URL
https://opencores.org/ocsvn/uart6551/uart6551/trunk
Subversion Repositories uart6551
[/] [uart6551/] [trunk/] [trunk/] [rtl/] [uart6551_x12.sv] - Rev 10
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2005-2022 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ============================================================================
//
`define UART_TRB 4'd0 // transmit/receive buffer
`define UART_STAT 4'd1
`define UART_CMD 4'd2
`define UART_CTRL 4'd3
`define UART_IRQS 4'd4
`define UART_MS 4'd5
`define UART_LS 4'd6
`define UART_CMD1 4'd7
`define UART_CMD2 4'd8
`define UART_CMD3 4'd9
`define UART_CTRL1 4'd10
`define UART_CTRL2 4'd11
`define UART_CTRL3 4'd12
`define UART_CLK1 4'd13
`define UART_CLK2 4'd14
module uart6551_x12 (rst_i, clk_i, cs_i, irq_o,
cyc_i, stb_i, ack_o, we_i, adr_i, dat_i, dat_o,
cts_ni, rts_no, dsr_ni, dcd_ni, dtr_no, ri_ni,
rxd_i, txd_o, data_present,
rxDRQ_o, txDRQ_o,
xclk_i, RxC_i
);
parameter CLK_FREQ = 100;
parameter pCounterBits = 24;
parameter pFifoSize = 1024;
parameter pClkDiv = 24'd1302; // 9.6k baud, 200.000MHz clock
parameter HIGH = 1'b1;
parameter LOW = 1'b0;
input rst_i;
input clk_i; // eg 50.000MHz
input cs_i; // circuit select
// WISHBONE -------------------------------
input cyc_i; // bus cycle valid
input stb_i;
output ack_o;
input we_i; // 1 = write
input [3:0] adr_i; // register address
input [11:0] dat_i; // data input bus
output reg [11:0] dat_o; // data output bus
//------------------------------------------
output reg irq_o; // interrupt request
input cts_ni; // clear to send - (flow control) active low
output reg rts_no; // request to send - (flow control) active low
input dsr_ni; // data set ready - active low
input dcd_ni; // data carrier detect - active low
output reg dtr_no; // data terminal ready - active low
input ri_ni; // ring indicator
input rxd_i; // serial data in
output txd_o; // serial data out
output data_present;
output rxDRQ_o; // reciever DMA request
output txDRQ_o; // transmitter DMA request
input xclk_i; // external clock source
input RxC_i; // external receiver clock source
reg accessCD; // clock multiplier access flag
reg llb; // local loopback mode
reg dmaEnable;
// baud rate clock control
reg [4:0] baudRateSel;
reg selCD; // Use clock multiplier register
reg [pCounterBits-1:0] c; // current count
reg [pCounterBits-1:0] ckdiv; // baud rate clock divider
reg [pCounterBits-1:0] clkdiv; // clock multiplier register
reg [1:0] xclks; // synchronized external clock
reg [1:0] RxCs; // synchronized external receiver clock
reg baud16; // 16x baud rate clock
wire baud16rx; // reciever clock
reg xClkSrc; // uart baud clock is external
reg rxClkSrc; // receiver clock is external
// frame format registers
reg [3:0] wordLength;
reg stopBit;
reg [2:0] stopBits;
