URL
https://opencores.org/ocsvn/versatile_library/versatile_library/trunk
Subversion Repositories versatile_library
[/] [versatile_library/] [trunk/] [rtl/] [verilog/] [versatile_library_actel.v] - Rev 127
Go to most recent revision | Compare with Previous | Blame | View Log
// default SYN_KEEP definition // ACTEL FPGA should not use logic to handle rw collision // size to width ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, clock and reset //// //// //// //// Description //// //// Logic related to clock and reset //// //// //// //// //// //// To Do: //// //// - add more different registers //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `timescale 1 ns/100 ps // Global buffer // usage: // use to enable global buffers for high fan out signals such as clock and reset // Version: 8.4 8.4.0.33 module gbuf(GL,CLK); output GL; input CLK; wire GND; GND GND_1_net(.Y(GND)); CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(GND), .DLYGL1(GND), .DLYGL2(GND), .DLYGL3(GND), .DLYGL4(GND)) /* synthesis black_box */; endmodule `timescale 1 ns/1 ns module vl_gbuf ( i, o); input i; output o; `ifdef SIM_GBUF assign o=i; `else gbuf gbuf_i0 ( .CLK(i), .GL(o)); `endif endmodule //ACTEL // sync reset // input active lo async reset, normally from external reset generator and/or switch // output active high global reset sync with two DFFs `timescale 1 ns/100 ps module vl_sync_rst ( rst_n_i, rst_o, clk); input rst_n_i, clk; output rst_o; reg [1:0] tmp; always @ (posedge clk or negedge rst_n_i) if (!rst_n_i) tmp <= 2'b11; else tmp <= {1'b0,tmp[1]}; vl_gbuf buf_i0( .i(tmp[0]), .o(rst_o)); endmodule // vl_pll /////////////////////////////////////////////////////////////////////////////// `timescale 1 ps/1 ps module vl_pll ( clk_i, rst_n_i, lock, clk_o, rst_o); parameter index = 0; parameter number_of_clk = 1; parameter period_time_0 = 20000; parameter period_time_1 = 20000; parameter period_time_2 = 20000; parameter lock_delay = 2000000; input clk_i, rst_n_i; output lock; output reg [0:number_of_clk-1] clk_o; output [0:number_of_clk-1] rst_o; `ifdef SIM_PLL always #((period_time_0)/2) clk_o[0] <= (!rst_n_i) ? 0 : ~clk_o[0]; generate if (number_of_clk > 1) always #((period_time_1)/2) clk_o[1] <= (!rst_n_i) ? 0 : ~clk_o[1]; endgenerate generate if (number_of_clk > 2) always #((period_time_2)/2) clk_o[2] <= (!rst_n_i) ? 0 : ~clk_o[2]; endgenerate genvar i; generate for (i=0;i<number_of_clk;i=i+1) begin: clock vl_sync_rst rst_i0 ( .rst_n_i(rst_n_i | lock), .rst_o(rst_o[i]), .clk(clk_o[i])); end endgenerate assign #lock_delay lock = rst_n_i; endmodule `else generate if (number_of_clk==1 & index==0) begin pll0 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==0 generate if (number_of_clk==1 & index==1) begin pll1 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==1 generate if (number_of_clk==1 & index==2) begin pll2 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==2 generate if (number_of_clk==1 & index==3) begin pll3 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0])); end endgenerate // index==0 generate if (number_of_clk==2 & index==0) begin pll0 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==0 generate if (number_of_clk==2 & index==1) begin pll1 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==1 generate if (number_of_clk==2 & index==2) begin pll2 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==2 generate if (number_of_clk==2 & index==3) begin pll3 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1])); end endgenerate // index==0 generate if (number_of_clk==3 & index==0) begin pll0 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==0 generate if (number_of_clk==3 & index==1) begin pll1 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==1 generate if (number_of_clk==3 & index==2) begin pll2 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==2 generate if (number_of_clk==3 & index==3) begin pll3 pll_i0 (.POWERDOWN(1'b1), .CLKA(clk_i), .LOCK(lock), .GLA(clk_o[0]), .GLB(clk_o[1]), .GLC(clk_o[2])); end endgenerate // index==0 genvar i; generate for (i=0;i<number_of_clk;i=i+1) begin: clock vl_sync_rst rst_i0 ( .rst_n_i(rst_n_i | lock), .rst_o(rst_o), .clk(clk_o[i])); end endgenerate endmodule `endif /////////////////////////////////////////////////////////////////////////////// //actel ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, registers //// //// //// //// Description //// //// Different type of registers //// //// //// //// //// //// To Do: //// //// - add more different registers //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module vl_dff ( d, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else q <= d; endmodule module vl_dff_array ( d, q, clk, rst); parameter width = 1; parameter depth = 2; parameter reset_value = 1'b0; input [width-1:0] d; input clk, rst; output [width-1:0] q; reg [0:depth-1] q_tmp [width-1:0]; integer i; always @ (posedge clk or posedge rst) if (rst) begin for (i=0;i<depth;i=i+1) q_tmp[i] <= {width{reset_value}}; end else begin q_tmp[0] <= d; for (i=1;i<depth;i=i+1) q_tmp[i] <= q_tmp[i-1]; end assign q = q_tmp[depth-1]; endmodule module vl_dff_ce ( d, ce, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input ce, clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (ce) q <= d; endmodule module vl_dff_ce_clear ( d, ce, clear, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input ce, clear, clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (ce) if (clear) q <= {width{1'b0}}; else q <= d; endmodule module vl_dff_ce_set ( d, ce, set, q, clk, rst); parameter width = 1; parameter reset_value = 0; input [width-1:0] d; input ce, set, clk, rst; output reg [width-1:0] q; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (ce) if (set) q <= {width{1'b1}}; else q <= d; endmodule module vl_spr ( sp, r, q, clk, rst); //parameter width = 1; parameter reset_value = 1'b0; input sp, r; output reg q; input clk, rst; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (sp) q <= 1'b1; else if (r) q <= 1'b0; endmodule module vl_srp ( s, rp, q, clk, rst); parameter width = 1; parameter reset_value = 0; input s, rp; output reg q; input clk, rst; always @ (posedge clk or posedge rst) if (rst) q <= reset_value; else if (rp) q <= 1'b0; else if (s) q <= 1'b1; endmodule module vl_dff_sr ( aclr, aset, clock, data, q); input aclr; input aset; input clock; input data; output reg q; always @ (posedge clock or posedge aclr or posedge aset) if (aclr) q <= 1'b0; else if (aset) q <= 1'b1; else q <= data; endmodule // LATCH // For targtes not supporting LATCH use dff_sr with clk=1 and data=1 module vl_latch ( d, le, q, clk); input d, le; input clk; always @ (le or d) if (le) d <= q; endmodule module vl_shreg ( d, q, clk, rst); parameter depth = 10; input d; output q; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; endmodule module vl_shreg_ce ( d, ce, q, clk, rst); parameter depth = 10; input d, ce; output q; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else if (ce) dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; endmodule module vl_delay ( d, q, clk, rst); parameter depth = 10; input d; output q; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; endmodule module vl_delay_emptyflag ( d, q, emptyflag, clk, rst); parameter depth = 10; input d; output q, emptyflag; input clk, rst; reg [1:depth] dffs; always @ (posedge clk or posedge rst) if (rst) dffs <= {depth{1'b0}}; else dffs <= {d,dffs[1:depth-1]}; assign q = dffs[depth]; assign emptyflag = !(|dffs); endmodule module vl_pulse2toggle ( pl, q, clk, rst); input pl; output reg q; input clk, rst; always @ (posedge clk or posedge rst) if (rst) q <= 1'b0; else q <= pl ^ q; endmodule module vl_toggle2pulse (d, pl, clk, rst); input d; output pl; input clk, rst; reg dff; always @ (posedge clk or posedge rst) if (rst) dff <= 1'b0; else dff <= d; assign pl = d ^ dff; endmodule module vl_synchronizer (d, q, clk, rst); input d; output reg q; input clk, rst; reg dff; always @ (posedge clk or posedge rst) if (rst) {q,dff} <= 2'b00; else {q,dff} <= {dff,d}; endmodule module vl_cdc ( start_pl, take_it_pl, take_it_grant_pl, got_it_pl, clk_src, rst_src, clk_dst, rst_dst); input start_pl; output take_it_pl; input take_it_grant_pl; // note: connect to take_it_pl to generate automatic ack output got_it_pl; input clk_src, rst_src; input clk_dst, rst_dst; wire take_it_tg, take_it_tg_sync; wire got_it_tg, got_it_tg_sync; // src -> dst vl_pulse2toggle p2t0 ( .pl(start_pl), .q(take_it_tg), .clk(clk_src), .rst(rst_src)); vl_synchronizer sync0 ( .d(take_it_tg), .q(take_it_tg_sync), .clk(clk_dst), .rst(rst_dst)); vl_toggle2pulse t2p0 ( .d(take_it_tg_sync), .pl(take_it_pl), .clk(clk_dst), .rst(rst_dst)); // dst -> src vl_pulse2toggle p2t1 ( .pl(take_it_grant_pl), .q(got_it_tg), .clk(clk_dst), .rst(rst_dst)); vl_synchronizer sync1 ( .d(got_it_tg), .q(got_it_tg_sync), .clk(clk_src), .rst(rst_src)); vl_toggle2pulse t2p1 ( .d(got_it_tg_sync), .pl(got_it_pl), .clk(clk_src), .rst(rst_src)); endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Logic functions //// //// //// //// Description //// //// Logic functions such as multiplexers //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module vl_mux_andor ( a, sel, dout); parameter width = 32; parameter nr_of_ports = 4; input [nr_of_ports*width-1:0] a; input [nr_of_ports-1:0] sel; output reg [width-1:0] dout; integer i,j; always @ (a, sel) begin dout = a[width-1:0] & {width{sel[0]}}; for (i=1;i<nr_of_ports;i=i+1) for (j=0;j<width;j=j+1) dout[j] = (a[i*width + j] & sel[i]) | dout[j]; end endmodule module vl_mux2_andor ( a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 2; input [width-1:0] a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux3_andor ( a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 3; input [width-1:0] a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux4_andor ( a3, a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 4; input [width-1:0] a3, a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a3,a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux5_andor ( a4, a3, a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 5; input [width-1:0] a4, a3, a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a4,a3,a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_mux6_andor ( a5, a4, a3, a2, a1, a0, sel, dout); parameter width = 32; localparam nr_of_ports = 6; input [width-1:0] a5, a4, a3, a2, a1, a0; input [nr_of_ports-1:0] sel; output [width-1:0] dout; vl_mux_andor # ( .width(width), .nr_of_ports(nr_of_ports)) mux0( .a({a5,a4,a3,a2,a1,a0}), .sel(sel), .dout(dout)); endmodule module vl_parity_generate (data, parity); parameter word_size = 32; parameter chunk_size = 8; parameter parity_type = 1'b0; // 0 - even, 1 - odd parity input [word_size-1:0] data; output reg [word_size/chunk_size-1:0] parity; integer i,j; always @ (data) for (i=0;i<word_size/chunk_size;i=i+1) begin parity[i] = parity_type; for (j=0;j<chunk_size;j=j+1) begin parity[i] = data[i*chunk_size+j] ^ parity[i]; end end endmodule module vl_parity_check( data, parity, parity_error); parameter word_size = 32; parameter chunk_size = 8; parameter parity_type = 1'b0; // 0 - even, 1 - odd parity input [word_size-1:0] data; input [word_size/chunk_size-1:0] parity; output parity_error; reg [word_size/chunk_size-1:0] error_flag; integer i,j; always @ (data or parity) for (i=0;i<word_size/chunk_size;i=i+1) begin error_flag[i] = parity[i] ^ parity_type; for (j=0;j<chunk_size;j=j+1) begin error_flag[i] = data[i*chunk_size+j] ^ error_flag[i]; end end assign parity_error = |error_flag; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// IO functions //// //// //// //// Description //// //// IO functions such as IOB flip-flops //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `timescale 1ns/1ns module vl_o_dff (d_i, o_pad, clk, rst); parameter width = 1; parameter reset_value = {width{1'b0}}; input [width-1:0] d_i; output [width-1:0] o_pad; input clk, rst; wire [width-1:0] d_i_int /*synthesis syn_keep = 1*/; reg [width-1:0] o_pad_int; assign d_i_int = d_i; genvar i; generate for (i=0;i<width;i=i+1) begin always @ (posedge clk or posedge rst) if (rst) o_pad_int[i] <= reset_value[i]; else o_pad_int[i] <= d_i_int[i]; assign #1 o_pad[i] = o_pad_int[i]; end endgenerate endmodule `timescale 1ns/1ns module vl_io_dff_oe ( d_i, d_o, oe, io_pad, clk, rst); parameter width = 1; input [width-1:0] d_o; output reg [width-1:0] d_i; input oe; inout [width-1:0] io_pad; input clk, rst; wire [width-1:0] oe_d /*synthesis syn_keep = 1*/; reg [width-1:0] oe_q; reg [width-1:0] d_o_q; assign oe_d = {width{oe}}; genvar i; generate for (i=0;i<width;i=i+1) begin always @ (posedge clk or posedge rst) if (rst) oe_q[i] <= 1'b0; else oe_q[i] <= oe_d[i]; always @ (posedge clk or posedge rst) if (rst) d_o_q[i] <= 1'b0; else d_o_q[i] <= d_o[i]; always @ (posedge clk or posedge rst) if (rst) d_i[i] <= 1'b0; else d_i[i] <= io_pad[i]; assign #1 io_pad[i] = (oe_q[i]) ? d_o_q[i] : 1'bz; end endgenerate endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // binary counter module vl_cnt_bin_ce ( cke, q, rst, clk); parameter length = 4; input cke; output [length:1] q; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 0; parameter level1_value = 15; reg [length:1] qi; wire [length:1] q_next; assign q_next = qi + {{length-1{1'b0}},1'b1}; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; assign q = qi; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // binary counter module vl_cnt_bin_ce_rew_zq_l1 ( cke, rew, zq, level1, rst, clk); parameter length = 4; input cke; input rew; output reg zq; output reg level1; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 1; parameter level1_value = 15; wire clear; assign clear = 1'b0; reg [length:1] qi; wire [length:1] q_next, q_next_fw, q_next_rew; assign q_next_fw = qi + {{length-1{1'b0}},1'b1}; assign q_next_rew = qi - {{length-1{1'b0}},1'b1}; assign q_next = rew ? q_next_rew : q_next_fw; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; always @ (posedge clk or posedge rst) if (rst) zq <= 1'b1; else if (cke) zq <= q_next == {length{1'b0}}; always @ (posedge clk or posedge rst) if (rst) level1 <= 1'b0; else if (cke) if (clear) level1 <= 1'b0; else if (q_next == level1_value) level1 <= 1'b1; else if (qi == level1_value & rew) level1 <= 1'b0; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // binary counter module vl_cnt_bin_ce_rew_q_zq_l1 ( cke, rew, q, zq, level1, rst, clk); parameter length = 4; input cke; input rew; output [length:1] q; output reg zq; output reg level1; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 1; parameter level1_value = 15; wire clear; assign clear = 1'b0; reg [length:1] qi; wire [length:1] q_next, q_next_fw, q_next_rew; assign q_next_fw = qi + {{length-1{1'b0}},1'b1}; assign q_next_rew = qi - {{length-1{1'b0}},1'b1}; assign q_next = rew ? q_next_rew : q_next_fw; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; assign q = qi; always @ (posedge clk or posedge rst) if (rst) zq <= 1'b1; else if (cke) zq <= q_next == {length{1'b0}}; always @ (posedge clk or posedge rst) if (rst) level1 <= 1'b0; else if (cke) if (clear) level1 <= 1'b0; else if (q_next == level1_value) level1 <= 1'b1; else if (qi == level1_value & rew) level1 <= 1'b0; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // LFSR counter module vl_cnt_lfsr_ce ( cke, zq, rst, clk); parameter length = 4; input cke; output reg zq; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 0; parameter level1_value = 15; reg [length:1] qi; reg lfsr_fb; wire [length:1] q_next; reg [32:1] polynom; integer i; always @ (qi) begin case (length) 2: polynom = 32'b11; // 0x3 3: polynom = 32'b110; // 0x6 4: polynom = 32'b1100; // 0xC 5: polynom = 32'b10100; // 0x14 6: polynom = 32'b110000; // 0x30 7: polynom = 32'b1100000; // 0x60 8: polynom = 32'b10111000; // 0xb8 9: polynom = 32'b100010000; // 0x110 10: polynom = 32'b1001000000; // 0x240 11: polynom = 32'b10100000000; // 0x500 12: polynom = 32'b100000101001; // 0x829 13: polynom = 32'b1000000001100; // 0x100C 14: polynom = 32'b10000000010101; // 0x2015 15: polynom = 32'b110000000000000; // 0x6000 16: polynom = 32'b1101000000001000; // 0xD008 17: polynom = 32'b10010000000000000; // 0x12000 18: polynom = 32'b100000010000000000; // 0x20400 19: polynom = 32'b1000000000000100011; // 0x40023 20: polynom = 32'b10010000000000000000; // 0x90000 21: polynom = 32'b101000000000000000000; // 0x140000 22: polynom = 32'b1100000000000000000000; // 0x300000 23: polynom = 32'b10000100000000000000000; // 0x420000 24: polynom = 32'b111000010000000000000000; // 0xE10000 25: polynom = 32'b1001000000000000000000000; // 0x1200000 26: polynom = 32'b10000000000000000000100011; // 0x2000023 27: polynom = 32'b100000000000000000000010011; // 0x4000013 28: polynom = 32'b1100100000000000000000000000; // 0xC800000 29: polynom = 32'b10100000000000000000000000000; // 0x14000000 30: polynom = 32'b100000000000000000000000101001; // 0x20000029 31: polynom = 32'b1001000000000000000000000000000; // 0x48000000 32: polynom = 32'b10000000001000000000000000000011; // 0x80200003 default: polynom = 32'b0; endcase lfsr_fb = qi[length]; for (i=length-1; i>=1; i=i-1) begin if (polynom[i]) lfsr_fb = lfsr_fb ~^ qi[i]; end end assign q_next = (qi == wrap_value) ? {length{1'b0}} :{qi[length-1:1],lfsr_fb}; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; always @ (posedge clk or posedge rst) if (rst) zq <= 1'b1; else if (cke) zq <= q_next == {length{1'b0}}; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile counter //// //// //// //// Description //// //// Versatile counter, a reconfigurable binary, gray or LFSR //// //// counter //// //// //// //// To Do: //// //// - add LFSR with more taps //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // GRAY counter module vl_cnt_gray_ce_bin ( cke, q, q_bin, rst, clk); parameter length = 4; input cke; output reg [length:1] q; output [length:1] q_bin; input rst; input clk; parameter clear_value = 0; parameter set_value = 1; parameter wrap_value = 8; parameter level1_value = 15; reg [length:1] qi; wire [length:1] q_next; assign q_next = qi + {{length-1{1'b0}},1'b1}; always @ (posedge clk or posedge rst) if (rst) qi <= {length{1'b0}}; else if (cke) qi <= q_next; always @ (posedge clk or posedge rst) if (rst) q <= {length{1'b0}}; else if (cke) q <= (q_next>>1) ^ q_next; assign q_bin = qi; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, counters //// //// //// //// Description //// //// counters //// //// //// //// //// //// To Do: //// //// - add more counters //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// module vl_cnt_shreg_wrap ( q, rst, clk); parameter length = 4; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else q <= {q[length-1],q[0:length-2]}; endmodule module vl_cnt_shreg_ce_wrap ( cke, q, rst, clk); parameter length = 4; input cke; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (cke) q <= {q[length-1],q[0:length-2]}; endmodule module vl_cnt_shreg_clear ( clear, q, rst, clk); parameter length = 4; input clear; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (clear) q <= {1'b1,{length-1{1'b0}}}; else q <= q >> 1; endmodule module vl_cnt_shreg_ce_clear ( cke, clear, q, rst, clk); parameter length = 4; input cke, clear; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (cke) if (clear) q <= {1'b1,{length-1{1'b0}}}; else q <= q >> 1; endmodule module vl_cnt_shreg_ce_clear_wrap ( cke, clear, q, rst, clk); parameter length = 4; input cke, clear; output reg [0:length-1] q; input rst; input clk; always @ (posedge clk or posedge rst) if (rst) q <= {1'b1,{length-1{1'b0}}}; else if (cke) if (clear) q <= {1'b1,{length-1{1'b0}}}; else q <= {q[length-1],q[0:length-2]}; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, memories //// //// //// //// Description //// //// memories //// //// //// //// //// //// To Do: //// //// - add more memory types //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// /// ROM module vl_rom_init ( adr, q, clk); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(addr_width-1):0] adr; output reg [(data_width-1):0] q; input clk; reg [data_width-1:0] rom [mem_size-1:0]; parameter memory_file = "vl_rom.vmem"; initial begin $readmemh(memory_file, rom); end always @ (posedge clk) q <= rom[adr]; endmodule // Single port RAM module vl_ram ( d, adr, we, q, clk); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; parameter debug = 0; input [(data_width-1):0] d; input [(addr_width-1):0] adr; input we; output reg [(data_width-1):0] q; input clk; reg [data_width-1:0] ram [mem_size-1:0]; parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; generate if (memory_init == 1) begin : init_mem initial $readmemh(memory_file, ram); end else if (memory_init == 2) begin : init_zero integer k; initial for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; end endgenerate generate if (debug==1) begin : debug_we always @ (posedge clk) if (we) $display ("Value %h written at address %h : time %t", d, adr, $time); end endgenerate always @ (posedge clk) begin if (we) ram[adr] <= d; q <= ram[adr]; end endmodule module vl_ram_be ( d, adr, be, we, q, clk); parameter data_width = 32; parameter addr_width = 6; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d; input [(addr_width-1):0] adr; input [(data_width/8)-1:0] be; input we; output reg [(data_width-1):0] q; input clk; `ifdef SYSTEMVERILOG // use a multi-dimensional packed array //t o model individual bytes within the word logic [data_width/8-1:0][7:0] ram [0:mem_size-1];// # words = 1 << address width `else reg [data_width-1:0] ram [mem_size-1:0]; wire [data_width/8-1:0] cke; `endif parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; generate if (memory_init == 1) begin : init_mem initial $readmemh(memory_file, ram); end else if (memory_init == 2) begin : init_zero integer k; initial for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; end endgenerate `ifdef SYSTEMVERILOG always_ff@(posedge clk) begin if(we) begin if(be[3]) ram[adr][3] <= d[31:24]; if(be[2]) ram[adr][2] <= d[23:16]; if(be[1]) ram[adr][1] <= d[15:8]; if(be[0]) ram[adr][0] <= d[7:0]; end q <= ram[adr]; end `else assign cke = {data_width/8{we}} & be; genvar i; generate for (i=0;i<data_width/8;i=i+1) begin : be_ram always @ (posedge clk) if (cke[i]) ram[adr][(i+1)*8-1:i*8] <= d[(i+1)*8-1:i*8]; end endgenerate always @ (posedge clk) q <= ram[adr]; `endif `ifdef verilator // Function to access RAM (for use by Verilator). function [31:0] get_mem; // verilator public input [addr_width-1:0] addr; get_mem = ram[addr]; endfunction // get_mem // Function to write RAM (for use by Verilator). function set_mem; // verilator public input [addr_width-1:0] addr; input [data_width-1:0] data; ram[addr] = data; endfunction // set_mem `endif endmodule module vl_dpram_1r1w ( d_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output reg [(data_width-1):0] q_b; input clk_a, clk_b; reg [data_width-1:0] ram [0:mem_size-1] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; parameter debug = 0; generate if (memory_init == 1) begin : init_mem initial $readmemh(memory_file, ram); end else if (memory_init == 2) begin : init_zero integer k; initial for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; end endgenerate generate if (debug==1) begin : debug_we always @ (posedge clk_a) if (we_a) $display ("Debug: Value %h written at address %h : time %t", d_a, adr_a, $time); end endgenerate always @ (posedge clk_a) if (we_a) ram[adr_a] <= d_a; always @ (posedge clk_b) q_b = ram[adr_b]; endmodule module vl_dpram_2r1w ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; output reg [(data_width-1):0] q_a; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [0:mem_size-1] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; parameter debug = 0; generate if (memory_init == 1) begin : init_mem initial $readmemh(memory_file, ram); end else if (memory_init == 2) begin : init_zero integer k; initial for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; end endgenerate generate if (debug==1) begin : debug_we always @ (posedge clk_a) if (we_a) $display ("Debug: Value %h written at address %h : time %t", d_a, adr_a, $time); end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) q_b <= ram[adr_b]; endmodule module vl_dpram_1r2w ( d_a, q_a, adr_a, we_a, clk_a, d_b, adr_b, we_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; input [(data_width-1):0] d_b; output reg [(data_width-1):0] q_a; input we_b; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [0:mem_size-1] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; parameter debug = 0; generate if (memory_init == 1) begin : init_mem initial $readmemh(memory_file, ram); end else if (memory_init == 2) begin : init_zero integer k; initial for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; end endgenerate generate if (debug==1) begin : debug_we always @ (posedge clk_a) if (we_a) $display ("Debug: Value %h written at address %h : time %t", d_a, adr_a, $time); always @ (posedge clk_b) if (we_b) $display ("Debug: Value %h written at address %h : time %t", d_b, adr_b, $time); end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) begin if (we_b) ram[adr_b] <= d_b; end endmodule module vl_dpram_2r2w ( d_a, q_a, adr_a, we_a, clk_a, d_b, q_b, adr_b, we_b, clk_b ); parameter data_width = 32; parameter addr_width = 8; parameter mem_size = 1<<addr_width; input [(data_width-1):0] d_a; input [(addr_width-1):0] adr_a; input [(addr_width-1):0] adr_b; input we_a; output [(data_width-1):0] q_b; input [(data_width-1):0] d_b; output reg [(data_width-1):0] q_a; input we_b; input clk_a, clk_b; reg [(data_width-1):0] q_b; reg [data_width-1:0] ram [0:mem_size-1] /*synthesis syn_ramstyle = "no_rw_check"*/; parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; parameter debug = 0; generate if (memory_init) begin : init_mem initial $readmemh(memory_file, ram); end else if (memory_init == 2) begin : init_zero integer k; initial for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; end endgenerate generate if (debug==1) begin : debug_we always @ (posedge clk_a) if (we_a) $display ("Debug: Value %h written at address %h : time %t", d_a, adr_a, $time); always @ (posedge clk_b) if (we_b) $display ("Debug: Value %h written at address %h : time %t", d_b, adr_b, $time); end endgenerate always @ (posedge clk_a) begin q_a <= ram[adr_a]; if (we_a) ram[adr_a] <= d_a; end always @ (posedge clk_b) begin q_b <= ram[adr_b]; if (we_b) ram[adr_b] <= d_b; end endmodule module vl_dpram_be_2r2w ( d_a, q_a, adr_a, be_a, we_a, clk_a, d_b, q_b, adr_b, be_b, we_b, clk_b ); parameter a_data_width = 32; parameter a_addr_width = 8; parameter b_data_width = 64; //a_data_width; //localparam b_addr_width = a_data_width * a_addr_width / b_data_width; localparam b_addr_width = (a_data_width==b_data_width) ? a_addr_width : (a_data_width==b_data_width*2) ? a_addr_width+1 : (a_data_width==b_data_width*4) ? a_addr_width+2 : (a_data_width==b_data_width*8) ? a_addr_width+3 : (a_data_width==b_data_width*16) ? a_addr_width+4 : (a_data_width==b_data_width*32) ? a_addr_width+5 : (a_data_width==b_data_width/2) ? a_addr_width-1 : (a_data_width==b_data_width/4) ? a_addr_width-2 : (a_data_width==b_data_width/8) ? a_addr_width-3 : (a_data_width==b_data_width/16) ? a_addr_width-4 : (a_data_width==b_data_width/32) ? a_addr_width-5 : 0; localparam ratio = (a_addr_width>b_addr_width) ? (a_addr_width/b_addr_width) : (b_addr_width/a_addr_width); parameter mem_size = (a_addr_width>b_addr_width) ? (1<<b_addr_width) : (1<<a_addr_width); parameter memory_init = 0; parameter memory_file = "vl_ram.vmem"; parameter debug = 0; input [(a_data_width-1):0] d_a; input [(a_addr_width-1):0] adr_a; input [(a_data_width/8-1):0] be_a; input we_a; output reg [(a_data_width-1):0] q_a; input [(b_data_width-1):0] d_b; input [(b_addr_width-1):0] adr_b; input [(b_data_width/8-1):0] be_b; input we_b; output reg [(b_data_width-1):0] q_b; input clk_a, clk_b; generate if (debug==1) begin : debug_we always @ (posedge clk_a) if (we_a) $display ("Debug: Value %h written at address %h : time %t", d_a, adr_a, $time); always @ (posedge clk_b) if (we_b) $display ("Debug: Value %h written at address %h : time %t", d_b, adr_b, $time); end endgenerate `ifdef SYSTEMVERILOG // use a multi-dimensional packed array //to model individual bytes within the word generate if (a_data_width==32 & b_data_width==32) begin : dpram_3232 logic [0:3][7:0] ram [0:mem_size-1] /*synthesis syn_ramstyle = "no_rw_check"*/; initial if (memory_init==1) $readmemh(memory_file, ram); integer k; initial if (memory_init==2) for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; always_ff@(posedge clk_a) begin if(we_a) begin if(be_a[3]) ram[adr_a][0] <= d_a[31:24]; if(be_a[2]) ram[adr_a][1] <= d_a[23:16]; if(be_a[1]) ram[adr_a][2] <= d_a[15:8]; if(be_a[0]) ram[adr_a][3] <= d_a[7:0]; end end always@(posedge clk_a) q_a = ram[adr_a]; always_ff@(posedge clk_b) begin if(we_b) begin if(be_b[3]) ram[adr_b][0] <= d_b[31:24]; if(be_b[2]) ram[adr_b][1] <= d_b[23:16]; if(be_b[1]) ram[adr_b][2] <= d_b[15:8]; if(be_b[0]) ram[adr_b][3] <= d_b[7:0]; end end always@(posedge clk_b) q_b = ram[adr_b]; end endgenerate generate if (a_data_width==64 & b_data_width==64) begin : dpram_6464 logic [0:7][7:0] ram [0:mem_size-1] /*synthesis syn_ramstyle = "no_rw_check"*/; initial if (memory_init==1) $readmemh(memory_file, ram); integer k; initial if (memory_init==2) for (k = 0; k < mem_size; k = k + 1) ram[k] = 0; always_ff@(posedge clk_a) begin if(we_a) begin if(be_a[7]) ram[adr_a][7] <= d_a[63:56]; if(be_a[6]) ram[adr_a][6] <= d_a[55:48]; if(be_a[5]) ram[adr_a][5] <= d_a[47:40]; if(be_a[4]) ram[adr_a][4] <= d_a[39:32]; if(be_a[3]) ram[adr_a][3] <= d_a[31:24]; if(be_a[2]) ram[adr_a][2] <= d_a[23:16]; if(be_a[1]) ram[adr_a][1] <= d_a[15:8]; if(be_a[0]) ram[adr_a][0] <= d_a[7:0]; end end always@(posedge clk_a) q_a = ram[adr_a]; always_ff@(posedge clk_b) begin if(we_b) begin