URL
https://opencores.org/ocsvn/usb11/usb11/trunk
Subversion Repositories usb11
[/] [usb11/] [trunk/] [rtl/] [systemc/] [usb_pd_sie.cpp] - Rev 13
Compare with Previous | Blame | View Log
///////////////////////////////////////////////////////////////////// //// //// //// USB Packet Disassembler //// //// //// //// SystemC Version: usb_pd_sie.cpp //// //// Author: Alfredo Luiz Foltran Fialho //// //// alfoltran@ig.com.br //// //// //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Verilog Version: usb1_pd.v //// //// Copyright (C) 2000-2002 Rudolf Usselmann //// //// www.asics.ws //// //// rudi@asics.ws //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer.//// //// //// //// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY //// //// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED //// //// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //// //// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR //// //// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //// //// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //// //// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE //// //// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR //// //// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF //// //// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT //// //// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT //// //// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //// //// POSSIBILITY OF SUCH DAMAGE. //// //// //// ///////////////////////////////////////////////////////////////////// #include "systemc.h" #include "usb_pd_sie.h" void usb_pd_sie::rx_busy_up1(void) { if (!rst.read()) rx_busy_d.write(false); else if (rx_valid.read() && (state.read() == PD_DATA)) rx_busy_d.write(true); else if (state.read() != PD_DATA) rx_busy_d.write(false); } void usb_pd_sie::rx_busy_up2(void) { rx_busy.write(rx_busy_d.read()); } void usb_pd_sie::pid_ld_up(void) { pid_ld_en.write(pid_le_sm.read() && rx_active.read() && rx_valid.read()); } void usb_pd_sie::pid_up(void) { if (!rst.read()) pid.write(0xf0); else if (pid_ld_en.read()) pid.write(rx_data.read()); } void usb_pd_sie::pid_cks_err_up(void) { pid_cks_err.write(pid.read().range(3, 0) != ~pid.read().range(7, 4)); } void usb_pd_sie::pid_decoder(void) { pid_OUT.write(pid.read().range(3, 0) == USBF_T_PID_OUT); pid_IN.write(pid.read().range(3, 0) == USBF_T_PID_IN); pid_SOF.write(pid.read().range(3, 0) == USBF_T_PID_SOF); pid_SETUP.write(pid.read().range(3, 0) == USBF_T_PID_SETUP); pid_DATA0.write(pid.read().range(3, 0) == USBF_T_PID_DATA0); pid_DATA1.write(pid.read().range(3, 0) == USBF_T_PID_DATA1); pid_DATA2.write(pid.read().range(3, 0) == USBF_T_PID_DATA2); pid_MDATA.write(pid.read().range(3, 0) == USBF_T_PID_MDATA); pid_ACK.write(pid.read().range(3, 0) == USBF_T_PID_ACK); pid_NACK.write(pid.read().range(3, 0) == USBF_T_PID_NACK); pid_STALL.write(pid.read().range(3, 0) == USBF_T_PID_STALL); pid_NYET.write(pid.read().range(3, 0) == USBF_T_PID_NYET); pid_PRE.write(pid.read().range(3, 0) == USBF_T_PID_PRE); pid_ERR.write(pid.read().range(3, 0) == USBF_T_PID_ERR); pid_SPLIT.write(pid.read().range(3, 0) == USBF_T_PID_SPLIT); pid_PING.write(pid.read().range(3, 0) == USBF_T_PID_PING); pid_RES.write(pid.read().range(3, 0) == USBF_T_PID_RES); } void usb_pd_sie::pid_token_up(void) { pid_TOKEN.write(pid_OUT.read() || pid_IN.read() || pid_SOF.read() || pid_SETUP.read() || pid_PING.read()); } void usb_pd_sie::pid_data_up(void) { pid_DATA.write(pid_DATA0.read() || pid_DATA1.read() || pid_DATA2.read() || pid_MDATA.read()); } void usb_pd_sie::token_decoder(void) { if (token_le_1.read()) token0.write(rx_data.read()); if (token_le_2.read()) token1.write(rx_data.read()); } void usb_pd_sie::token_valid_up1(void) { token_valid_r1.write(token_le_2.read()); } void usb_pd_sie::token_valid_up2(void) { token_valid_str1.write(token_valid_r1.read() || pid_ack.read()); } void usb_pd_sie::token_valid_up3(void) { token_valid.write(token_valid_str1.read()); } void usb_pd_sie::token_up(void) { frame_no.write(((sc_uint<3>)token1.read().range(2, 0), token0.read())); token_fadr.write((sc_uint<7>)token0.read().range(6, 0)); token_endp.write(((sc_uint<3>)token1.read().range(2, 0), (sc_uint<1>)token0.read()[7])); token_crc5.write((sc_uint<5>)token1.read().range(7, 3)); } // CRC5 should perform the check in one cycle (flow through logic) // 11 bits and crc5 input, 1 bit output void usb_pd_sie::crc5_din_up(void) { #ifdef USB_SIMULATION