URL
https://opencores.org/ocsvn/usb11/usb11/trunk
Subversion Repositories usb11
[/] [usb11/] [trunk/] [rtl/] [systemc/] [usb_pe_sie.cpp] - Rev 13
Compare with Previous | Blame | View Log
///////////////////////////////////////////////////////////////////// //// //// //// USB Protocol Engine //// //// Performs automatic protocol functions //// //// //// //// SystemC Version: usb_pe_sie.cpp //// //// Author: Alfredo Luiz Foltran Fialho //// //// alfoltran@ig.com.br //// //// //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Verilog Version: usb1_pe.v //// //// Copyright (C) 2000-2002 Rudolf Usselmann //// //// www.asics.ws //// //// rudi@asics.ws //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer.//// //// //// //// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY //// //// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED //// //// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //// //// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR //// //// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //// //// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //// //// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE //// //// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR //// //// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF //// //// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT //// //// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT //// //// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //// //// POSSIBILITY OF SUCH DAMAGE. //// //// //// ///////////////////////////////////////////////////////////////////// #include "systemc.h" #include "usb_pe_sie.h" // Endpoint/CSR Decoding void usb_pe_sie::csr_decoder(void) { IN_ep.write(csr.read()[9]); OUT_ep.write(csr.read()[10]); CTRL_ep.write(csr.read()[11]); txfr_iso.write(csr.read()[12]); txfr_bulk.write(csr.read()[13]); txfr_int.write(!csr.read()[12] && !csr.read()[13]); ep_type.write(csr.read().range(10, 9)); txfr_type.write(csr.read().range(13, 12)); } void usb_pe_sie::match_up(void) { match_r.write(match.read() && fsel.read()); } // No such endpoint indicator void usb_pe_sie::nse_err_up(void) { nse_err.write(token_valid.read() && (pid_OUT.read() || pid_IN.read() || pid_SETUP.read()) && !match.read()); } void usb_pe_sie::send_token_up(void) { send_token.write(send_token_d.read()); } void usb_pe_sie::token_pid_sel_up(void) { token_pid_sel.write(token_pid_sel_d.read()); } // Data PID storage void usb_pe_sie::ep0_dpid_up(void) { if (!rst.read()) ep0_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 0)) ep0_dpid.write(next_dpid.read()); } void usb_pe_sie::ep1_dpid_up(void) { if (!rst.read()) ep1_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 1)) ep1_dpid.write(next_dpid.read()); } void usb_pe_sie::ep2_dpid_up(void) { if (!rst.read()) ep2_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 2)) ep2_dpid.write(next_dpid.read()); } void usb_pe_sie::ep3_dpid_up(void) { if (!rst.read()) ep3_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 3)) ep3_dpid.write(next_dpid.read()); } void usb_pe_sie::ep4_dpid_up(void) { if (!rst.read()) ep4_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 4)) ep4_dpid.write(next_dpid.read()); } void usb_pe_sie::ep5_dpid_up(void) { if (!rst.read()) ep5_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 5)) ep5_dpid.write(next_dpid.read()); } void