if(be_b[7]) ram[adr_b][7] <= d_b[63:56]; if(be_b[6]) ram[adr_b][6] <= d_b[55:48]; if(be_b[5]) ram[adr_b][5] <= d_b[47:40]; if(be_b[4]) ram[adr_b][4] <= d_b[39:32]; if(be_b[3]) ram[adr_b][3] <= d_b[31:24]; if(be_b[2]) ram[adr_b][2] <= d_b[23:16]; if(be_b[1]) ram[adr_b][1] <= d_b[15:8]; if(be_b[0]) ram[adr_b][0] <= d_b[7:0]; end end always@(posedge clk_b) q_b = ram[adr_b]; end endgenerate generate if (a_data_width==32 & b_data_width==16) begin : dpram_3216 logic [31:0] temp; vl_dpram_be_2r2w # (.a_data_width(64), .b_data_width(64), .a_addr_width(a_addr_width), .mem_size(mem_size), .memory_init(memory_init), .memory_file(memory_file)) dpram6464 ( .d_a(d_a), .q_a(q_a), .adr_a(adr_a), .be_a(be_a), .we_a(we_a), .clk_a(clk_a), .d_b({d_b,d_b}), .q_b(temp), .adr_b(adr_b), .be_b({be_b,be_b} & {{2{adr_b[0]}},{2{!adr_b[0]}}}), .we_b(we_b), .clk_b(clk_b) ); always @ (adr_b[0] or temp) if (adr_b[0]) q_b = temp[31:16]; else q_b = temp[15:0]; end endgenerate generate if (a_data_width==32 & b_data_width==64) begin : dpram_3264 logic [63:0] temp; vl_dpram_be_2r2w # (.a_data_width(64), .b_data_width(64), .a_addr_width(a_addr_width), .mem_size(mem_size), .memory_init(memory_init), .memory_file(memory_file)) dpram6464 ( .d_a({d_a,d_a}), .q_a(temp), .adr_a(adr_a[a_addr_width-1:1]), .be_a({be_a,be_a} & {{4{adr_a[0]}},{4{!adr_a[0]}}}), .we_a(we_a), .clk_a(clk_a), .d_b(d_b), .q_b(q_b), .adr_b(adr_b), .be_b(be_b), .we_b(we_b), .clk_b(clk_b) ); always @ (adr_a[0] or temp) if (adr_a[0]) q_a = temp[63:32]; else q_a = temp[31:0]; end endgenerate `else // This modules requires SystemVerilog // at this point anyway `endif endmodule // FIFO module vl_fifo_1r1w_fill_level_sync ( d, wr, fifo_full, q, rd, fifo_empty, fill_level, clk, rst ); parameter data_width = 18; parameter addr_width = 4; // write side input [data_width-1:0] d; input wr; output fifo_full; // read side output [data_width-1:0] q; input rd; output fifo_empty; // common output [addr_width:0] fill_level; input rst, clk; wire [addr_width:1] wadr, radr; vl_cnt_bin_ce # ( .length(addr_width)) fifo_wr_adr( .cke(wr), .q(wadr), .rst(rst), .clk(clk)); vl_cnt_bin_ce # (.length(addr_width)) fifo_rd_adr( .cke(rd), .q(radr), .rst(rst), .clk(clk)); vl_dpram_1r1w # (.data_width(data_width), .addr_width(addr_width)) dpram ( .d_a(d), .adr_a(wadr), .we_a(wr), .clk_a(clk), .q_b(q), .adr_b(radr), .clk_b(clk)); vl_cnt_bin_ce_rew_q_zq_l1 # (.length(addr_width+1), .level1_value(1<<addr_width)) fill_level_cnt( .cke(rd ^ wr), .rew(rd), .q(fill_level), .zq(fifo_empty), .level1(fifo_full), .rst(rst), .clk(clk)); endmodule // Intended use is two small FIFOs (RX and TX typically) in one FPGA RAM resource // RAM is supposed to be larger than the two FIFOs // LFSR counters used adr pointers module vl_fifo_2r2w_sync_simplex ( // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_fill_level, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_fill_level, // common clk, rst ); parameter data_width = 8; parameter addr_width = 5; parameter fifo_full_level = (1<<addr_width)-1; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; output [addr_width-1:0] a_fill_level; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; output [addr_width-1:0] b_fill_level; input clk; input rst; // adr_gen wire [addr_width:1] a_wadr, a_radr; wire [addr_width:1] b_wadr, b_radr; // dpram wire [addr_width:0] a_dpram_adr, b_dpram_adr; vl_cnt_lfsr_ce # ( .length(addr_width)) fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .rst(rst), .clk(clk)); vl_cnt_lfsr_ce # (.length(addr_width)) fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .rst(rst), .clk(clk)); vl_cnt_lfsr_ce # ( .length(addr_width)) fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .rst(rst), .clk(clk)); vl_cnt_lfsr_ce # (.length(addr_width)) fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .rst(rst), .clk(clk)); // mux read or write adr to DPRAM assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr} : {1'b1,a_radr}; assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr} : {1'b0,b_radr}; vl_dpram_2r2w # (.data_width(data_width), .addr_width(addr_width+1)) dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk), .d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk)); vl_cnt_bin_ce_rew_zq_l1 # (.length(addr_width), .level1_value(fifo_full_level)) a_fill_level_cnt( .cke(a_rd ^ a_wr), .rew(a_rd), .q(a_fill_level), .zq(a_fifo_empty), .level1(a_fifo_full), .rst(rst), .clk(clk)); vl_cnt_bin_ce_rew_zq_l1 # (.length(addr_width), .level1_value(fifo_full_level)) b_fill_level_cnt( .cke(b_rd ^ b_wr), .rew(b_rd), .q(b_fill_level), .zq(b_fifo_empty), .level1(b_fifo_full), .rst(rst), .clk(clk)); endmodule module vl_fifo_cmp_async ( wptr, rptr, fifo_empty, fifo_full, wclk, rclk, rst ); parameter addr_width = 4; parameter N = addr_width-1; parameter Q1 = 2'b00; parameter Q2 = 2'b01; parameter Q3 = 2'b11; parameter Q4 = 2'b10; parameter going_empty = 1'b0; parameter going_full = 1'b1; input [N:0] wptr, rptr; output fifo_empty; output fifo_full; input wclk, rclk, rst; wire direction; reg direction_set, direction_clr; wire async_empty, async_full; wire fifo_full2; wire fifo_empty2; // direction_set always @ (wptr[N:N-1] or rptr[N:N-1]) case ({wptr[N:N-1],rptr[N:N-1]}) {Q1,Q2} : direction_set <= 1'b1; {Q2,Q3} : direction_set <= 1'b1; {Q3,Q4} : direction_set <= 1'b1; {Q4,Q1} : direction_set <= 1'b1; default : direction_set <= 1'b0; endcase // direction_clear always @ (wptr[N:N-1] or rptr[N:N-1] or rst) if (rst) direction_clr <= 1'b1; else case ({wptr[N:N-1],rptr[N:N-1]}) {Q2,Q1} : direction_clr <= 1'b1; {Q3,Q2} : direction_clr <= 1'b1; {Q4,Q3} : direction_clr <= 1'b1; {Q1,Q4} : direction_clr <= 1'b1; default : direction_clr <= 1'b0; endcase vl_dff_sr dff_sr_dir( .aclr(direction_clr), .aset(direction_set), .clock(1'b1), .data(1'b1), .q(direction)); assign async_empty = (wptr == rptr) && (direction==going_empty); assign async_full = (wptr == rptr) && (direction==going_full); vl_dff_sr dff_sr_empty0( .aclr(rst), .aset(async_full), .clock(wclk), .data(async_full), .q(fifo_full2)); vl_dff_sr dff_sr_empty1( .aclr(rst), .aset(async_full), .clock(wclk), .data(fifo_full2), .q(fifo_full)); /* always @ (posedge wclk or posedge rst or posedge async_full) if (rst) {fifo_full, fifo_full2} <= 2'b00; else if (async_full) {fifo_full, fifo_full2} <= 2'b11; else {fifo_full, fifo_full2} <= {fifo_full2, async_full}; */ /* always @ (posedge rclk or posedge async_empty) if (async_empty) {fifo_empty, fifo_empty2} <= 2'b11; else {fifo_empty,fifo_empty2} <= {fifo_empty2,async_empty}; */ vl_dff # ( .reset_value(1'b1)) dff0 ( .d(async_empty), .q(fifo_empty2), .clk(rclk), .rst(async_empty)); vl_dff # ( .reset_value(1'b1)) dff1 ( .d(fifo_empty2), .q(fifo_empty), .clk(rclk), .rst(async_empty)); endmodule // async_compb module vl_fifo_1r1w_async ( d, wr, fifo_full, wr_clk, wr_rst, q, rd, fifo_empty, rd_clk, rd_rst ); parameter data_width = 18; parameter addr_width = 4; // write side input [data_width-1:0] d; input wr; output fifo_full; input wr_clk; input wr_rst; // read side output [data_width-1:0] q; input rd; output fifo_empty; input rd_clk; input rd_rst; wire [addr_width:1] wadr, wadr_bin, radr, radr_bin; vl_cnt_gray_ce_bin # ( .length(addr_width)) fifo_wr_adr( .cke(wr), .q(wadr), .q_bin(wadr_bin), .rst(wr_rst), .clk(wr_clk)); vl_cnt_gray_ce_bin # (.length(addr_width)) fifo_rd_adr( .cke(rd), .q(radr), .q_bin(radr_bin), .rst(rd_rst), .clk(rd_clk)); vl_dpram_1r1w # (.data_width(data_width), .addr_width(addr_width)) dpram ( .d_a(d), .adr_a(wadr_bin), .we_a(wr), .clk_a(wr_clk), .q_b(q), .adr_b(radr_bin), .clk_b(rd_clk)); vl_fifo_cmp_async # (.addr_width(addr_width)) cmp ( .wptr(wadr), .rptr(radr), .fifo_empty(fifo_empty), .fifo_full(fifo_full), .wclk(wr_clk), .rclk(rd_clk), .rst(wr_rst) ); endmodule module vl_fifo_2r2w_async ( // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_clk, a_rst, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_clk, b_rst ); parameter data_width = 18; parameter addr_width = 4; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; input a_clk; input a_rst; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; input b_clk; input b_rst; vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width)) vl_fifo_1r1w_async_a ( .d(a_d), .wr(a_wr), .fifo_full(a_fifo_full), .wr_clk(a_clk), .wr_rst(a_rst), .q(b_q), .rd(b_rd), .fifo_empty(b_fifo_empty), .rd_clk(b_clk), .rd_rst(b_rst) ); vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width)) vl_fifo_1r1w_async_b ( .d(b_d), .wr(b_wr), .fifo_full(b_fifo_full), .wr_clk(b_clk), .wr_rst(b_rst), .q(a_q), .rd(a_rd), .fifo_empty(a_fifo_empty), .rd_clk(a_clk), .rd_rst(a_rst) ); endmodule module vl_fifo_2r2w_async_simplex ( // a side a_d, a_wr, a_fifo_full, a_q, a_rd, a_fifo_empty, a_clk, a_rst, // b side b_d, b_wr, b_fifo_full, b_q, b_rd, b_fifo_empty, b_clk, b_rst ); parameter data_width = 18; parameter addr_width = 4; // a side input [data_width-1:0] a_d; input a_wr; output a_fifo_full; output [data_width-1:0] a_q; input a_rd; output a_fifo_empty; input a_clk; input a_rst; // b side input [data_width-1:0] b_d; input b_wr; output b_fifo_full; output [data_width-1:0] b_q; input b_rd; output b_fifo_empty; input b_clk; input b_rst; // adr_gen wire [addr_width:1] a_wadr, a_wadr_bin, a_radr, a_radr_bin; wire [addr_width:1] b_wadr, b_wadr_bin, b_radr, b_radr_bin; // dpram wire [addr_width:0] a_dpram_adr, b_dpram_adr; vl_cnt_gray_ce_bin # ( .length(addr_width)) fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .q_bin(a_wadr_bin), .rst(a_rst), .clk(a_clk)); vl_cnt_gray_ce_bin # (.length(addr_width)) fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .q_bin(a_radr_bin), .rst(a_rst), .clk(a_clk)); vl_cnt_gray_ce_bin # ( .length(addr_width)) fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .q_bin(b_wadr_bin), .rst(b_rst), .clk(b_clk)); vl_cnt_gray_ce_bin # (.length(addr_width)) fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .q_bin(b_radr_bin), .rst(b_rst), .clk(b_clk)); // mux read or write adr to DPRAM assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr_bin} : {1'b1,a_radr_bin}; assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr_bin} : {1'b0,b_radr_bin}; vl_dpram_2r2w # (.data_width(data_width), .addr_width(addr_width+1)) dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk), .d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk)); vl_fifo_cmp_async # (.addr_width(addr_width)) cmp1 ( .wptr(a_wadr), .rptr(b_radr), .fifo_empty(b_fifo_empty), .fifo_full(a_fifo_full), .wclk(a_clk), .rclk(b_clk), .rst(a_rst) ); vl_fifo_cmp_async # (.addr_width(addr_width)) cmp2 ( .wptr(b_wadr), .rptr(a_radr), .fifo_empty(a_fifo_empty), .fifo_full(b_fifo_full), .wclk(b_clk), .rclk(a_clk), .rst(b_rst) ); endmodule module vl_reg_file ( a1, a2, a3, wd3, we3, rd1, rd2, clk ); parameter data_width = 32; parameter addr_width = 5; input [addr_width-1:0] a1, a2, a3; input [data_width-1:0] wd3; input we3; output [data_width-1:0] rd1, rd2; input clk; reg [data_width-1:0] wd3_reg; reg [addr_width-1:0] a1_reg, a2_reg, a3_reg; reg we3_reg; reg [data_width-1:0] ram1 [(1<<addr_width)-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; reg [data_width-1:0] ram2 [(1<<addr_width)-1:0] /*synthesis syn_ramstyle = "no_rw_check"*/; always @ (posedge clk or posedge rst) if (rst) {wd3_reg, a3_reg, we3_reg} <= {(data_width+addr_width+1){1'b0}}; else {wd3_reg, a3_reg, we3_reg} <= {wd3,a3,wd3}; always @ (negedge clk) if (we3_reg) ram1[a3_reg] <= wd3; always @ (posedge clk) a1_reg <= a1; assign rd1 = ram1[a1_reg]; always @ (negedge clk) if (we3_reg) ram2[a3_reg] <= wd3; always @ (posedge clk) a2_reg <= a2; assign rd2 = ram2[a2_reg]; endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Versatile library, wishbone stuff //// //// //// //// Description //// //// Wishbone compliant modules //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `timescale 1ns/1ns module vl_wb_adr_inc ( cyc_i, stb_i, cti_i, bte_i, adr_i, we_i, ack_o, adr_o, clk, rst); parameter adr_width = 10; parameter max_burst_width = 4; input cyc_i, stb_i, we_i; input [2:0] cti_i; input [1:0] bte_i; input [adr_width-1:0] adr_i; output [adr_width-1:0] adr_o; output ack_o; input clk, rst; reg [adr_width-1:0] adr; wire [max_burst_width-1:0] to_adr; reg [max_burst_width-1:0] last_adr; reg last_cycle; localparam idle_or_eoc = 1'b0; localparam cyc_or_ws = 1'b1; always @ (posedge clk or posedge rst) if (rst) last_adr <= {max_burst_width{1'b0}}; else if (stb_i) last_adr <=adr_o[max_burst_width-1:0]; generate if (max_burst_width==0) begin : inst_0 reg ack_o; assign adr_o = adr_i; always @ (posedge clk or posedge rst) if (rst) ack_o <= 1'b0; else ack_o <= cyc_i & stb_i & !ack_o; end else begin always @ (posedge clk or posedge rst) if (rst) last_cycle <= idle_or_eoc; else last_cycle <= (!cyc_i) ? idle_or_eoc : //idle (cyc_i & ack_o & (cti_i==3'b000 | cti_i==3'b111)) ? idle_or_eoc : // eoc (cyc_i & !stb_i) ? cyc_or_ws : //ws cyc_or_ws; // cyc assign to_adr = (last_cycle==idle_or_eoc) ? adr_i[max_burst_width-1:0] : adr[max_burst_width-1:0]; assign adr_o[max_burst_width-1:0] = (we_i) ? adr_i[max_burst_width-1:0] : (!stb_i) ? last_adr : (last_cycle==idle_or_eoc) ? adr_i[max_burst_width-1:0] : adr[max_burst_width-1:0]; assign ack_o = (last_cycle==cyc_or_ws) & stb_i; end endgenerate generate if (max_burst_width==2) begin : inst_2 always @ (posedge clk or posedge rst) if (rst) adr <= 2'h0; else if (cyc_i & stb_i) adr[1:0] <= to_adr[1:0] + 2'd1; else adr <= to_adr[1:0]; end endgenerate generate if (max_burst_width==3) begin : inst_3 always @ (posedge clk or posedge rst) if (rst) adr <= 3'h0; else if (cyc_i & stb_i) case (bte_i) 2'b01: adr[2:0] <= {to_adr[2],to_adr[1:0] + 2'd1}; default: adr[3:0] <= to_adr[2:0] + 3'd1; endcase else adr <= to_adr[2:0]; end endgenerate generate if (max_burst_width==4) begin : inst_4 always @ (posedge clk or posedge rst) if (rst) adr <= 4'h0; else if (stb_i) // | (!stb_i & last_cycle!=ws)) // for !stb_i restart with adr_i +1, only inc once case (bte_i) 2'b01: adr[3:0] <= {to_adr[3:2],to_adr[1:0] + 2'd1}; 2'b10: adr[3:0] <= {to_adr[3],to_adr[2:0] + 3'd1}; default: adr[3:0] <= to_adr + 4'd1; endcase else adr <= to_adr[3:0]; end endgenerate generate if (adr_width > max_burst_width) begin : pass_through assign adr_o[adr_width-1:max_burst_width] = adr_i[adr_width-1:max_burst_width]; end endgenerate endmodule // async wb3 - wb3 bridge `timescale 1ns/1ns module vl_wb3wb3_bridge ( // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_clk, wbs_rst, // wishbone master side wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_bte_o, wbm_cti_o, wbm_we_o, wbm_cyc_o, wbm_stb_o, wbm_dat_i, wbm_ack_i, wbm_clk, wbm_rst); parameter style = "FIFO"; // valid: simple, FIFO parameter addr_width = 4; input [31:0] wbs_dat_i; input [31:2] wbs_adr_i; input [3:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i, wbs_cyc_i, wbs_stb_i; output [31:0] wbs_dat_o; output wbs_ack_o; input wbs_clk, wbs_rst; output [31:0] wbm_dat_o; output reg [31:2] wbm_adr_o; output [3:0] wbm_sel_o; output reg [1:0] wbm_bte_o; output reg [2:0] wbm_cti_o; output reg wbm_we_o; output wbm_cyc_o; output wbm_stb_o; input [31:0] wbm_dat_i; input wbm_ack_i; input wbm_clk, wbm_rst; // bte parameter linear = 2'b00; parameter wrap4 = 2'b01; parameter wrap8 = 2'b10; parameter wrap16 = 2'b11; // cti parameter classic = 3'b000; parameter incburst = 3'b010; parameter endofburst = 3'b111; localparam wbs_adr = 1'b0; localparam wbs_data = 1'b1; localparam wbm_adr0 = 2'b00; localparam wbm_adr1 = 2'b01; localparam wbm_data = 2'b10; localparam wbm_data_wait = 2'b11; reg [1:0] wbs_bte_reg; reg wbs; wire wbs_eoc_alert, wbm_eoc_alert; reg wbs_eoc, wbm_eoc; reg [1:0] wbm; wire [1:16] wbs_count, wbm_count; wire [35:0] a_d, a_q, b_d, b_q; wire a_wr, a_rd, a_fifo_full, a_fifo_empty, b_wr, b_rd, b_fifo_full, b_fifo_empty; reg a_rd_reg; wire b_rd_adr, b_rd_data; wire b_rd_data_reg; wire [35:0] temp; assign wbs_eoc_alert = (wbs_bte_reg==wrap4 & wbs_count[3]) | (wbs_bte_reg==wrap8 & wbs_count[7]) | (wbs_bte_reg==wrap16 & wbs_count[15]); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs_eoc <= 1'b0; else if (wbs==wbs_adr & wbs_stb_i & !a_fifo_full) wbs_eoc <= (wbs_bte_i==linear) | (wbs_cti_i==3'b111); else if (wbs_eoc_alert & (a_rd | a_wr)) wbs_eoc <= 1'b1; vl_cnt_shreg_ce_clear # ( .length(16)) cnt0 ( .cke(wbs_ack_o), .clear(wbs_eoc), .q(wbs_count), .rst(wbs_rst), .clk(wbs_clk)); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs <= wbs_adr; else if ((wbs==wbs_adr) & wbs_cyc_i & wbs_stb_i & a_fifo_empty) wbs <= wbs_data; else if (wbs_eoc & wbs_ack_o) wbs <= wbs_adr; // wbs FIFO assign a_d = (wbs==wbs_adr) ? {wbs_adr_i[31:2],wbs_we_i,((wbs_cti_i==3'b111) ? {2'b00,3'b000} : {wbs_bte_i,wbs_cti_i})} : {wbs_dat_i,wbs_sel_i}; assign a_wr = (wbs==wbs_adr) ? wbs_cyc_i & wbs_stb_i & a_fifo_empty : (wbs==wbs_data) ? wbs_we_i & wbs_stb_i & !a_fifo_full : 1'b0; assign a_rd = !a_fifo_empty; always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) a_rd_reg <= 1'b0; else a_rd_reg <= a_rd; assign wbs_ack_o = a_rd_reg | (a_wr & wbs==wbs_data); assign wbs_dat_o = a_q[35:4]; always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) wbs_bte_reg <= 2'b00; else wbs_bte_reg <= wbs_bte_i; // wbm FIFO assign wbm_eoc_alert = (wbm_bte_o==wrap4 & wbm_count[3]) | (wbm_bte_o==wrap8 & wbm_count[7]) | (wbm_bte_o==wrap16 & wbm_count[15]); always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) wbm_eoc <= 1'b0; else if (wbm==wbm_adr0 & !b_fifo_empty) wbm_eoc <= b_q[4:3] == linear; else if (wbm_eoc_alert & wbm_ack_i) wbm_eoc <= 1'b1; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) wbm <= wbm_adr0; else /* if ((wbm==wbm_adr0 & !b_fifo_empty) | (wbm==wbm_adr1 & !b_fifo_empty & wbm_we_o) | (wbm==wbm_adr1 & !wbm_we_o) | (wbm==wbm_data & wbm_ack_i & wbm_eoc)) wbm <= {wbm[0],!(wbm[1] ^ wbm[0])}; // count sequence 00,01,10 */ case (wbm) wbm_adr0: if (!b_fifo_empty) wbm <= wbm_adr1; wbm_adr1: if (!wbm_we_o | (!b_fifo_empty & wbm_we_o)) wbm <= wbm_data; wbm_data: if (wbm_ack_i & wbm_eoc) wbm <= wbm_adr0; else if (b_fifo_empty & wbm_we_o & wbm_ack_i) wbm <= wbm_data_wait; wbm_data_wait: if (!b_fifo_empty) wbm <= wbm_data; endcase assign b_d = {wbm_dat_i,4'b1111}; assign b_wr = !wbm_we_o & wbm_ack_i; assign b_rd_adr = (wbm==wbm_adr0 & !b_fifo_empty); assign b_rd_data = (wbm==wbm_adr1 & !b_fifo_empty & wbm_we_o) ? 1'b1 : // b_q[`WE] (wbm==wbm_data & !b_fifo_empty & wbm_we_o & wbm_ack_i & !wbm_eoc) ? 1'b1 : (wbm==wbm_data_wait & !b_fifo_empty) ? 1'b1 : 1'b0; assign b_rd = b_rd_adr | b_rd_data; vl_dff dff1 ( .d(b_rd_data), .q(b_rd_data_reg), .clk(wbm_clk), .rst(wbm_rst)); vl_dff_ce # ( .width(36)) dff2 ( .d(b_q), .ce(b_rd_data_reg), .q(temp), .clk(wbm_clk), .rst(wbm_rst)); assign {wbm_dat_o,wbm_sel_o} = (b_rd_data_reg) ? b_q : temp; vl_cnt_shreg_ce_clear # ( .length(16)) cnt1 ( .cke(wbm_ack_i), .clear(wbm_eoc), .q(wbm_count), .rst(wbm_rst), .clk(wbm_clk)); assign wbm_cyc_o = (wbm==wbm_data | wbm==wbm_data_wait); assign wbm_stb_o = (wbm==wbm_data); always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) {wbm_adr_o,wbm_we_o,wbm_bte_o,wbm_cti_o} <= {30'h0,1'b0,linear,classic}; else begin if (wbm==wbm_adr0 & !b_fifo_empty) {wbm_adr_o,wbm_we_o,wbm_bte_o,wbm_cti_o} <= b_q; else if (wbm_eoc_alert & wbm_ack_i) wbm_cti_o <= endofburst; end //async_fifo_dw_simplex_top vl_fifo_2r2w_async_simplex # ( .data_width(36), .addr_width(addr_width)) fifo ( // a side .a_d(a_d), .a_wr(a_wr), .a_fifo_full(a_fifo_full), .a_q(a_q), .a_rd(a_rd), .a_fifo_empty(a_fifo_empty), .a_clk(wbs_clk), .a_rst(wbs_rst), // b side .b_d(b_d), .b_wr(b_wr), .b_fifo_full(b_fifo_full), .b_q(b_q), .b_rd(b_rd), .b_fifo_empty(b_fifo_empty), .b_clk(wbm_clk), .b_rst(wbm_rst) ); endmodule module vl_wb3avalon_bridge ( // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_clk, wbs_rst, // avalon master side readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, clk, rst); parameter linewrapburst = 1'b0; input [31:0] wbs_dat_i; input [31:2] wbs_adr_i; input [3:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i; input wbs_cyc_i; input wbs_stb_i; output [31:0] wbs_dat_o; output wbs_ack_o; input wbs_clk, wbs_rst; input [31:0] readdata; output [31:0] writedata; output [31:2] address; output [3:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input readdatavalid; input waitrequest; input clk; input rst; wire [1:0] wbm_bte_o; wire [2:0] wbm_cti_o; wire wbm_we_o, wbm_cyc_o, wbm_stb_o, wbm_ack_i; reg last_cyc; reg [3:0] counter; reg read_busy; always @ (posedge clk or posedge rst) if (rst) last_cyc <= 1'b0; else last_cyc <= wbm_cyc_o; always @ (posedge clk or posedge rst) if (rst) read_busy <= 1'b0; else if (read & !waitrequest) read_busy <= 1'b1; else if (wbm_ack_i & wbm_cti_o!