URL
https://opencores.org/ocsvn/video_stream_scaler/video_stream_scaler/trunk
Subversion Repositories video_stream_scaler
[/] [video_stream_scaler/] [trunk/] [sim/] [rtl_sim/] [scaler.mpf] - Rev 2
Compare with Previous | Blame | View Log
; Copyright 1991-2010 Mentor Graphics Corporation
;
; All Rights Reserved.
;
; THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
; MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS.
;
[Library]
std = $MODEL_TECH/../std
ieee = $MODEL_TECH/../ieee
verilog = $MODEL_TECH/../verilog
; to use Vital 1995 version of the standard
; IEEE library must be mapped to the vital1995 library
; one cannot use the vital1995 library directly because it assume that it
; is the IEEE library. If vital1995 and vital2000 are being mixed together then
; ieee must be mapped to vital1995 and vital200 mapped to vital2000
; ieee = $MODEL_TECH/../vital1995
; for compatiblity with previously the VITAL2000 maps to a seperate library from IEEE
; if one should not reference vital from both the ieee library and the vital library becasue
; the vital packages are effectively different. If one needs to reference both libraies the
; vital2000 and ieee MUST be mapped to the same library either $MODEL_TECH/../ieee
; or $MODEL_TECH/../vital2000
vital2000 = $MODEL_TECH/../vital2000
std_developerskit = $MODEL_TECH/../std_developerskit
synopsys = $MODEL_TECH/../synopsys
modelsim_lib = $MODEL_TECH/../modelsim_lib
sv_std = $MODEL_TECH/../sv_std
mtiAvm = $MODEL_TECH/../avm
mtiOvm = $MODEL_TECH/../ovm-2.1.1
mtiUPF = $MODEL_TECH/../upf_lib
mtiPA = $MODEL_TECH/../pa_lib
floatfixlib = $MODEL_TECH/../floatfixlib
mc2_lib = $MODEL_TECH/../mc2_lib
;vhdl_psl_checkers = $MODEL_TECH/../vhdl_psl_checkers // Source files only for this release
;verilog_psl_checkers = $MODEL_TECH/../verilog_psl_checkers // Source files only for this release
;mvc_lib = $MODEL_TECH/../mvc_lib
work = work
[vcom]
; VHDL93 variable selects language version as the default.
; Default is VHDL-2002.
; Value of 0 or 1987 for VHDL-1987.
; Value of 1 or 1993 for VHDL-1993.
; Default or value of 2 or 2002 for VHDL-2002.
; Value of 3 or 2008 for VHDL-2008
VHDL93 = 2002
; Show source line containing error. Default is off.
; Show_source = 1
; Turn off unbound-component warnings. Default is on.
; Show_Warning1 = 0
; Turn off process-without-a-wait-statement warnings. Default is on.
; Show_Warning2 = 0
; Turn off null-range warnings. Default is on.
; Show_Warning3 = 0
; Turn off no-space-in-time-literal warnings. Default is on.
; Show_Warning4 = 0
; Turn off multiple-drivers-on-unresolved-signal warnings. Default is on.
; Show_Warning5 = 0
; Turn off optimization for IEEE std_logic_1164 package. Default is on.
; Optimize_1164 = 0
; Turn on resolving of ambiguous function overloading in favor of the
; "explicit" function declaration (not the one automatically created by
; the compiler for each type declaration). Default is off.
; The .ini file has Explicit enabled so that std_logic_signed/unsigned
; will match the behavior of synthesis tools.
Explicit = 1
; Turn off acceleration of the VITAL packages. Default is to accelerate.
; NoVital = 1
; Turn off VITAL compliance checking. Default is checking on.
; NoVitalCheck = 1
; Ignore VITAL compliance checking errors. Default is to not ignore.
; IgnoreVitalErrors = 1
; Turn off VITAL compliance checking warnings. Default is to show warnings.
; Show_VitalChecksWarnings = 0
; Turn off PSL assertion warning messages. Default is to show warnings.
; Show_PslChecksWarnings = 0
; Enable parsing of embedded PSL assertions. Default is enabled.
; EmbeddedPsl = 0
; Keep silent about case statement static warnings.
; Default is to give a warning.
; NoCaseStaticError = 1
; Keep silent about warnings caused by aggregates that are not locally static.
; Default is to give a warning.