usb_pe_sie::ep6_dpid_up(void) { if (!rst.read()) ep6_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 6)) ep6_dpid.write(next_dpid.read()); } void usb_pe_sie::ep7_dpid_up(void) { if (!rst.read()) ep7_dpid.write(0); else if (uc_dpd_set.read() && (ep_sel.read() == 7)) ep7_dpid.write(next_dpid.read()); } void usb_pe_sie::uc_dpd_up(void) { switch (ep_sel.read()) { case 0: uc_dpd.write(ep0_dpid.read()); break; case 1: uc_dpd.write(ep1_dpid.read()); break; case 2: uc_dpd.write(ep2_dpid.read()); break; case 3: uc_dpd.write(ep3_dpid.read()); break; case 4: uc_dpd.write(ep4_dpid.read()); break; case 5: uc_dpd.write(ep5_dpid.read()); break; case 6: uc_dpd.write(ep6_dpid.read()); break; case 7: uc_dpd.write(ep7_dpid.read()); break; } } // Data PID sequencer void usb_pe_sie::sq_statemachine(void) { sc_uint<8> sel1; sc_uint<5> sel2; sc_uint<2> sel_d1, sel_d2; // tr/mf:ep/type:tr/type:last dpd sel1 = ((sc_uint<2>)tr_fr_d.read(), (sc_uint<2>)ep_type.read(), (sc_uint<2>)txfr_type.read(), (sc_uint<2>)uc_dpd.read()); // CTRL Endpoint Selector sel2 = ((sc_uint<1>)setup_token.read(), (sc_uint<1>)in_op.read(), (sc_uint<1>)out_op.read(), (sc_uint<2>)uc_dpd.read()); // Sync1 Selector sel_d1 = ((sc_uint<1>)pid_MDATA.read(), (sc_uint<1>)pid_DATA1.read()); // Sync2 Selector sel_d2 = ((sc_uint<1>)pid_MDATA.read(), (sc_uint<1>)pid_DATA2.read()); switch (sel1) {// synopsys full_case parallel_case // 0X_01_01_XX -> ISO txfr. IN, 1 tr/mf case 0x14: case 0x15: case 0x16: case 0x17: case 0x54: case 0x55: case 0x56: case 0x57: next_dpid.write(0); break; // 10_01_01_X0 -> ISO txfr. IN, 2 tr/mf case 0x94: case 0x96: next_dpid.write(1); break; // 10_01_01_X1 -> ISO txfr. IN, 2 tr/mf case 0x95: case 0x97: next_dpid.write(0); break; // 11_01_01_00 -> ISO txfr. IN, 3 tr/mf case 0xd4: next_dpid.write(1); break; // 11_01_01_01 -> ISO txfr. IN, 3 tr/mf case 0xd5: next_dpid.write(2); break; // 11_01_01_10 -> ISO txfr. IN, 3 tr/mf case 0xd6: next_dpid.write(0); break; // 0X_10_01_XX -> ISO txfr. OUT, 1 tr/mf case 0x24: case 0x25: case 0x26: case 0x27: case 0x64: case 0x65: case 0x66: case 0x67: next_dpid.write(0); break; // 10_10_01_XX -> ISO txfr. OUT, 2 tr/mf case 0xa4: case 0xa5: case 0xa6: // Resynchronize in case of PID error case 0xa7: switch (sel_d1) {// synopsys full_case parallel_case case 2: next_dpid.write(1); break; case 1: next_dpid.write(0); break; } break; // 11_10_01_00 -> ISO txfr. OUT, 3 tr/mf case 0xe4: // Resynchronize in case of PID error switch (sel_d2) {// synopsys full_case parallel_case case 2: next_dpid.write(1); break; case 1: next_dpid.write(0); break; } break; // 11_10_01_01 -> ISO txfr. OUT, 3 tr/mf case 0xe5: // Resynchronize in case of PID error switch (sel_d2) {// synopsys full_case parallel_case case 2: next_dpid.write(2); break; case 1: next_dpid.write(0); break; } break; // 11_10_01_10 -> ISO txfr. OUT, 3 tr/mf case 0xe6: // Resynchronize in case of PID error switch (sel_d2) {// synopsys full_case parallel_case case 2: next_dpid.write(1); break; case 1: next_dpid.write(0); break; } break; // XX_01_00_X0 or XX_10_00_X0 -> IN/OUT endpoint only case 0x10: case 0x12: case 0x50: case 0x52: case 0x90: case 0x92: case 0xd0: case 0xd2: case 0x20: case 0x22: case 0x60: case 0x62: case 0xa0: case 0xa2: case 0xe0: case 0xe2: next_dpid.write(1); // INT transfers break; // XX_01_00_X1 or XX_10_00_X1 -> IN/OUT endpoint only case 0x11: case 0x13: case 