reg [2:0] parityCtrl;
reg [8:0] frameSize;
reg txBreak; // transmit a break
wire rxFull;
wire rxEmpty;
wire txFull;
wire txEmpty;
reg hwfc; // hardware flow control enable
wire [11:0] lineStatusReg;
wire [11:0] modemStatusReg;
wire [11:0] irqStatusReg;
// interrupt
reg rxIe;
reg txIe;
reg modemStatusChangeIe;
wire modemStatusChange;
reg lineStatusChangeIe;
wire lineStatusChange;
reg rxToutIe; // receiver timeout interrupt enable
reg [3:0] rxThres; // receiver threshold for interrupt
reg [3:0] txThres; // transmitter threshold for interrupt
reg rxTout; // receiver timeout
wire [9:0] rxCnt; // reciever counter value
reg [7:0] rxToutMax;
reg [2:0] irqenc; // encoded irq cause
wire rxITrig; // receiver interrupt trigger level
wire txITrig; // transmitter interrupt trigger level
// reciever errors
wire parityErr; // reciever detected a parity error
wire frameErr; // receiver char framing error
wire overrun; // receiver over run
wire rxBreak; // reciever detected a break
wire rxGErr; // global error: there is at least one error in the reciever fifo
// modem controls
reg [1:0] ctsx; // cts_n sampling
reg [1:0] dcdx;
reg [1:0] dsrx;
reg [1:0] rix;
reg deltaCts;
reg deltaDcd;
reg deltaDsr;
reg deltaRi;
// fifo
reg rxFifoClear;
reg txFifoClear;
reg rxFifoEnable;
reg txFifoEnable;
wire [5:0] rxQued;
wire [5:0] txQued;
// test
wire txd1;
assign data_present = ~rxEmpty;
assign rxITrig = rxQued[5:2] >= rxThres;
assign txITrig = txQued[5:2] <= txThres;
wire rxDRQ1 = (rxFifoEnable ? rxITrig : ~rxEmpty);
wire txDRQ1 = (txFifoEnable ? txITrig : txEmpty);
assign rxDRQ_o = dmaEnable & rxDRQ1;
assign txDRQ_o = dmaEnable & txDRQ1;
wire rxIRQ = rxIe & rxDRQ1;
wire txIRQ = txIe & txDRQ1;
reg [11:0] cmd0, cmd1, cmd2, cmd3;
reg [11:0] ctrl0, ctrl1, ctrl2, ctrl3;
always_ff @(posedge clk_i)
irq_o <=
rxIRQ
| txIRQ
| (rxTout & rxToutIe)
| (lineStatusChange & lineStatusChangeIe)
| (modemStatusChange & modemStatusChangeIe)
;
// Hold onto address and data an extra cycle.
// The extra cycle updates or reads the serial transmit / receive.
reg [11:0] dati;
always_ff @(posedge clk_i)
dati <= dat_i;
reg [3:0] adr_h;
always_ff @(posedge clk_i)
adr_h <= adr_i;
reg we;
always_ff @(posedge clk_i)
we <= we_i;
wire [11:0] rx_do;
wire rdrx = ack_o && adr_h==`UART_TRB && ~we;
wire txrx = ack_o && adr_h==`UART_TRB;
wire cs = cs_i & cyc_i & stb_i;
ack_gen #(
.READ_STAGES(1),
.WRITE_STAGES(0),
.REGISTER_OUTPUT(1)
) uag1
(
.rst_i(rst_i),
.clk_i(clk_i),
.ce_i(1'b1),
.i(cs),
.we_i(cs & we),
.o(ack_o),
.rid_i(0),
.wid_i(0),
.rid_o(),
.wid_o()
);
uart6551Rx_x12 uart_rx0
(
.rst(rst_i),
.clk(clk_i),
.cyc(cyc_i),
.cs(rdrx),
.wr(we),
.dout(rx_do),
.ack(),
.fifoEnable(rxFifoEnable),
.fifoClear(rxFifoClear),
.clearGErr(1'b0),
.wordLength(wordLength),
.parityCtrl(parityCtrl),