; NoOthersStaticError = 1
; Treat as errors:
; case statement static warnings
; warnings caused by aggregates that are not locally static
; Overrides NoCaseStaticError, NoOthersStaticError settings.
; PedanticErrors = 1
; Turn off inclusion of debugging info within design units.
; Default is to include debugging info.
; NoDebug = 1
; Turn off "Loading..." messages. Default is messages on.
; Quiet = 1
; Turn on some limited synthesis rule compliance checking. Checks only:
; -- signals used (read) by a process must be in the sensitivity list
; CheckSynthesis = 1
; Activate optimizations on expressions that do not involve signals,
; waits, or function/procedure/task invocations. Default is off.
; ScalarOpts = 1
; Turns on lint-style checking.
; Show_Lint = 1
; Require the user to specify a configuration for all bindings,
; and do not generate a compile time default binding for the
; component. This will result in an elaboration error of
; 'component not bound' if the user fails to do so. Avoids the rare
; issue of a false dependency upon the unused default binding.
; RequireConfigForAllDefaultBinding = 1
; Perform default binding at compile time.
; Default is to do default binding at load time.
; BindAtCompile = 1;
; Inhibit range checking on subscripts of arrays. Range checking on
; scalars defined with subtypes is inhibited by default.
; NoIndexCheck = 1
; Inhibit range checks on all (implicit and explicit) assignments to
; scalar objects defined with subtypes.
; NoRangeCheck = 1
; Run the 0-in compiler on the VHDL source files
; Default is off.
; ZeroIn = 1
; Set the options to be passed to the 0-in compiler.
; Default is "".
; ZeroInOptions = ""
; Set the synthesis prefix to be honored for synthesis pragma recognition.
; Default is "".
; SynthPrefix = ""
; Turn on code coverage in VHDL design units. Default is off.
; Coverage = sbceft
; Turn off code coverage in VHDL subprograms. Default is on.
; CoverageSub = 0
; Automatically exclude VHDL case statement OTHERS choice branches.
; This includes OTHERS choices in selected signal assigment statements.
; Default is to not exclude.
; CoverExcludeDefault = 1
; Control compiler and VOPT optimizations that are allowed when
; code coverage is on. Refer to the comment for this in the [vlog] area.
; CoverOpt = 3
; Inform code coverage optimizations to respect VHDL 'H' and 'L'
; values on signals in conditions and expressions, and to not automatically
; convert them to '1' and '0'. Default is to not convert.
; CoverRespectHandL = 0
; Increase or decrease the maximum number of rows allowed in a UDP table
; implementing a VHDL condition coverage or expression coverage expression.
; More rows leads to a longer compile time, but more expressions covered.
; CoverMaxUDPRows = 192
; Increase or decrease the maximum number of input patterns that are present
; in FEC table. This leads to a longer compile time with more expressions
; covered with FEC metric.
; CoverMaxFECRows = 192
; Enable or disable Focused Expression Coverage analysis for conditions and
; expressions. Focused Expression Coverage data is provided by default when
; expression and/or condition coverage is active.
; CoverFEC = 0
; Enable or disable UDP Coverage analysis for conditions and expressions.
; UDP Coverage data is provided by default when expression and/or condition
; coverage is active.
; CoverUDP = 0
; Enable or disable short circuit evaluation of conditions and expressions when
; condition or expression coverage is active. Short circuit evaluation is enabled
; by default.
; CoverShortCircuit = 0
; Enable code coverage reporting of code that has been optimized away.
; The default is not to report.
; CoverReportCancelled = 1
; Use this directory for compiler temporary files instead of "work/_temp"
; CompilerTempDir = /tmp
; Set this to cause the compilers to force data to be committed to disk
; when the files are closed.
; SyncCompilerFiles = 1
; Add VHDL-AMS declarations to package STANDARD
; Default is not to add
; AmsStandard = 1
; Range and length checking will be performed on array indices and discrete
; ranges, and when violations are found within subprograms, errors will be
; reported. Default is to issue warnings for violations, because subprograms
; may not be invoked.
; NoDeferSubpgmCheck = 0
; Turn ON detection of FSMs having single bit current state variable.
; FsmSingle = 1
; Turn off reset state transitions in FSM.
; FsmResetTrans = 0
; Turn ON detection of FSM Implicit Transitions.