0x51: case 0x53: case 0x91: case 0x93: case 0xd1: case 0xd3: case 0x21: case 0x23: case 0x61: case 0x63: case 0xa1: case 0xa3: case 0xe1: case 0xe3: next_dpid.write(0); // INT transfers break; // XX_01_10_X0 or XX_10_10_X0 -> IN/OUT endpoint only case 0x18: case 0x1a: case 0x58: case 0x5a: case 0x98: case 0x9a: case 0xd8: case 0xda: case 0x28: case 0x2a: case 0x68: case 0x6a: case 0xa8: case 0xaa: case 0xe8: case 0xea: next_dpid.write(1); // BULK transfers break; // XX_01_10_X1 or XX_10_10_X1 -> IN/OUT endpoint only case 0x19: case 0x1b: case 0x59: case 0x5b: case 0x99: case 0x9b: case 0xd9: case 0xdb: case 0x29: case 0x2b: case 0x69: case 0x6b: case 0xa9: case 0xab: case 0xe9: case 0xeb: next_dpid.write(0); // BULK transfers break; // XX_00_XX_XX -> CTRL Endpoint case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: case 0xc6: case 0xc7: case 0xc8: case 0xc9: case 0xca: case 0xcb: case 0xcc: case 0xcd: case 0xce: case 0xcf: switch (sel2) {// synopsys full_case parallel_case // 1_XX_XX -> SETUP operation case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: next_dpid.write(3); break; // 0_10_0X -> IN operation case 0x08: case 0x09: next_dpid.write(3); break; // 0_10_1X -> IN operation case 0x0a: case 0x0b: next_dpid.write(1); break; // 0_01_X0 -> OUT operation case 0x04: case 0x06: next_dpid.write(3); break; // 0_01_X1 -> OUT operation case 0x05: case 0x07: next_dpid.write(2); break; } break; } } // Current PID decoder // Allow any PID for ISO transfers when mode full speed or tr_fr is zero void usb_pe_sie::allow_pid_up(void) { sc_uint<4> sel; sel = ((sc_uint<1>)pid_DATA0.read(), (sc_uint<1>)pid_DATA1.read(), (sc_uint<1>)pid_DATA2.read(), (sc_uint<1>)pid_MDATA.read()); switch (sel) {// synopsys full_case parallel_case // 1000 case 8: allow_pid.write(0); break; // 0100 case 4: allow_pid.write(1); break; // 0010 case 2: allow_pid.write(2); break; // 0001 case 1: allow_pid.write(3); break; } } void usb_pe_sie::this_dpid_up(void) { sc_uint<8> sel1; sc_uint<5> sel2; // tr/mf:ep/type:tr/type:last dpd sel1 = ((sc_uint<2>)tr_fr_d.read(), (sc_uint<2>)ep_type.read(), (sc_uint<2>)txfr_type.read(), (sc_uint<2>)uc_dpd.read()); // CTRL Endpoint Selector sel2 = ((sc_uint<1>)setup_token.read(), (sc_uint<1>)in_op.read(), (sc_uint<1>)out_op.read(), (sc_uint<2>)uc_dpd.read()); switch (sel1) {// synopsys full_case parallel_case // 0X_01_01_XX -> ISO txfr. IN, 1 tr/mf case 0x14: case 0x15: case 0x16: case 0x17: case 0x54: case 0x55: case 0x56: case 0x57: this_dpid.write(0); break; // 10_01_01_X0 -> ISO txfr. IN, 2 tr/mf case 0x94: case 0x96: this_dpid.write(1); break; // 10_01_01_X1 -> ISO txfr. IN, 2 tr/mf case 0x95: case 0x97: this_dpid.write(0); break; // 11_01_01_00 -> ISO txfr. IN, 3 tr/mf case 0xd4: this_dpid.write(2); break; // 11_01_01_01 -> ISO txfr. IN, 3 tr/mf case 0xd5: this_dpid.write(1); break; // 11_01_01_10 -> ISO txfr. IN, 3 tr/mf case 0xd6: this_dpid.write(0); break; // 00_10_01_XX -> ISO txfr. OUT, 0 tr/mf case 0x24: case 0x25: case 0x26: case 0x27: this_dpid.write(allow_pid.read()); break; // 01_10_01_XX -> ISO txfr. OUT, 1 tr/mf case 0x64: case 0x65: case 0x66: case 0x67: this_dpid.write(0); break; // 10_10_01_X0 -> ISO txfr. OUT, 2 tr/mf case 0xa4: case 0xa6: this_dpid.write(3); break; // 10_10_01_X1 -> ISO txfr. OUT, 2 tr/mf case 0xa5: case 0xa7: this_dpid.write(1); break; // 11_10_01_00 -> ISO txfr. OUT, 3 tr/mf