.frameSize(frameSize),
.stop_bits(stopBits),
.baud16x_ce(baud16rx),
.clear(1'b0),
.rxd(llb ? txd1 : rxd_i),
.full(),
.empty(rxEmpty),
.frameErr(frameErr),
.overrun(overrun),
.parityErr(parityErr),
.break_o(rxBreak),
.gerr(rxGErr),
.qcnt(rxQued),
.cnt(rxCnt)
);
uart6551Tx_x12 uart_tx0
(
.rst(rst_i),
.clk(clk_i),
.cyc(cyc_i),
.cs(txrx),
.wr(we),
.din(dati),
.ack(),
.fifoEnable(txFifoEnable),
.fifoClear(txFifoClear),
.txBreak(txBreak),
.frameSize(frameSize), // 16 x 10 bits
.wordLength(wordLength),// 8 bits
.parityCtrl(parityCtrl),// no parity
.baud16x_ce(baud16),
.cts(ctsx[1]|~hwfc),
.clear(clear),
.txd(txd1),
.full(txFull),
.empty(txEmpty),
.qcnt(txQued)
);
assign txd_o = llb ? 1'b1 : txd1;
assign lineStatusReg = {4'h0,rxGErr,1'b0,txFull,rxBreak,1'b0,1'b0,1'b0,1'b0};
assign modemStatusChange = deltaDcd|deltaRi|deltaDsr|deltaCts; // modem status delta
assign modemStatusReg = {4'h0,1'b0,~rix[1],1'b0,~ctsx[1],deltaDcd, deltaRi, deltaDsr, deltaCts};
assign irqStatusReg = {irq_o,3'b0,irq_o,2'b00,irqenc,2'b00};
// mux the reg outputs
always_ff @(posedge clk_i)
if (cs) begin
case(adr_h)
`UART_TRB: dat_o <= {4'h0,rx_do}; // receiver holding register
`UART_STAT: dat_o <= {irq_o,3'h0,irq_o,dsrx[1],dcdx[1],txFifoEnable ? ~txFull : txEmpty,~rxEmpty,overrun,frameErr,parityErr};
`UART_CMD: dat_o <= cmd0;
`UART_CTRL: dat_o <= ctrl0;
`UART_IRQS: dat_o <= irqStatusReg;
`UART_MS: dat_o <= modemStatusReg;
`UART_LS: dat_o <= lineStatusReg;
`UART_CMD1: dat_o <= cmd1;
`UART_CMD2: dat_o <= cmd2;
`UART_CMD3: dat_o <= cmd3;
`UART_CTRL1: dat_o <= ctrl1;
`UART_CTRL2: dat_o <= ctrl2;
`UART_CTRL3: dat_o <= ctrl3;
`UART_CLK1: dat_o <= clkdiv[23:12];
`UART_CLK2: dat_o <= clkdiv[11: 0];
default: dat_o <= 12'h0;
endcase
end
else
dat_o <= 12'h0;
// register updates
always_ff @(posedge clk_i)
if (rst_i) begin
rts_no <= HIGH;
dtr_no <= HIGH;
// interrupts
rxIe <= 1'b0;
txIe <= 1'b0;
modemStatusChangeIe <= 1'b0;
lineStatusChangeIe <= 1'b0;
hwfc <= 1'b0;
modemStatusChangeIe <= 1'b0;
lineStatusChangeIe <= 1'b0;
dmaEnable <= 1'b0;
// clock control
baudRateSel <= 5'h0;
rxClkSrc <= 1'b0; // ** 6551 defaults to zero (external receiver clock)
clkdiv <= pClkDiv;
// frame format
wordLength <= 4'd8; // 8 bits
stopBit <= 1'b0; // 1 stop bit
parityCtrl <= 3'd0; // no parity
txBreak <= 1'b0;
// Fifo control
txFifoClear <= 1'b1;
rxFifoClear <= 1'b1;
rxFifoEnable <= 1'b1;
txFifoEnable <= 1'b1;
// Test
llb <= 1'b0;
selCD <= 1'b0;
accessCD <= 1'b0;
end
else begin
//llb <= 1'b1;
rxFifoClear <= 1'b0;
txFifoClear <= 1'b0;
ctrl2[1] <= 1'b0;
ctrl2[2] <= 1'b0;
if (cs & we) begin
case (adr_h) // synopsys full_case parallel_case
`UART_TRB: ;
`UART_CLK2: clkdiv[11: 0] <= dati;
`UART_CLK1: clkdiv[23:12] <= dati;
// Writing to the status register does a software reset of some bits.