=3'b010) read_busy <= 1'b0; assign read = wbm_cyc_o & wbm_stb_o & !wbm_we_o & !read_busy; assign beginbursttransfer = (!last_cyc & wbm_cyc_o) & wbm_cti_o==3'b010; assign burstcount = (wbm_bte_o==2'b01) ? 4'd4 : (wbm_bte_o==2'b10) ? 4'd8 : (wbm_bte_o==2'b11) ? 4'd16: 4'd1; assign wbm_ack_i = (readdatavalid) | (write & !waitrequest); always @ (posedge clk or posedge rst) if (rst) begin counter <= 4'd0; end else if (wbm_we_o) begin if (!waitrequest & !last_cyc & wbm_cyc_o) begin counter <= burstcount -4'd1; end else if (waitrequest & !last_cyc & wbm_cyc_o) begin counter <= burstcount; end else if (!waitrequest & wbm_stb_o) begin counter <= counter - 4'd1; end end assign write = wbm_cyc_o & wbm_stb_o & wbm_we_o & counter!=4'd0; vl_wb3wb3_bridge wbwb3inst ( // wishbone slave side .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i), .wbs_sel_i(wbs_sel_i), .wbs_bte_i(wbs_bte_i), .wbs_cti_i(wbs_cti_i), .wbs_we_i(wbs_we_i), .wbs_cyc_i(wbs_cyc_i), .wbs_stb_i(wbs_stb_i), .wbs_dat_o(wbs_dat_o), .wbs_ack_o(wbs_ack_o), .wbs_clk(wbs_clk), .wbs_rst(wbs_rst), // wishbone master side .wbm_dat_o(writedata), .wbm_adr_o(address), .wbm_sel_o(be), .wbm_bte_o(wbm_bte_o), .wbm_cti_o(wbm_cti_o), .wbm_we_o(wbm_we_o), .wbm_cyc_o(wbm_cyc_o), .wbm_stb_o(wbm_stb_o), .wbm_dat_i(readdata), .wbm_ack_i(wbm_ack_i), .wbm_clk(clk), .wbm_rst(rst)); endmodule // WB RAM with byte enable module vl_wb_ram ( wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wb_clk, wb_rst); parameter adr_width = 16; parameter mem_size = 1<<adr_width; parameter dat_width = 32; parameter max_burst_width = 4; // only used for B3 parameter mode = "B3"; // valid options: B3, B4 parameter memory_init = 1; parameter memory_file = "vl_ram.vmem"; input [dat_width-1:0] wbs_dat_i; input [adr_width-1:0] wbs_adr_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input [dat_width/8-1:0] wbs_sel_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input wb_clk, wb_rst; wire [adr_width-1:0] adr; wire we; generate if (mode=="B3") begin : B3_inst vl_wb_adr_inc # ( .adr_width(adr_width), .max_burst_width(max_burst_width)) adr_inc0 ( .cyc_i(wbs_cyc_i), .stb_i(wbs_stb_i), .cti_i(wbs_cti_i), .bte_i(wbs_bte_i), .adr_i(wbs_adr_i), .we_i(wbs_we_i), .ack_o(wbs_ack_o), .adr_o(adr), .clk(wb_clk), .rst(wb_rst)); assign we = wbs_we_i & wbs_ack_o; end else if (mode=="B4") begin : B4_inst reg wbs_ack_o_reg; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wbs_ack_o_reg <= 1'b0; else wbs_ack_o_reg <= wbs_stb_i & wbs_cyc_i; assign wbs_ack_o = wbs_ack_o_reg; assign wbs_stall_o = 1'b0; assign adr = wbs_adr_i; assign we = wbs_we_i & wbs_cyc_i & wbs_stb_i; end endgenerate vl_ram_be # ( .data_width(dat_width), .addr_width(adr_width), .mem_size(mem_size), .memory_init(memory_init), .memory_file(memory_file)) ram0( .d(wbs_dat_i), .adr(adr), .be(wbs_sel_i), .we(we), .q(wbs_dat_o), .clk(wb_clk) ); endmodule // A wishbone compliant RAM module that can be placed in front of other memory controllers module vl_wb_shadow_ram ( wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wbm_dat_o, wbm_adr_o, wbm_cti_o, wbm_bte_o, wbm_sel_o, wbm_we_o, wbm_stb_o, wbm_cyc_o, wbm_dat_i, wbm_ack_i, wbm_stall_i, wb_clk, wb_rst); parameter dat_width = 32; parameter mode = "B4"; parameter max_burst_width = 4; // only used for B3 parameter shadow_mem_adr_width = 10; parameter shadow_mem_size = 1024; parameter shadow_mem_init = 2; parameter shadow_mem_file = "vl_ram.v"; parameter main_mem_adr_width = 24; input [dat_width-1:0] wbs_dat_i; input [main_mem_adr_width-1:0] wbs_adr_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input [dat_width/8-1:0] wbs_sel_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; output [dat_width-1:0] wbm_dat_o; output [main_mem_adr_width-1:0] wbm_adr_o; output [2:0] wbm_cti_o; output [1:0] wbm_bte_o; output [dat_width/8-1:0] wbm_sel_o; output wbm_we_o, wbm_stb_o, wbm_cyc_o; input [dat_width-1:0] wbm_dat_i; input wbm_ack_i, wbm_stall_i; input wb_clk, wb_rst; generate if (shadow_mem_size>0) begin : shadow_ram_inst wire cyc; wire [dat_width-1:0] dat; wire stall, ack; assign cyc = wbs_cyc_i & (wbs_adr_i<=shadow_mem_size); vl_wb_ram # ( .dat_width(dat_width), .adr_width(shadow_mem_adr_width), .mem_size(shadow_mem_size), .memory_init(shadow_mem_init), .memory_file(shadow_mem_file), .mode(mode)) shadow_mem0 ( .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i[shadow_mem_adr_width-1:0]), .wbs_sel_i(wbs_sel_i), .wbs_we_i (wbs_we_i), .wbs_bte_i(wbs_bte_i), .wbs_cti_i(wbs_cti_i), .wbs_stb_i(wbs_stb_i), .wbs_cyc_i(cyc), .wbs_dat_o(dat), .wbs_stall_o(stall), .wbs_ack_o(ack), .wb_clk(wb_clk), .wb_rst(wb_rst)); assign {wbm_dat_o, wbm_adr_o, wbm_cti_o, wbm_bte_o, wbm_sel_o, wbm_we_o, wbm_stb_o} = {wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i}; assign wbm_cyc_o = wbs_cyc_i & (wbs_adr_i>shadow_mem_size); assign wbs_dat_o = (dat & {dat_width{cyc}}) | (wbm_dat_i & {dat_width{wbm_cyc_o}}); assign wbs_ack_o = (ack & cyc) | (wbm_ack_i & wbm_cyc_o); assign wbs_stall_o = (stall & cyc) | (wbm_stall_i & wbm_cyc_o); end else begin : no_shadow_ram_inst assign {wbm_dat_o, wbm_adr_o, wbm_cti_o, wbm_bte_o, wbm_sel_o, wbm_we_o, wbm_stb_o, wbm_cyc_o} = {wbs_dat_i, wbs_adr_i, wbs_cti_i, wbs_bte_i, wbs_sel_i, wbs_we_i, wbs_stb_i, wbs_cyc_i}; assign {wbs_dat_o, wbs_ack_o, wbs_stall_o} = {wbm_dat_i, wbm_ack_i, wbm_stall_i}; end endgenerate endmodule // WB ROM module vl_wb_b4_rom ( wb_adr_i, wb_stb_i, wb_cyc_i, wb_dat_o, stall_o, wb_ack_o, wb_clk, wb_rst); parameter dat_width = 32; parameter dat_default = 32'h15000000; parameter adr_width = 32; /* `ifndef ROM `define ROM "rom.v" `endif */ input [adr_width-1:2] wb_adr_i; input wb_stb_i; input wb_cyc_i; output [dat_width-1:0] wb_dat_o; reg [dat_width-1:0] wb_dat_o; output wb_ack_o; reg wb_ack_o; output stall_o; input wb_clk; input wb_rst; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_dat_o <= {dat_width{1'b0}}; else case (wb_adr_i[adr_width-1:2]) `ifdef ROM `include `ROM `endif default: wb_dat_o <= dat_default; endcase // case (wb_adr_i) always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack_o <= 1'b0; else wb_ack_o <= wb_stb_i & wb_cyc_i; assign stall_o = 1'b0; endmodule // WB ROM module vl_wb_boot_rom ( wb_adr_i, wb_stb_i, wb_cyc_i, wb_dat_o, wb_ack_o, hit_o, wb_clk, wb_rst); parameter adr_hi = 31; parameter adr_lo = 28; parameter adr_sel = 4'hf; parameter addr_width = 5; /* `ifndef BOOT_ROM `define BOOT_ROM "boot_rom.v" `endif */ input [adr_hi:2] wb_adr_i; input wb_stb_i; input wb_cyc_i; output [31:0] wb_dat_o; output wb_ack_o; output hit_o; input wb_clk; input wb_rst; wire hit; reg [31:0] wb_dat; reg wb_ack; assign hit = wb_adr_i[adr_hi:adr_lo] == adr_sel; always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_dat <= 32'h15000000; else case (wb_adr_i[addr_width-1:2]) `ifdef BOOT_ROM `include `BOOT_ROM `endif /* // Zero r0 and jump to 0x00000100 0 : wb_dat <= 32'h18000000; 1 : wb_dat <= 32'hA8200000; 2 : wb_dat <= 32'hA8C00100; 3 : wb_dat <= 32'h44003000; 4 : wb_dat <= 32'h15000000; */ default: wb_dat <= 32'h00000000; endcase // case (wb_adr_i) always @ (posedge wb_clk or posedge wb_rst) if (wb_rst) wb_ack <= 1'b0; else wb_ack <= wb_stb_i & wb_cyc_i & hit & !wb_ack; assign hit_o = hit; assign wb_dat_o = wb_dat & {32{wb_ack}}; assign wb_ack_o = wb_ack; endmodule module vl_wb_dpram ( // wishbone slave side a wbsa_dat_i, wbsa_adr_i, wbsa_sel_i, wbsa_cti_i, wbsa_bte_i, wbsa_we_i, wbsa_cyc_i, wbsa_stb_i, wbsa_dat_o, wbsa_ack_o, wbsa_stall_o, wbsa_clk, wbsa_rst, // wishbone slave side b wbsb_dat_i, wbsb_adr_i, wbsb_sel_i, wbsb_cti_i, wbsb_bte_i, wbsb_we_i, wbsb_cyc_i, wbsb_stb_i, wbsb_dat_o, wbsb_ack_o, wbsb_stall_o, wbsb_clk, wbsb_rst); parameter data_width_a = 32; parameter data_width_b = data_width_a; parameter addr_width_a = 8; localparam addr_width_b = data_width_a * addr_width_a / data_width_b; parameter mem_size = (addr_width_a>addr_width_b) ? (1<<addr_width_a) : (1<<addr_width_b); parameter max_burst_width_a = 4; parameter max_burst_width_b = max_burst_width_a; parameter mode = "B3"; parameter memory_init = 0; parameter memory_file = "vl_ram.v"; input [data_width_a-1:0] wbsa_dat_i; input [addr_width_a-1:0] wbsa_adr_i; input [data_width_a/8-1:0] wbsa_sel_i; input [2:0] wbsa_cti_i; input [1:0] wbsa_bte_i; input wbsa_we_i, wbsa_cyc_i, wbsa_stb_i; output [data_width_a-1:0] wbsa_dat_o; output wbsa_ack_o; output wbsa_stall_o; input wbsa_clk, wbsa_rst; input [data_width_b-1:0] wbsb_dat_i; input [addr_width_b-1:0] wbsb_adr_i; input [data_width_b/8-1:0] wbsb_sel_i; input [2:0] wbsb_cti_i; input [1:0] wbsb_bte_i; input wbsb_we_i, wbsb_cyc_i, wbsb_stb_i; output [data_width_b-1:0] wbsb_dat_o; output wbsb_ack_o; output wbsb_stall_o; input wbsb_clk, wbsb_rst; wire [addr_width_a-1:0] adr_a; wire [addr_width_b-1:0] adr_b; wire we_a, we_b; generate if (mode=="B3") begin : b3_inst vl_wb_adr_inc # ( .adr_width(addr_width_a), .max_burst_width(max_burst_width_a)) adr_inc0 ( .cyc_i(wbsa_cyc_i), .stb_i(wbsa_stb_i), .cti_i(wbsa_cti_i), .bte_i(wbsa_bte_i), .adr_i(wbsa_adr_i), .we_i(wbsa_we_i), .ack_o(wbsa_ack_o), .adr_o(adr_a), .clk(wbsa_clk), .rst(wbsa_rst)); assign we_a = wbsa_we_i & wbsa_ack_o; vl_wb_adr_inc # ( .adr_width(addr_width_b), .max_burst_width(max_burst_width_b)) adr_inc1 ( .cyc_i(wbsb_cyc_i), .stb_i(wbsb_stb_i), .cti_i(wbsb_cti_i), .bte_i(wbsb_bte_i), .adr_i(wbsb_adr_i), .we_i(wbsb_we_i), .ack_o(wbsb_ack_o), .adr_o(adr_b), .clk(wbsb_clk), .rst(wbsb_rst)); assign