case 0xe4: this_dpid.write(3); break; // 11_10_01_01 -> ISO txfr. OUT, 3 tr/mf case 0xe5: this_dpid.write(3); break; // 11_10_01_10 -> ISO txfr. OUT, 3 tr/mf case 0xe6: this_dpid.write(2); break; // XX_01_00_X0 or XX_10_00_X0 -> IN/OUT endpoint only case 0x10: case 0x12: case 0x50: case 0x52: case 0x90: case 0x92: case 0xd0: case 0xd2: case 0x20: case 0x22: case 0x60: case 0x62: case 0xa0: case 0xa2: case 0xe0: case 0xe2: this_dpid.write(0); // INT transfers break; // XX_01_00_X1 or XX_10_00_X1 -> IN/OUT endpoint only case 0x11: case 0x13: case 0x51: case 0x53: case 0x91: case 0x93: case 0xd1: case 0xd3: case 0x21: case 0x23: case 0x61: case 0x63: case 0xa1: case 0xa3: case 0xe1: case 0xe3: this_dpid.write(1); // INT transfers break; // XX_01_10_X0 or XX_10_10_X0 -> IN/OUT endpoint only case 0x18: case 0x1a: case 0x58: case 0x5a: case 0x98: case 0x9a: case 0xd8: case 0xda: case 0x28: case 0x2a: case 0x68: case 0x6a: case 0xa8: case 0xaa: case 0xe8: case 0xea: this_dpid.write(0); // BULK transfers break; // XX_01_10_X1 or XX_10_10_X1 -> IN/OUT endpoint only case 0x19: case 0x1b: case 0x59: case 0x5b: case 0x99: case 0x9b: case 0xd9: case 0xdb: case 0x29: case 0x2b: case 0x69: case 0x6b: case 0xa9: case 0xab: case 0xe9: case 0xeb: this_dpid.write(1); // BULK transfers break; // XX_00_XX_XX -> CTRL Endpoint case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: case 0xc6: case 0xc7: case 0xc8: case 0xc9: case 0xca: case 0xcb: case 0xcc: case 0xcd: case 0xce: case 0xcf: switch (sel2) {// synopsys full_case parallel_case // 1_XX_XX -> SETUP operation case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: this_dpid.write(0); break; // 0_10_0X -> IN operation case 0x08: case 0x09: this_dpid.write(0); break; // 0_10_1X -> IN operation case 0x0a: case 0x0b: this_dpid.write(1); break; // 0_01_X0 -> OUT operation case 0x04: case 0x06: this_dpid.write(0); break; // 0_01_X1 -> OUT operation case 0x05: case 0x07: this_dpid.write(1); break; } break; } } // Assign PID for outgoing packets void usb_pe_sie::data_pid_sel_up(void) { data_pid_sel.write(this_dpid.read()); } // Verify PID for incoming data packets void usb_pe_sie::pid_seq_err_up(void) { pid_seq_err.write(!(((this_dpid.read() == 0) && pid_DATA0.read()) || ((this_dpid.read() == 1) && pid_DATA1.read()) || ((this_dpid.read() == 2) && pid_DATA2.read()) || ((this_dpid.read() == 3) && pid_MDATA.read()))); } // IDMA Setup and SRC/DEST Buffer Select // For Control Endpoint things are different: // buffer0 is used for OUT (incoming) data packets // buffer1 is used for IN (outgoing) data packets // Keep track of last token for control endpoints void usb_pe_sie::in_token_up(void) { if (!rst.read()) in_token.write(false); else if (pid_IN.read()) in_token.write(true); else if (pid_OUT.read() || pid_SETUP.read()) in_token.write(false); } void usb_pe_sie::out_token_up(void) { if (!rst.read()) out_token.write(false); else if (pid_OUT.read() || pid_SETUP.read()) out_token.write(true); else if (pid_IN.read()) out_token.write(false); } void usb_pe_sie::setup_token_up(void) { if (!rst.read()) setup_token.write(false); else if (pid_SETUP.read()) setup_token.write(true); else if (pid_OUT.read() || pid_IN.read()) setup_token.write(false); } // Indicates if we are performing an IN operation void usb_pe_sie::in_op_up(void) { in_op.write(IN_ep.read() || (CTRL_ep.read() && in_token.read())); } // Indicates