`UART_STAT:
begin
dtr_no <= HIGH;
rxIe <= 1'b0;
rts_no <= HIGH;
txIe <= 1'b0;
txBreak <= 1'b0;
llb <= 1'b0;
end
`UART_CMD:
begin
cmd0 <= dati[7:0];
dtr_no <= ~dati[0];
rxIe <= ~dati[1];
case(dati[3:2])
2'd0: begin rts_no <= 1'b1; txIe <= 1'b0; txBreak <= 1'b0; end
2'd1: begin rts_no <= 1'b0; txIe <= 1'b1; txBreak <= 1'b0; end
2'd2: begin rts_no <= 1'b0; txIe <= 1'b0; txBreak <= 1'b0; end
2'd3: begin rts_no <= 1'b0; txIe <= 1'b0; txBreak <= 1'b1; end
endcase
llb <= dati[4];
parityCtrl <= dati[7:5]; //000=none,001=odd,011=even,101=force 1,111 = force 0
end
`UART_CMD1:
begin
cmd1 <= dati;
lineStatusChangeIe <= dati[0];
modemStatusChangeIe <= dati[1];
rxToutIe <= dati[2];
end
`UART_CMD2:
cmd2 <= dati;
`UART_CMD3:
cmd3 <= dati;
`UART_CTRL:
begin
ctrl0 <= dati;
baudRateSel[3:0] <= dati[3:0];
rxClkSrc <= dati[4]; // 1 = baud rate generator, 0 = external
//11=5,10=6,01=7,00=8
case({dati[8],dati[6:5]})
3'd0: wordLength <= 4'd8;
3'd1: wordLength <= 4'd7;
3'd2: wordLength <= 4'd6;
3'd3: wordLength <= 4'd5;
3'd4: wordLength <= 4'd12;
3'd5: wordLength <= 4'd11;
3'd6: wordLength <= 4'd10;
3'd7: wordLength <= 4'd9;
endcase
stopBit <= dati[7]; //0=1,1=1.5 or 2
end
`UART_CTRL1:
// Extended word length, values beyond 11 not supported.
ctrl1 <= dati;
`UART_CTRL2:
begin
ctrl2 <= dati;
rxFifoEnable <= dati[0];
txFifoEnable <= dati[1];
rxFifoClear <= dati[2];
txFifoClear <= dati[3];
case (dati[5:4])
2'd0: txThres <= 4'd1; // one-byte
2'd1: txThres <= pFifoSize / 4; // one-quarter full
2'd2: txThres <= pFifoSize / 2; // one-half full
2'd3: txThres <= pFifoSize * 3 / 4; // three-quarters full
endcase
case (dati[7:6])
2'd0: rxThres <= 4'd1; // one-byte
2'd1: rxThres <= pFifoSize / 4; // one-quarter full
2'd2: rxThres <= pFifoSize / 2; // one-half full
2'd3: rxThres <= pFifoSize * 3 / 4; // three quarters full
endcase
end
`UART_CTRL3:
begin
ctrl3 <= dati;
hwfc <= dati[0];
dmaEnable <= dati[2];
baudRateSel[4] <= dati[3];
selCD <= dati[6];
accessCD <= dati[7];
end
default:
;
endcase
end
end
// ----------------------------------------------------------------------------
// Baud rate control.
// ----------------------------------------------------------------------------
always_ff @(posedge clk_i)
xClkSrc <= baudRateSel==5'd0;
wire [pCounterBits-1:0] bclkdiv;
uart6551BaudLUT #(
.CLK_FREQ(CLK_FREQ),
.pCounterBits(pCounterBits)
) ublt1 (.a(baudRateSel), .o(bclkdiv));
reg [pCounterBits-1:0] clkdiv2;
always_ff @(posedge clk_i)
clkdiv2 <= selCD ? clkdiv : bclkdiv;
always_ff @(posedge clk_i)
if (rst_i)
c <= 1'd1;
else begin
c <= c + 2'd1;
if (c >= clkdiv2)
c <= 2'd1;
end
// for detecting an edge on the baud clock
wire ibaud16 = c == 2'd1;
// Detect an edge on the external clock
wire xclkEdge;
edge_det ed1(.rst(rst_i), .clk(clk_i), .ce(1'b1), .i(xclks[1]), .pe(xclkEdge), .ne() );
// Detect an edge on the external clock
wire rxClkEdge;
edge_det ed2(.rst(rst_i), .clk(clk_i), .ce(1'b1), .i(RxCs[1]), .pe(rxClkEdge), .ne() );
always_comb
if (xClkSrc) // 16x external clock (xclk)
baud16 <= xclkEdge;