; FsmImplicitTrans = 1
; Do not show immediate assertions with constant expressions in
; GUI/report/UCDB etc. By default immediate assertions with constant
; expressions are shown in GUI/report/UCDB etc. This does not affect ;
; evaluation of immediate assertions.
; ShowConstantImmediateAsserts = 0
[vlog]
; Turn off inclusion of debugging info within design units.
; Default is to include debugging info.
; NoDebug = 1
; Turn on `protect compiler directive processing.
; Default is to ignore `protect directives.
; Protect = 1
; Turn off "Loading..." messages. Default is messages on.
; Quiet = 1
; Turn on Verilog hazard checking (order-dependent accessing of global vars).
; Default is off.
; Hazard = 1
; Turn on converting regular Verilog identifiers to uppercase. Allows case
; insensitivity for module names. Default is no conversion.
; UpCase = 1
; Activate optimizations on expressions that do not involve signals,
; waits, or function/procedure/task invocations. Default is off.
; ScalarOpts = 1
; Turns on lint-style checking.
; Show_Lint = 1
; Show source line containing error. Default is off.
; Show_source = 1
; Turn on bad option warning. Default is off.
; Show_BadOptionWarning = 1
; Revert back to IEEE 1364-1995 syntax, default is 0 (off).
; vlog95compat = 1
; Turn off PSL warning messages. Default is to show warnings.
; Show_PslChecksWarnings = 0
; Enable parsing of embedded PSL assertions. Default is enabled.
; EmbeddedPsl = 0
; Set the threshold for automatically identifying sparse Verilog memories.
; A memory with depth equal to or more than the sparse memory threshold gets
; marked as sparse automatically, unless specified otherwise in source code
; or by +nosparse commandline option of vlog or vopt.
; The default is 1M. (i.e. memories with depth equal
; to or greater than 1M are marked as sparse)
; SparseMemThreshold = 1048576
; Run the 0-in compiler on the Verilog source files
; Default is off.
; ZeroIn = 1
; Set the options to be passed to the 0-in compiler.
; Default is "".
; ZeroInOptions = ""
; Set the synthesis prefix to be honored for synthesis pragma recognition.
; Default is "".
; SynthPrefix = ""
; Set the option to treat all files specified in a vlog invocation as a
; single compilation unit. The default value is set to 0 which will treat
; each file as a separate compilation unit as specified in the P1800 draft standard.
; MultiFileCompilationUnit = 1
; Turn on code coverage in Verilog design units. Default is off.
; Coverage = sbceft
; Automatically exclude Verilog case statement default branches.
; Default is to not automatically exclude defaults.
; CoverExcludeDefault = 1
; Increase or decrease the maximum number of rows allowed in a UDP table
; implementing a Verilog condition coverage or expression coverage expression.
; More rows leads to a longer compile time, but more expressions covered.
; CoverMaxUDPRows = 192
; Increase or decrease the maximum number of input patterns that are present
; in FEC table. This leads to a longer compile time with more expressions
; covered with FEC metric.
; CoverMaxFECRows = 192
; Enable or disable Focused Expression Coverage analysis for conditions and
; expressions. Focused Expression Coverage data is provided by default when
; expression and/or condition coverage is active.
; CoverFEC = 0
; Enable or disable UDP Coverage analysis for conditions and expressions.
; UDP Coverage data is provided by default when expression and/or condition
; coverage is active.
; CoverUDP = 0
; Enable or disable short circuit evaluation of conditions and expressions when
; condition or expression coverage is active. Short circuit evaluation is enabled
; by default.
; CoverShortCircuit = 0
; Turn on code coverage in VLOG `celldefine modules and modules included
; using vlog -v and -y. Default is off.
; CoverCells = 1
; Enable code coverage reporting of code that has been optimized away.
; The default is not to report.
; CoverReportCancelled = 1
; Control compiler and VOPT optimizations that are allowed when
; code coverage is on. This is a number from 1 to 4, with the following
; meanings (the default is 3):
; 1 -- Turn off all optimizations that affect coverage reports.
; 2 -- Allow optimizations that allow large performance improvements
; by invoking sequential processes only when the data changes.
; This may make major reductions in coverage counts.
; 3 -- In addition, allow optimizations that may change expressions or
; remove some statements. Allow constant propagation. Allow VHDL
; subprogram inlining and VHDL FF recognition.
; 4 -- In addition, allow optimizations that may remove major regions of
; code by changing assignments to built-ins or removing unused
; signals. Change Verilog gates to continuous assignments.