if we are performing an OUT operation void usb_pe_sie::out_op_up(void) { out_op.write(OUT_ep.read() || (CTRL_ep.read() && out_token.read())); } // Determine if packet is to small or to large // This is used to NACK and ignore packet for OUT endpoints // Register File Update Logic void usb_pe_sie::uc_dpd_set_up(void) { uc_dpd_set.write(uc_stat_set_d.read()); } // Abort signal void usb_pe_sie::abort_up(void) { abort.write(match.read() && fsel.read() && (state.read() != PE_IDLE)); } // Time Out Timers // After sending data in response to an IN token from host, the // host must reply with an ack. The host has 622nS in Full Speed // mode and 400nS in High Speed mode to reply. // "rx_ack_to" indicates when this time has expired and // rx_ack_to_clr clears the timer void usb_pe_sie::rx_ack_up1(void) { rx_ack_to_clr.write(tx_valid.read() || rx_ack_to_clr_d.read()); } void usb_pe_sie::rx_ack_up2(void) { if (rx_ack_to_clr.read()) rx_ack_to_cnt.write(0); else rx_ack_to_cnt.write(rx_ack_to_cnt.read() + 1); } void usb_pe_sie::rx_ack_up3(void) { rx_ack_to.write(rx_ack_to_cnt.read() == rx_ack_to_val.read()); } // After sending a OUT token the host must send a data packet. // The host has 622nS in Full Speed mode and 400nS in High Speed // mode to send the data packet. // "tx_data_to" indicates when this time has expired and // "tx_data_to_clr" clears the timer void usb_pe_sie::tx_data_up1(void) { tx_data_to_clr.write(rx_active.read()); } void usb_pe_sie::tx_data_up2(void) { if (tx_data_to_clr.read()) tx_data_to_cnt.write(0); else tx_data_to_cnt.write(tx_data_to_cnt.read() + 1); } void usb_pe_sie::tx_data_up3(void) { tx_data_to.write(tx_data_to_cnt.read() == tx_data_to_val.read()); } // Interrupts void usb_pe_sie::pid_OUT_up(void) { pid_OUT_r.write(pid_OUT.read()); } void usb_pe_sie::pid_IN_up(void) { pid_IN_r.write(pid_IN.read()); } void usb_pe_sie::pid_PING_up(void) { pid_PING_r.write(pid_PING.read()); } void usb_pe_sie::pid_SETUP_up(void) { pid_SETUP_r.write(pid_SETUP.read()); } void usb_pe_sie::int_upid_up(void) { int_upid_set.write(match_r.read() && !pid_SOF.read() && ((OUT_ep.read() && !(pid_OUT_r.read() || pid_PING_r.read())) || (IN_ep.read() && !pid_IN_r.read()) || (CTRL_ep.read() && !(pid_IN_r.read() || pid_OUT_r.read() || pid_PING_r.read() || pid_SETUP_r.read())))); } void usb_pe_sie::int_to_up(void) { int_to_set.write(((state.read() == PE_IN2) && rx_ack_to.read()) || ((state.read() == PE_OUT) && tx_data_to.read())); } void usb_pe_sie::int_crc16_up(void) { int_crc16_set.write(rx_data_done.read() && crc16_err.read()); } void usb_pe_sie::int_seqerr_up(void) { int_seqerr_set.write(int_seqerr_set_d.read()); } void usb_pe_sie::send_stall_up(void) { if (!rst.read()) send_stall_r.write(false); else if (send_stall.read()) send_stall_r.write(true); else if (send_token.read()) send_stall_r.write(false); } void usb_pe_sie::state_up(void) { if (!rst.read()) state.write(PE_IDLE); else if (match.read()) state.write(PE_IDLE); else state.write(next_state.read()); } void usb_pe_sie::pe_statemachine(void) { next_state.write(state.read()); token_pid_sel_d.write(PE_ACK); send_token_d.write(false); rx_dma_en.write(false); tx_dma_en.write(false); uc_stat_set_d.write(false); rx_ack_to_clr_d.write(true); int_seqerr_set_d.write(false); switch (state.read()) {// synopsys full_case parallel_case case PE_IDLE: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state