else
baud16 <= ibaud16;
assign baud16rx = rxClkSrc ? baud16 : rxClkEdge;
//------------------------------------------------------------
// external signal synchronization
//------------------------------------------------------------
// External receiver clock
always_ff @(posedge clk_i)
RxCs <= {RxCs[1:0],RxC_i};
// External baud clock
always_ff @(posedge clk_i)
xclks <= {xclks[1:0],xclk_i};
always_ff @(posedge clk_i)
ctsx <= {ctsx[0],llb?~rts_no:~cts_ni};
always_ff @(posedge clk_i)
dcdx <= {dcdx[0],~dcd_ni};
always_ff @(posedge clk_i)
dsrx <= {dsrx[0],llb?~dtr_no:~dsr_ni};
always_ff @(posedge clk_i)
rix <= {rix[0],~ri_ni};
//------------------------------------------------------------
// state change detectors
//------------------------------------------------------------
wire ne_stat;
edge_det ued3 (
.rst(rst_i),
.clk(clk_i),
.ce(1'b1),
.i(ack_o && adr_i==`UART_MS && ~we_i),
.pe(),
.ne(ne_stat),
.ee()
);
// detect a change on the dsr signal
always_ff @(posedge clk_i)
if (rst_i)
deltaDsr <= 1'b0;
else begin
if (ne_stat)
deltaDsr <= 0;
else if (~deltaDsr)
deltaDsr <= dsrx[1] ^ dsrx[0];
end
// detect a change on the dcd signal
always_ff @(posedge clk_i)
if (rst_i)
deltaDcd <= 1'b0;
else begin
if (ne_stat)
deltaDcd <= 0;
else if (~deltaDcd)
deltaDcd <= dcdx[1] ^ dcdx[0];
end
// detect a change on the cts signal
always_ff @(posedge clk_i)
if (rst_i)
deltaCts <= 1'b0;
else begin
if (ne_stat)
deltaCts <= 0;
else if (~deltaCts)
deltaCts <= ctsx[1] ^ ctsx[0];
end
// detect a change on the ri signal
always_ff @(posedge clk_i)
if (rst_i)
deltaRi <= 1'b0;
else begin
if (ne_stat)
deltaRi <= 0;
else if (~deltaRi)
deltaRi <= rix[1] ^ rix[0];
end
// detect a change in line status
reg [7:0] pLineStatusReg;
always_ff @(posedge clk_i)
pLineStatusReg <= lineStatusReg;
assign lineStatusChange = pLineStatusReg != lineStatusReg;
//-----------------------------------------------------
// compute recieve timeout
always_comb
rxToutMax <= (wordLength << 2) + 6'd12;
always_ff @(posedge clk_i)
if (rst_i)
rxTout <= 1'b0;
else begin
// read of receiver clears timeout counter
if (rdrx)
rxTout <= 1'b0;
// Don't time out if the fifo is empty
else if (rxCnt[9:4]==rxToutMax && ~rxEmpty)
rxTout <= 1'b1;
end
//-----------------------------------------------------
// compute the 2x number of stop bits
always_comb
if (stopBit==1'b0) // one stop bit
stopBits <= 3'd2;
else if (wordLength==4'd8 && parityCtrl != 3'd0)
stopBits <= 3'd2;
else if (wordLength==4'd5 && parityCtrl == 3'd0) // 5 bits - 1 1/2 stop bit
stopBits <= 3'd3;
else
stopBits <= 3'd4; // two stop bits
// compute frame size
// frame size is one less
always_ff @(posedge clk_i)
frameSize <= {wordLength + 4'd1 + stopBits[2:1] + parityCtrl[0], stopBits[0],3'b0} - 2'd1;
//-----------------------------------------------------
// encode IRQ mailbox
always_comb
irqenc <=
lineStatusChange ? 3'd0 :
~rxDRQ_o ? 3'd1 :
rxTout ? 3'd2 :
~txDRQ_o ? 3'd3 :
modemStatusChange ? 3'd4 :
3'd0;
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log