round128 port map ( in1_ter128 => to_round(127 downto 96), in2_ter128 => to_round(95 downto 64), in3_ter128 => to_round(63 downto 32), in4_ter128 => to_round(31 downto 0), in_Sfirst_ter128 => Sfirst, in_Ssecond_ter128 => Ssecond, in_key_up_ter128 => key_up, in_key_down_ter128 => key_down, out1_ter128 => to_encr_reg128(127 downto 96), out2_ter128 => to_encr_reg128(95 downto 64), out3_ter128 => to_encr_reg128(63 downto 32), out4_ter128 => to_encr_reg128(31 downto 0) ); encr_reg: reg128 port map ( in_reg128 => to_encr_reg128, out_reg128 => to_demux, enable_reg128 => enable_encr_reg, reset_reg128 => reset, clk_reg128 => clk ); output_demux: demux128 port map ( in_demux128 => to_demux, out1_demux128 => to_output_whit_xors, out2_demux128 => to_mux, selection_demux128 => demux_selection ); -- don't forget the last swap !!! from_xors_to_tdo(127 downto 96) <= K4 XOR to_output_whit_xors(63 downto 32); from_xors_to_tdo(95 downto 64) <= K5 XOR to_output_whit_xors(31 downto 0); from_xors_to_tdo(63 downto 32) <= K6 XOR to_output_whit_xors(127 downto 96); from_xors_to_tdo(31 downto 0) <= K7 XOR to_output_whit_xors(95 downto 64); taking_the_output: twofish_data_output port map ( in_tdo => from_xors_to_tdo, out_tdo => output_data ); -- we create the clock clk <= not clk after 50 ns; -- period 100 ns ecb_emc_proc: process variable key_f, -- key input from file pt_f, -- plaintext from file ct_f : line; -- ciphertext from file variable key_v, -- key vector input pt_v , -- plaintext vector ct_v : std_logic_vector(127 downto 0); -- ciphertext vector variable counter_10000 : integer range 0 to 9999 := 0; -- counter for the 10.000 repeats in the 400 next ones variable counter_400 : integer range 0 to 399 := 0; -- counter for the 400 repeats variable round : integer range 0 to 16 := 0; -- holds the rounds variable intermediate_encryption_result : std_logic_vector(127 downto 0); -- holds the intermediate encryption result begin while not endfile(input_file) loop readline(input_file, key_f); readline(input_file, pt_f); readline(input_file,ct_f); hread(key_f,key_v); hread(pt_f,pt_v); hread(ct_f,ct_v); twofish_key <= key_v; intermediate_encryption_result := pt_v; for counter_10000 in 0 to 9999 loop input_data <= intermediate_encryption_result; wait for 25 ns; reset <= '1'; wait for 50 ns; reset <= '0'; mux_selection <= '0'; demux_selection <= '1'; enable_encr_reg <= '0'; enable_round_reg <= '0'; wait for 50 ns; enable_round_reg <= '1'; wait for 50 ns; enable_round_reg <= '0'; -- the first round even_number <= "00001000"; -- 8 odd_number <= "00001001"; -- 9 wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; demux_selection <= '1'; mux_selection <= '1'; -- the rest 15 rounds for round in 1 to 15 loop even_number <= conv_std_logic_vector(((round*2)+8), 8); odd_number <= conv_std_logic_vector(((round*2)+9), 8); wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; end loop; -- taking final results demux_selection <= '0'; wait for 25 ns; intermediate_encryption_result := output_data; assert false report "I=" & to_text(counter_400) & " R=" & to_text(counter_10000) severity note; end loop; -- counter_10000 hwrite(key_f, key_v); hwrite(pt_f, pt_v); hwrite(ct_f,output_data); writeline(output_file,key_f); writeline(output_file,pt_f); writeline(output_file,ct_f); assert (ct_v = output_data) report "file entry and encryption result DO NOT match!!! :( " severity failure; assert (ct_v /= output_data) report "Encryption I=" & to_text(counter_400) &" OK" severity note; counter_400 := counter_400 + 1; end loop; assert false report "***** ECB Encryption Monte Carlo Test with 128 bits key size ended succesfully! :) *****" severity failure; end process ecb_emc_proc; end ecb_encryption128_monte_carlo_testbench_arch;
Go to most recent revision | Compare with Previous | Blame | View Log