IDLE (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// if (match_r.read() && !pid_SOF.read()) { if (send_stall.read()) { // Halt Forced send STALL token_pid_sel_d.write(PE_STALL); send_token_d.write(true); next_state.write(PE_TOKEN); } else if (IN_ep.read() || (CTRL_ep.read() && pid_IN.read())) { if (txfr_int.read() && ep_empty.read()) { token_pid_sel_d.write(PE_NACK); send_token_d.write(true); next_state.write(PE_TOKEN); } else { tx_dma_en.write(true); next_state.write(PE_IN); } } else if (OUT_ep.read() || (CTRL_ep.read() && (pid_OUT.read() || pid_SETUP.read()))) { rx_dma_en.write(true); next_state.write(PE_OUT); } } break; case PE_TOKEN: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state TOKEN (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// next_state.write(PE_IDLE); break; case PE_IN: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state IN (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// rx_ack_to_clr_d.write(false); if (idma_done.read()) if (txfr_iso.read()) next_state.write(PE_UPDATE); else next_state.write(PE_IN2); break; case PE_IN2: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state IN2 (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// rx_ack_to_clr_d.write(false); // Wait for ACK from host or time out if (rx_ack_to.read()) next_state.write(PE_IDLE); else if (token_valid.read() && pid_ACK.read()) next_state.write(PE_UPDATE); break; case PE_OUT: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state OUT (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// if (tx_data_to.read() || crc16_err.read() || abort.read()) next_state.write(PE_IDLE); else if (rx_data_done.read()) { // Send ACK if (txfr_iso.read()) { if (pid_seq_err.read()) int_seqerr_set_d.write(true); next_state.write(PE_UPDATEW); } else { next_state.write(PE_OUT2A); } } break; case PE_OUT2B: // This is a delay state to NACK to small or // to large packets. This state could be skipped /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state OUT2B (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// if (abort.read()) next_state.write(PE_IDLE); else next_state.write(PE_OUT2B); break; case PE_OUT2A: // Send ACK/NACK/NYET /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state OUT2A (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// if (abort.read()) next_state.write(PE_IDLE); else if (send_stall_r.read()) { token_pid_sel_d.write(PE_STALL); send_token_d.write(true); next_state.write(PE_IDLE); } else if (ep_full.read()) { token_pid_sel_d.write(PE_NACK); send_token_d.write(true); next_state.write(PE_IDLE); } else { token_pid_sel_d.write(PE_ACK); send_token_d.write(true); if (pid_seq_err.read()) next_state.write(PE_IDLE); else next_state.write(PE_UPDATE); } break; case PE_UPDATEW: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state UPDATEW (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// next_state.write(PE_UPDATE); break; case PE_UPDATE: /////////////////////////////////////////////////////////////////////// // // DEBUG INFORMATIONS // /////////////////////////////////////////////////////////////////////// #ifdef USBF_VERBOSE_DEBUG cout << "SIE -> PE: Entered state UPDATE (" << sc_simulation_time() << ")" << endl; #endif /////////////////////////////////////////////////////////////////////// uc_stat_set_d.write(true); next_state.write(PE_IDLE); break; } }