; CoverOpt = 3
; Specify the override for the default value of "cross_num_print_missing"
; option for the Cross in Covergroups. If not specified then LRM default
; value of 0 (zero) is used. This is a compile time option.
; SVCrossNumPrintMissingDefault = 0
; Setting following to 1 would cause creation of variables which
; would represent the value of Coverpoint expressions. This is used
; in conjunction with "SVCoverpointExprVariablePrefix" option
; in the modelsim.ini
; EnableSVCoverpointExprVariable = 0
; Specify the override for the prefix used in forming the variable names
; which represent the Coverpoint expressions. This is used in conjunction with
; "EnableSVCoverpointExprVariable" option of the modelsim.ini
; The default prefix is "expr".
; The variable name is
; variable name => <prefix>_<coverpoint name>
; SVCoverpointExprVariablePrefix = expr
; Override for the default value of the SystemVerilog covergroup,
; coverpoint, and cross option.goal (defined to be 100 in the LRM).
; NOTE: It does not override specific assignments in SystemVerilog
; source code. NOTE: The modelsim.ini variable "SVCovergroupGoal"
; in the [vsim] section can override this value.
; SVCovergroupGoalDefault = 100
; Override for the default value of the SystemVerilog covergroup,
; coverpoint, and cross type_option.goal (defined to be 100 in the LRM)
; NOTE: It does not override specific assignments in SystemVerilog
; source code. NOTE: The modelsim.ini variable "SVCovergroupTypeGoal"
; in the [vsim] section can override this value.
; SVCovergroupTypeGoalDefault = 100
; Specify the override for the default value of "strobe" option for the
; Covergroup Type. This is a compile time option which forces "strobe" to
; a user specified default value and supersedes SystemVerilog specified
; default value of '0'(zero). NOTE: This can be overriden by a runtime
; modelsim.ini variable "SVCovergroupStrobe" in the [vsim] section.
; SVCovergroupStrobeDefault = 0
; Specify the override for the default value of "merge_instances" option for
; the Covergroup Type. This is a compile time option which forces
; "merge_instances" to a user specified default value and supersedes
; SystemVerilog specified default value of '0'(zero).
; SVCovergroupMergeInstancesDefault = 0
; Specify the override for the default value of "per_instance" option for the
; Covergroup variables. This is a compile time option which forces "per_instance"
; to a user specified default value and supersedes SystemVerilog specified
; default value of '0'(zero).
; SVCovergroupPerInstanceDefault = 0
; Specify the override for the default value of "get_inst_coverage" option for the
; Covergroup variables. This is a compile time option which forces
; "get_inst_coverage" to a user specified default value and supersedes
; SystemVerilog specified default value of '0'(zero).
; SVCovergroupGetInstCoverageDefault = 0
;
; A space separated list of resource libraries that contain precompiled
; packages. The behavior is identical to using the "-L" switch.
;
; LibrarySearchPath = <path/lib> [<path/lib> ...]
LibrarySearchPath = mtiAvm mtiOvm mtiUPF
; The behavior is identical to the "-mixedansiports" switch. Default is off.
; MixedAnsiPorts = 1
; Enable SystemVerilog 3.1a $typeof() function. Default is off.
; EnableTypeOf = 1
; Only allow lower case pragmas. Default is disabled.
; AcceptLowerCasePragmaOnly = 1
; Set the maximum depth permitted for a recursive include file nesting.
; IncludeRecursionDepthMax = 5
; Turn ON detection of FSMs having single bit current state variable.
; FsmSingle = 1
; Turn off reset state transitions in FSM.
; FsmResetTrans = 0
; Turn off detections of FSMs having x-assignment.
; FsmXAssign = 0
; Turn ON detection of FSM Implicit Transitions.
; FsmImplicitTrans = 1
; List of file suffixes which will be read as SystemVerilog. White space
; in extensions can be specified with a back-slash: "\ ". Back-slashes
; can be specified with two consecutive back-slashes: "\\";
; SVFileExtensions = sv svp svh
; This setting is the same as the vlog -sv command line switch.
; Enables SystemVerilog features and keywords when true (1).
; When false (0), the rules of IEEE Std 1364-2001 are followed and
; SystemVerilog keywords are ignored.
; Svlog = 0
; Prints attribute placed upon SV packages during package import
; when true (1). The attribute will be ignored when this
; entry is false (0). The attribute name is "package_load_message".