crc5_din.write(( (sc_uint<1>)token_fadr.read()[0], (sc_uint<1>)token_fadr.read()[1], (sc_uint<1>)token_fadr.read()[2], (sc_uint<1>)token_fadr.read()[3], (sc_uint<1>)token_fadr.read()[4], (sc_uint<1>)token_fadr.read()[5], (sc_uint<1>)token_fadr.read()[6], (sc_uint<1>)token_endp.read()[0], (sc_uint<1>)token_endp.read()[1], (sc_uint<1>)token_endp.read()[2], (sc_uint<1>)token_endp.read()[3])); #else crc5_din.write(((sc_uint<7>)token_fadr.read().range(0, 6), (sc_uint<4>)token_endp.read().range(0, 3))); #endif } void usb_pd_sie::crc5_err_up(void) { crc5_err.write(token_valid.read() && (crc5_out2.read() != token_crc5.read())); } // Invert and reverse result bits void usb_pd_sie::crc5_out2_up(void) { #ifdef USB_SIMULATION crc5_out2.write(( (sc_uint<1>)!crc5_out.read()[0], (sc_uint<1>)!crc5_out.read()[1], (sc_uint<1>)!crc5_out.read()[2], (sc_uint<1>)!crc5_out.read()[3], (sc_uint<1>)!crc5_out.read()[4])); #else crc5_out2.write((sc_uint<5>)~crc5_out.read().range(0, 4)); #endif } // Data receiving logic // Build a delay line and stop when we are about to get crc void usb_pd_sie::rxv1_up(void) { if (!rst.read()) rxv1.write(false); else if (data_valid_d.read()) rxv1.write(true); else if (data_done.read()) rxv1.write(false); } void usb_pd_sie::rxv2_up(void) { if (!rst.read()) rxv2.write(false); else if (rxv1.read() && data_valid_d.read()) rxv2.write(true); else if (data_done.read()) rxv2.write(false); } void usb_pd_sie::data_valid0_up(void) { data_valid0.write(rxv2.read() && data_valid_d.read()); } void usb_pd_sie::d_up(void) { if (data_valid_d.read()) d0.write(rx_data.read()); if (data_valid_d.read()) d1.write(d0.read()); if (data_valid_d.read()) d2.write(d1.read()); } void usb_pd_sie::rx_data_st_up(void) { rx_data_st.write(d2.read()); } void usb_pd_sie::rx_data_valid_up(void) { rx_data_valid.write(data_valid0.read()); } void usb_pd_sie::rx_data_done_up(void) { rx_data_done.write(data_done.read()); } // CRC16 accumulates rx_data as long as data_valid_d is asserted. // When data_done is asserted, CRC16 reports status, and resets itself // next cycle void usb_pd_sie::rx_active_r_up(void) { rx_active_r.write(rx_active.read()); } void usb_pd_sie::crc16_din_up(void) { #ifdef USB_SIMULATION crc16_din.write(( (sc_uint<1>)rx_data.read()[0], (sc_uint<1>)rx_data.read()[1], (sc_uint<1>)rx_data.read()[2], (sc_uint<1>)rx_data.read()[3], (sc_uint<1>)rx_data.read()[4], (sc_uint<1>)rx_data.read()[5], (sc_uint<1>)rx_data.read()[6], (sc_uint<1>)rx_data.read()[7])); #else crc16_din.write((sc_uint<8>)rx_data.read().range(0, 7)); #endif } void usb_pd_sie::crc16_clr_up(void) { crc16_clr.write(rx_active.read() && !rx_active_r.read()); } void usb_pd_sie::crc16_sum_up(void) { if (crc16_clr.read()) crc16_sum.write(0xffff); else if (data_valid_d.read()) crc16_sum.write(crc16_out.read()); } void usb_pd_sie::crc16_err_up(void) { crc16_err.write(data_done.read() && (crc16_sum.read() != 0x800d)); } // Receive and Decode FSM void usb_pd_sie::state_up(void) { if (!rst.read()) state.write(PD_IDLE); else state.write(next_state.read()); } void usb_pd_sie::pd_statemachine(void) { next_state.write(state.read()); // Default don't change current state pid_le_sm.write(false); token_le_1.write(false); token_le_2.write(false); data_valid_d.write(false); data_done.write(false); seq_err.write(false); pid_ack.write(false); switch (state.read()) {// synopsys full_case parallel_case case PD_IDLE: pid_le_sm.write(true); if (rx_valid.read() && rx_active.read()) next_state.write(PD_ACTIVE); break; case PD_ACTIVE: // Received a ACK from host if (pid_ACK.read() && !rx_err.read()) { pid_ack.write(true); if (!rx_active.read()) next_state.write(PD_IDLE); // Receiving a TOKEN } else if (pid_TOKEN.read() && rx_valid.read() && rx_active.read() && !rx_err.read()) { token_le_1.write(true); next_state.write(PD_TOKEN); // Receiving DATA } else if (pid_DATA.read() && rx_valid.read() && rx_active.read() && !rx_err.read()) { data_valid_d.write(true); next_state.write(PD_DATA); // ERROR } else if (!rx_active.read() || rx_err.read() || (rx_valid.read() && !(pid_TOKEN.read() || pid_DATA.read()))) { seq_err.write(!rx_err.read()); if (!rx_active.read()) next_state.write(PD_IDLE); } break; case PD_TOKEN: if (rx_valid.read() && rx_active.read() && !rx_err.read()) { token_le_2.write(true); next_state.write(PD_IDLE); // ERROR } else if (!rx_active.read() || rx_err.read()) { seq_err.write(!rx_err.read()); if (!rx_active.read()) next_state.write(PD_IDLE); } break; case PD_DATA: if (rx_valid.read() && rx_active.read() && !rx_err.read()) data_valid_d.write(true); if (!rx_active.read() || rx_err.read()) { data_done.write(true); if (!rx_active.read()) next_state.write(PD_IDLE); } break; } } /* usb_pd_sie::~usb_pd_sie(void) { if (i_crc5) delete i_crc5; if (i_crc16) delete i_crc16; } */