we_b = wbsb_we_i & wbsb_ack_o; end else if (mode=="B4") begin : b4_inst vl_dff dffacka ( .d(wbsa_stb_i & wbsa_cyc_i), .q(wbsa_ack_o), .clk(wbsa_clk), .rst(wbsa_rst)); assign wbsa_stall_o = 1'b0; assign we_a = wbsa_we_i & wbsa_cyc_i & wbsa_stb_i; vl_dff dffackb ( .d(wbsb_stb_i & wbsb_cyc_i), .q(wbsb_ack_o), .clk(wbsb_clk), .rst(wbsb_rst)); assign wbsb_stall_o = 1'b0; assign we_b = wbsb_we_i & wbsb_cyc_i & wbsb_stb_i; end endgenerate vl_dpram_be_2r2w # ( .a_data_width(data_width_a), .a_addr_width(addr_width_a), .mem_size(mem_size), .b_data_width(data_width_b), .memory_init(memory_init), .memory_file(memory_file)) ram_i ( .d_a(wbsa_dat_i), .q_a(wbsa_dat_o), .adr_a(adr_a), .be_a(wbsa_sel_i), .we_a(we_a), .clk_a(wbsa_clk), .d_b(wbsb_dat_i), .q_b(wbsb_dat_o), .adr_b(adr_b), .be_b(wbsb_sel_i), .we_b(we_b), .clk_b(wbsb_clk) ); endmodule module vl_wb_cache ( wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_cti_i, wbs_bte_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wbs_clk, wbs_rst, wbm_dat_o, wbm_adr_o, wbm_sel_o, wbm_cti_o, wbm_bte_o, wbm_we_o, wbm_stb_o, wbm_cyc_o, wbm_dat_i, wbm_ack_i, wbm_stall_i, wbm_clk, wbm_rst ); parameter dw_s = 32; parameter aw_s = 24; parameter dw_m = dw_s; //localparam aw_m = dw_s * aw_s / dw_m; localparam aw_m = (dw_s==dw_m) ? aw_s : (dw_s==dw_m*2) ? aw_s+1 : (dw_s==dw_m*4) ? aw_s+2 : (dw_s==dw_m*8) ? aw_s+3 : (dw_s==dw_m*16) ? aw_s+4 : (dw_s==dw_m*32) ? aw_s+5 : (dw_s==dw_m/2) ? aw_s-1 : (dw_s==dw_m/4) ? aw_s-2 : (dw_s==dw_m/8) ? aw_s-3 : (dw_s==dw_m/16) ? aw_s-4 : (dw_s==dw_m/32) ? aw_s-5 : 0; parameter wbs_max_burst_width = 4; parameter wbs_mode = "B3"; parameter async = 1; // wbs_clk != wbm_clk parameter nr_of_ways = 1; parameter aw_offset = 4; // 4 => 16 words per cache line parameter aw_slot = 10; parameter valid_mem = 0; parameter debug = 0; localparam aw_b_offset = aw_offset * dw_s / dw_m; localparam aw_tag = aw_s - aw_slot - aw_offset; parameter wbm_burst_size = 4; // valid options 4,8,16 localparam bte = (wbm_burst_size==4) ? 2'b01 : (wbm_burst_size==8) ? 2'b10 : 2'b11; localparam wbm_burst_width = (wbm_burst_size==1) ? 0 : (wbm_burst_size==2) ? 1 : (wbm_burst_size==4) ? 2 : (wbm_burst_size==8) ? 3 : (wbm_burst_size==16) ? 4 : (wbm_burst_size==32) ? 5 : (wbm_burst_size==64) ? 6 : (wbm_burst_size==128) ? 7 : 8; localparam nr_of_wbm_burst = ((1<<aw_offset)/wbm_burst_size) * dw_s / dw_m; localparam nr_of_wbm_burst_width = (nr_of_wbm_burst==1) ? 0 : (nr_of_wbm_burst==2) ? 1 : (nr_of_wbm_burst==4) ? 2 : (nr_of_wbm_burst==8) ? 3 : (nr_of_wbm_burst==16) ? 4 : (nr_of_wbm_burst==32) ? 5 : (nr_of_wbm_burst==64) ? 6 : (nr_of_wbm_burst==128) ? 7 : 8; input [dw_s-1:0] wbs_dat_i; input [aw_s-1:0] wbs_adr_i; // dont include a1,a0 input [dw_s/8-1:0] wbs_sel_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [dw_s-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input wbs_clk, wbs_rst; output [dw_m-1:0] wbm_dat_o; output [aw_m-1:0] wbm_adr_o; output [dw_m/8-1:0] wbm_sel_o; output [2:0] wbm_cti_o; output [1:0] wbm_bte_o; output wbm_stb_o, wbm_cyc_o, wbm_we_o; input [dw_m-1:0] wbm_dat_i; input wbm_ack_i; input wbm_stall_i; input wbm_clk, wbm_rst; wire valid, dirty, hit; wire [aw_tag-1:0] tag; wire tag_mem_we; wire [aw_tag-1:0] wbs_adr_tag; wire [aw_slot-1:0] wbs_adr_slot; wire [aw_offset-1:0] wbs_adr_word; wire [aw_s-1:0] wbs_adr; reg [1:0] state; localparam idle = 2'h0; localparam rdwr = 2'h1; localparam push = 2'h2; localparam pull = 2'h3; wire eoc; wire we; // cdc wire done, mem_alert, mem_done; // wbm side reg [aw_m-1:0] wbm_radr; reg [aw_m-1:0] wbm_wadr; wire [aw_slot-1:0] wbm_adr; wire wbm_radr_cke, wbm_wadr_cke; reg [2:0] phase; // phase = {we,stb,cyc} localparam wbm_wait = 3'b000; localparam wbm_wr = 3'b111; localparam wbm_wr_drain = 3'b101; localparam wbm_rd = 3'b011; localparam wbm_rd_drain = 3'b001; assign {wbs_adr_tag, wbs_adr_slot, wbs_adr_word} = wbs_adr_i; generate if (valid_mem==0) begin : no_valid_mem assign valid = 1'b1; end else begin : valid_mem_inst vl_dpram_1r1w # ( .data_width(1), .addr_width(aw_slot), .memory_init(2), .debug(debug)) valid_mem ( .d_a(1'b1), .adr_a(wbs_adr_slot), .we_a(mem_done), .clk_a(wbm_clk), .q_b(valid), .adr_b(wbs_adr_slot), .clk_b(wbs_clk)); end endgenerate vl_dpram_1r1w # ( .data_width(aw_tag), .addr_width(aw_slot), .memory_init(2), .debug(debug)) tag_mem ( .d_a(wbs_adr_tag), .adr_a(wbs_adr_slot), .we_a(mem_done), .clk_a(wbm_clk), .q_b(tag), .adr_b(wbs_adr_slot), .clk_b(wbs_clk)); assign hit = wbs_adr_tag == tag; vl_dpram_1r2w # ( .data_width(1), .addr_width(aw_slot), .memory_init(2), .debug(debug)) dirty_mem ( .d_a(1'b1), .q_a(dirty), .adr_a(wbs_adr_slot), .we_a(wbs_cyc_i & wbs_we_i & wbs_ack_o), .clk_a(wbs_clk), .d_b(1'b0), .adr_b(wbs_adr_slot), .we_b(mem_done), .clk_b(wbm_clk)); generate if (wbs_mode=="B3") begin : inst_b3 vl_wb_adr_inc # ( .adr_width(aw_s), .max_burst_width(wbs_max_burst_width)) adr_inc0 ( .cyc_i(wbs_cyc_i & (state==rdwr) & hit & valid), .stb_i(wbs_stb_i & (state==rdwr) & hit & valid), // throttle depending on valid .cti_i(wbs_cti_i), .bte_i(wbs_bte_i), .adr_i(wbs_adr_i), .we_i (wbs_we_i), .ack_o(wbs_ack_o), .adr_o(wbs_adr), .clk(wbs_clk), .rst(wbs_rst)); assign eoc = (wbs_cti_i==3'b000 | wbs_cti_i==3'b111) & wbs_ack_o; assign we = wbs_cyc_i & wbs_we_i & wbs_ack_o; end else if (wbs_mode=="B4") begin : inst_b4 end endgenerate vl_dpram_be_2r2w # ( .a_data_width(dw_s), .a_addr_width(aw_slot+aw_offset), .b_data_width(dw_m), .debug(debug)) cache_mem ( .d_a(wbs_dat_i), .adr_a(wbs_adr[aw_slot+aw_offset-1:0]), .be_a(wbs_sel_i), .we_a(we), .q_a(wbs_dat_o), .clk_a(wbs_clk), .d_b(wbm_dat_i), .adr_b(wbm_adr_o[aw_slot+aw_offset-1:0]), .be_b(wbm_sel_o), .we_b(wbm_cyc_o & !wbm_we_o & wbs_ack_i), .q_b(wbm_dat_o), .clk_b(wbm_clk)); always @ (posedge wbs_clk or posedge wbs_rst) if (wbs_rst) state <= idle; else case (state) idle: if (wbs_cyc_i) state <= rdwr; rdwr: casex ({valid, hit, dirty, eoc}) 4'b0xxx: state <= pull; 4'b11x1: state <= idle; 4'b101x: state <= push; 4'b100x: state <= pull; endcase push: if (done) state <= rdwr; pull: if (done) state <= rdwr; default: state <= idle; endcase // cdc generate if (async==1) begin : cdc0 vl_cdc cdc0 ( .start_pl(state==rdwr & (!valid | !hit)), .take_it_pl(mem_alert), .take_it_grant_pl(mem_done), .got_it_pl(done), .clk_src(wbs_clk), .rst_src(wbs_rst), .clk_dst(wbm_clk), .rst_dst(wbm_rst)); end else begin : nocdc assign mem_alert = state==rdwr & (!valid | !hit); assign done = mem_done; end endgenerate // FSM generating a number of burts 4 cycles // actual number depends on data width ratio // nr_of_wbm_burst reg [nr_of_wbm_burst_width+wbm_burst_width-1:0] cnt_rw, cnt_ack; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) cnt_rw <= {wbm_burst_width{1'b0}}; else if (wbm_cyc_o & wbm_stb_o & !wbm_stall_i) cnt_rw <= cnt_rw + 1; always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) cnt_ack <= {wbm_burst_width{1'b0}}; else if (wbm_ack_i) cnt_ack <= cnt_ack + 1; generate if (nr_of_wbm_burst==1) begin : one_burst always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) phase <= wbm_wait; else case (phase) wbm_wait: if (mem_alert) if (state==push) phase <= wbm_wr; else phase <= wbm_rd; wbm_wr: if (&cnt_rw) phase <= wbm_wr_drain; wbm_wr_drain: if (&cnt_ack) phase <= wbm_rd; wbm_rd: if (&cnt_rw) phase <= wbm_rd_drain; wbm_rd_drain: if (&cnt_ack) phase <= wbm_wait; default: phase <= wbm_wait; endcase end else begin : multiple_burst always @ (posedge wbm_clk or posedge wbm_rst) if (wbm_rst) phase <= wbm_wait; else case (phase) wbm_wait: if (mem_alert) if (state==push) phase <= wbm_wr; else phase <= wbm_rd; wbm_wr: if (&cnt_rw[wbm_burst_width-1:0]) phase <= wbm_wr_drain; wbm_wr_drain: if (&cnt_ack) phase <= wbm_rd; else if (&cnt_ack[wbm_burst_width-1:0]) phase <= wbm_wr; wbm_rd: if (&cnt_rw[wbm_burst_width-1:0]) phase <= wbm_rd_drain; wbm_rd_drain: if (&cnt_ack) phase <= wbm_wait; else if (&cnt_ack[wbm_burst_width-1:0]) phase <= wbm_rd; default: phase <= wbm_wait; endcase end endgenerate assign mem_done = phase==wbm_rd_drain & (&cnt_ack) & wbm_ack_i; assign wbm_adr_o = (phase[2]) ? {tag, wbs_adr_slot, cnt_rw} : {wbs_adr_tag, wbs_adr_slot, cnt_rw}; assign wbm_adr = (phase[2]) ? {wbs_adr_slot, cnt_rw} : {wbs_adr_slot, cnt_rw}; assign wbm_sel_o = {dw_m/8{1'b1}}; assign wbm_cti_o = (&cnt_rw | !wbm_stb_o) ? 3'b111 : 3'b010; assign wbm_bte_o = bte; assign {wbm_we_o, wbm_stb_o, wbm_cyc_o} = phase; endmodule // Wishbone to avalon bridge supporting one type of burst transfer only // intended use is together with cache above // WB B4 -> pipelined avalon module vl_wb_avalon_bridge ( // wishbone slave side wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_bte_i, wbs_cti_i, wbs_we_i, wbs_cyc_i, wbs_stb_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, // avalon master side readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, // common clk, rst); parameter adr_width = 30; parameter dat_width = 32; parameter burst_size = 4; input [dat_width-1:0] wbs_dat_i; input [adr_width-1:0] wbs_adr_i; input [dat_width/8-1:0] wbs_sel_i; input [1:0] wbs_bte_i; input [2:0] wbs_cti_i; input wbs_we_i; input wbs_cyc_i; input wbs_stb_i; output [dat_width:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input [dat_width-1:0] readdata; input readdatavalid; output [dat_width-1:0] writedata; output [adr_width-1:0] address; output [dat_width/8-1:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input waitrequest; input clk, rst; reg last_cyc_idle_or_eoc; reg [3:0] cnt; always @ (posedge clk or posedge rst) if (rst) cnt <= 4'h0; else if (beginbursttransfer & waitrequest) cnt <= burst_size - 1; else if (beginbursttransfer & !waitrequest) cnt <= burst_size - 2; else if (wbs_ack_o) cnt <= cnt - 1; reg wr_ack; always @ (posedge clk or posedge rst) if (rst) wr_ack <= 1'b0; else wr_ack <= (wbs_we_i & wbs_cyc_i & wbs_stb_i & !wbs_stall_o); // to avalon assign writedata = wbs_dat_i; assign address = wbs_adr_i; assign be = wbs_sel_i; assign write = cnt==(burst_size-1) & wbs_cyc_i & wbs_we_i; assign read = cnt==(burst_size-1) & wbs_cyc_i & !wbs_we_i; assign beginbursttransfer = cnt==4'h0 & wbs_cyc_i; assign burstcount = burst_size; // to wishbone assign wbs_dat_o = readdata; assign wbs_ack_o = wr_ack | readdatavalid; assign wbs_stall_o = waitrequest; endmodule module vl_wb_avalon_mem_cache ( wbs_dat_i, wbs_adr_i, wbs_sel_i, wbs_cti_i, wbs_bte_i, wbs_we_i, wbs_stb_i, wbs_cyc_i, wbs_dat_o, wbs_ack_o, wbs_stall_o, wbs_clk, wbs_rst, readdata, readdatavalid, address, read, be, write, burstcount, writedata, waitrequest, beginbursttransfer, clk, rst ); // wishbone parameter wb_dat_width = 32; parameter wb_adr_width = 22; parameter wb_max_burst_width = 4; parameter wb_mode = "B4"; // avalon parameter avalon_dat_width = 32; //localparam avalon_adr_width = wb_dat_width * wb_adr_width / avalon_dat_width; localparam avalon_adr_width = (wb_dat_width==avalon_dat_width) ? wb_adr_width : (wb_dat_width==avalon_dat_width*2) ? wb_adr_width+1 : (wb_dat_width==avalon_dat_width*4) ? wb_adr_width+2 : (wb_dat_width==avalon_dat_width*8) ? wb_adr_width+3 : (wb_dat_width==avalon_dat_width*16) ? wb_adr_width+4 : (wb_dat_width==avalon_dat_width*32) ? wb_adr_width+5 : (wb_dat_width==avalon_dat_width/2) ? wb_adr_width-1 : (wb_dat_width==avalon_dat_width/4) ? wb_adr_width-2 : (wb_dat_width==avalon_dat_width/8) ? wb_adr_width-3 : (wb_dat_width==avalon_dat_width/16) ? wb_adr_width-4 : (wb_dat_width==avalon_dat_width/32) ? wb_adr_width-5 : 0; parameter avalon_burst_size = 4; // cache parameter async = 1; parameter nr_of_ways = 1; parameter aw_offset = 4; parameter aw_slot = 10; parameter valid_mem = 1; // shadow RAM parameter shadow_ram = 0; parameter shadow_ram_adr_width = 10; parameter shadow_ram_size = 1024; parameter shadow_ram_init = 2; // 0: no init, 1: from file, 2: with zero parameter shadow_ram_file = "vl_ram.v"; input [wb_dat_width-1:0] wbs_dat_i; input [wb_adr_width-1:0] wbs_adr_i; // dont include a1,a0 input [wb_dat_width/8-1:0] wbs_sel_i; input [2:0] wbs_cti_i; input [1:0] wbs_bte_i; input wbs_we_i, wbs_stb_i, wbs_cyc_i; output [wb_dat_width-1:0] wbs_dat_o; output wbs_ack_o; output wbs_stall_o; input wbs_clk, wbs_rst; input [avalon_dat_width-1:0] readdata; input readdatavalid; output [avalon_dat_width-1:0] writedata; output [avalon_adr_width-1:0] address; output [avalon_dat_width/8-1:0] be; output write; output read; output beginbursttransfer; output [3:0] burstcount; input waitrequest; input clk, rst; wire [wb_dat_width-1:0] wb1_dat_o; wire [wb_adr_width-1:0] wb1_adr_o; wire [wb_dat_width/8-1:0] wb1_sel_o; wire [2:0] wb1_cti_o; wire [1:0] wb1_bte_o; wire wb1_we_o; wire wb1_stb_o; wire wb1_cyc_o; wire wb1_stall_i; wire [wb_dat_width-1:0] wb1_dat_i; wire wb1_ack_i; wire [wb_dat_width-1:0] wb2_dat_o; wire [wb_adr_width-1:0] wb2_adr_o; wire [wb_dat_width/8-1:0] wb2_sel_o; wire [2:0] wb2_cti_o; wire [1:0] wb2_bte_o; wire wb2_we_o; wire wb2_stb_o; wire wb2_cyc_o; wire wb2_stall_i; wire [wb_dat_width-1:0] wb2_dat_i; wire wb2_ack_i; vl_wb_shadow_ram # ( .dat_width(wb_dat_width), .mode(wb_mode), .max_burst_width(wb_max_burst_width), .shadow_mem_adr_width(shadow_ram_adr_width), .shadow_mem_size(shadow_ram_size), .shadow_mem_init(shadow_ram_init), .shadow_mem_file(shadow_ram_file), .main_mem_adr_width(wb_adr_width)) shadow_ram0 ( .wbs_dat_i(wbs_dat_i), .wbs_adr_i(wbs_adr_i), .wbs_cti_i(wbs_cti_i), .wbs_bte_i(wbs_bte_i), .wbs_sel_i(wbs_sel_i), .wbs_we_i(wbs_we_i), .wbs_stb_i(wbs_stb_i), .wbs_cyc_i(wbs_cyc_i), .wbs_dat_o(wbs_dat_o), .wbs_ack_o(wbs_ack_o), .wbs_stall_o(wbs_stall_o), .wbm_dat_o(wb1_dat_o), .wbm_adr_o(wb1_adr_o), .wbm_cti_o(wb1_cti_o), .wbm_bte_o(wb1_bte_o), .wbm_sel_o(wb1_sel_o), .wbm_we_o(wb1_we_o), .wbm_stb_o(wb1_stb_o), .wbm_cyc_o(wb1_cyc_o), .wbm_dat_i(wb1_dat_i), .wbm_ack_i(wb1_ack_i), .wbm_stall_i(wb1_stall_i), .wb_clk(wbs_clk), .wb_rst(wbs_rst)); vl_wb_cache # ( .dw_s(wb_dat_width), .aw_s(wb_adr_width), .dw_m(avalon_dat_width), .wbs_mode(wb_mode), .wbs_max_burst_width(wb_max_burst_width), .async(async), .nr_of_ways(nr_of_ways), .aw_offset(aw_offset), .aw_slot(aw_slot), .valid_mem(valid_mem)) cache0 ( .wbs_dat_i(wb1_dat_o), .wbs_adr_i(wb1_adr_o), .wbs_sel_i(wb1_sel_o), .wbs_cti_i(wb1_cti_o), .wbs_bte_i(wb1_bte_o), .wbs_we_i(wb1_we_o), .wbs_stb_i(wb1_stb_o), .wbs_cyc_i(wb1_cyc_o), .wbs_dat_o(wb1_dat_i), .wbs_ack_o(wb1_ack_i), .wbs_stall_o(wb1_stall_i), .wbs_clk(wbs_clk), .wbs_rst(wbs_rst), .wbm_dat_o(wb2_dat_o), .wbm_adr_o(wb2_adr_o), .wbm_sel_o(wb2_sel_o), .wbm_cti_o(wb2_cti_o), .wbm_bte_o(wb2_bte_o), .wbm_we_o(wb2_we_o), .wbm_stb_o(wb2_stb_o), .wbm_cyc_o(wb2_cyc_o), .wbm_dat_i(wb2_dat_i), .wbm_ack_i(wb2_ack_i), .wbm_stall_i(wb2_stall_i), .wbm_clk(clk), .wbm_rst(rst)); vl_wb_avalon_bridge # ( .adr_width(avalon_adr_width), .dat_width(avalon_dat_width), .burst_size(avalon_burst_size)) bridge0 ( // wishbone slave side .wbs_dat_i(wb2_dat_o), .wbs_adr_i(wb2_adr_o), .wbs_sel_i(wb2_sel_o), .wbs_bte_i(wb2_bte_o), .wbs_cti_i(wb2_cti_o), .wbs_we_i(wb2_we_o), .wbs_cyc_i(wb2_cyc_o), .wbs_stb_i(wb2_stb_o), .wbs_dat_o(wb2_dat_i), .wbs_ack_o(wb2_ack_i), .wbs_stall_o(wb2_stall_i), // avalon master side .readdata(readdata), .readdatavalid(readdatavalid), .address(address), .read(read), .be(be), .write(write), .burstcount(burstcount), .writedata(writedata), .waitrequest(waitrequest), .beginbursttransfer(beginbursttransfer), // common .clk(clk), .rst(rst)); endmodule ////////////////////////////////////////////////////////////////////// //// //// //// Arithmetic functions //// //// //// //// Description //// //// Arithmetic functions for ALU and DSP //// //// //// //// //// //// To Do: //// //// - //// //// //// //// Author(s): //// //// - Michael Unneback, unneback@opencores.org //// //// ORSoC AB //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // signed multiplication module vl_mults (a,b,p); parameter operand_a_width = 18; parameter operand_b_width = 18; parameter result_hi = 35; parameter result_lo = 0; input [operand_a_width-1:0] a; input [operand_b_width-1:0] b; output [result_hi:result_lo] p; wire signed [operand_a_width-1:0] ai; wire signed [operand_b_width-1:0] bi; wire signed [operand_a_width+operand_b_width-1:0] result; assign ai = a; assign bi = b; assign result = ai * bi; assign p = result[result_hi:result_lo]; endmodule module vl_mults18x18 (a,b,p); input [17:0] a,b; output [35:0] p; vl_mult # (.operand_a_width(18), .operand_b_width(18)) mult0 (.a(a), .b(b), .p(p)); endmodule // unsigned multiplication module vl_mult (a,b,p); parameter operand_a_width = 18; parameter operand_b_width = 18; parameter result_hi = 35; parameter result_lo = 0; input [operand_a_width-1:0] a; input [operand_b_width-1:0] b; output [result_hi:result_hi] p; wire [operand_a_width+operand_b_width-1:0] result; assign result = a * b; assign p = result[result_hi:result_lo]; endmodule // shift unit // supporting the following shift functions // SLL // SRL // SRA module vl_shift_unit_32( din, s, dout, opcode); input [31:0] din; // data in operand input [4:0] s; // shift operand input [1:0] opcode; output [31:0] dout; parameter opcode_sll = 2'b00; //parameter opcode_srl = 2'b01; parameter opcode_sra = 2'b10; //parameter opcode_ror = 2'b11; wire sll, sra; assign sll = opcode == opcode_sll; assign sra = opcode == opcode_sra; wire [15:1] s1; wire [3:0] sign; wire [7:0] tmp [0:3]; // first stage is multiplier based // shift operand as fractional 8.7 assign s1[15] = sll & s[2:0]==3'd7; assign s1[14] = sll & s[2:0]==3'd6; assign s1[13] = sll & s[2:0]==3'd5; assign s1[12] = sll & s[2:0]==3'd4; assign s1[11] = sll & s[2:0]==3'd3; assign s1[10] = sll & s[2:0]==3'd2; assign s1[ 9] = sll & s[2:0]==3'd1; assign s1[ 8] = s[2:0]==3'd0; assign s1[ 7] = !sll & s[2:0]==3'd1; assign s1[ 6] = !sll & s[2:0]==3'd2; assign s1[ 5] = !sll & s[2:0]==3'd3; assign s1[ 4] = !sll & s[2:0]==3'd4; assign s1[ 3] = !sll & s[2:0]==3'd5; assign s1[ 2] = !sll & s[2:0]==3'd6; assign s1[ 1] = !sll & s[2:0]==3'd7; assign sign[3] = din[31] & sra; assign sign[2] = sign[3] & (&din[31:24]); assign sign[1] = sign[2] & (&din[23:16]); assign sign[0] = sign[1] & (&din[15:8]); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte3 ( .a({sign[3], {8{sign[3]}},din[31:24], din[23:16]}), .b({1'b0,s1}), .p(tmp[3])); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte2 ( .a({sign[2], din[31:24] ,din[23:16], din[15:8]}), .b({1'b0,s1}), .p(tmp[2])); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte1 ( .a({sign[1], din[23:16] ,din[15:8], din[7:0]}), .b({1'b0,s1}), .p(tmp[1])); vl_mults # ( .operand_a_width(25), .operand_b_width(16), .result_hi(14), .result_lo(7)) mult_byte0 ( .a({sign[0], din[15:8] ,din[7:0], 8'h00}), .b({1'b0,s1}), .p(tmp[0])); // second stage is multiplexer based // shift on byte level // mux byte 3 assign dout[31:24] = (s[4:3]==2'b00) ? tmp[3] : (sll & s[4:3]==2'b01) ? tmp[2] : (sll & s[4:3]==2'b10) ? tmp[1] : (sll & s[4:3]==2'b11) ? tmp[0] : {8{sign[3]}}; // mux byte 2 assign dout[23:16] = (s[4:3]==2'b00) ? tmp[2] : (sll & s[4:3]==2'b01) ? tmp[1] : (sll & s[4:3]==2'b10) ? tmp[0] : (sll & s[4:3]==2'b11) ? {8{1'b0}} : (s[4:3]==2'b01) ? tmp[3] : {8{sign[3]}}; // mux byte 1 assign dout[15:8] = (s[4:3]==2'b00) ? tmp[1] : (sll & s[4:3]==2'b01) ? tmp[0] : (sll & s[4:3]==2'b10) ? {8{1'b0}} : (sll & s[4:3]==2'b11) ? {8{1'b0}} : (s[4:3]==2'b01) ? tmp[2] : (s[4:3]==2'b10) ? tmp[3] : {8{sign[3]}}; // mux byte 0 assign dout[7:0] = (s[4:3]==2'b00) ? tmp[0] : (sll) ? {8{1'b0}}: (s[4:3]==2'b01) ? tmp[1] : (s[4:3]==2'b10) ? tmp[2] : tmp[3]; endmodule // logic unit // supporting the following logic functions // a and b // a or b // a xor b // not b module vl_logic_unit( a, b, result, opcode); parameter width = 32; parameter opcode_and = 2'b00; parameter opcode_or = 2'b01; parameter opcode_xor = 2'b10; input [width-1:0] a,b; output [width-1:0] result; input [1:0] opcode; assign result = (opcode==opcode_and) ? a & b : (opcode==opcode_or) ? a | b : (opcode==opcode_xor) ? a ^ b : b; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log