; The value of this attribute is a string literal.
; Default is true (1).
; PrintSVPackageLoadingAttribute = 1
; Do not show immediate assertions with constant expressions in
; GUI/reports/UCDB etc. By default immediate assertions with constant
; expressions are shown in GUI/reports/UCDB etc. This does not affect
; evaluation of immediate assertions.
; ShowConstantImmediateAsserts = 0
; Controls if untyped parameters that are initialized with values greater
; than 2147483647 are mapped to generics of type INTEGER or ignored.
; If mapped to VHDL Integers, values greater than 2147483647
; are mapped to negative values.
; Default is to map these parameter to generic of type INTEGER
; ForceUnsignedToVHDLInteger = 1
; Enable AMS wreal (wired real) extensions. Default is 0.
; WrealType = 1
[sccom]
; Enable use of SCV include files and library. Default is off.
; UseScv = 1
; Add C++ compiler options to the sccom command line by using this variable.
; CppOptions = -g
; Use custom C++ compiler located at this path rather than the default path.
; The path should point directly at a compiler executable.
; CppPath = /usr/bin/g++
; Enable verbose messages from sccom. Default is off.
; SccomVerbose = 1
; sccom logfile. Default is no logfile.
; SccomLogfile = sccom.log
; Enable use of SC_MS include files and library. Default is off.
; UseScMs = 1
[vopt]
; Turn on code coverage in vopt. Default is off.
; Coverage = sbceft
; Control compiler optimizations that are allowed when
; code coverage is on. Refer to the comment for this in the [vlog] area.
; CoverOpt = 3
; Increase or decrease the maximum number of rows allowed in a UDP table
; implementing a vopt condition coverage or expression coverage expression.
; More rows leads to a longer compile time, but more expressions covered.
; CoverMaxUDPRows = 192
; Increase or decrease the maximum number of input patterns that are present
; in FEC table. This leads to a longer compile time with more expressions
; covered with FEC metric.
; CoverMaxFECRows = 192
; Enable code coverage reporting of code that has been optimized away.
; The default is not to report.
; CoverReportCancelled = 1
; Do not show immediate assertions with constant expressions in
; GUI/reports/UCDB etc. By default immediate assertions with constant
; expressions are shown in GUI/reports/UCDB etc. This does not affect
; evaluation of immediate assertions.
; ShowConstantImmediateAsserts = 0
; Set the maximum number of iterations permitted for a generate loop.
; Restricting this permits the implementation to recognize infinite
; generate loops.
; GenerateLoopIterationMax = 100000
; Set the maximum depth permitted for a recursive generate instantiation.
; Restricting this permits the implementation to recognize infinite
; recursions.
; GenerateRecursionDepthMax = 200
[vsim]
; vopt flow
; Set to turn on automatic optimization of a design.
; Default is on
VoptFlow = 1
; vopt automatic SDF
; If automatic design optimization is on, enables automatic compilation
; of SDF files.
; Default is on, uncomment to turn off.
; VoptAutoSDFCompile = 0
; Automatic SDF compilation
; Disables automatic compilation of SDF files in flows that support it.
; Default is on, uncomment to turn off.
; NoAutoSDFCompile = 1
; Simulator resolution
; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or 100.
Resolution = ns
; Disable certain code coverage exclusions automatically.
; Assertions and FSM are exluded from the code coverage by default
; Set AutoExclusionsDisable = fsm to enable code coverage for fsm
; Set AutoExclusionsDisable = assertions to enable code coverage for assertions
; Set AutoExclusionsDisable = all to enable code coverage for all the automatic exclusions
; Or specify comma or space separated list
;AutoExclusionsDisable = fsm,assertions
; User time unit for run commands
; Set to default, fs, ps, ns, us, ms, or sec. The default is to use the
; unit specified for Resolution. For example, if Resolution is 100ps,
; then UserTimeUnit defaults to ps.
; Should generally be set to default.
UserTimeUnit = default
; Default run length
RunLength = 200 ms
; Maximum iterations that can be run without advancing simulation time
IterationLimit = 5000
; Control PSL and Verilog Assume directives during simulation
; Set SimulateAssumeDirectives = 0 to disable assume being simulated as asserts
; Set SimulateAssumeDirectives = 1 to enable assume simulation as asserts
; SimulateAssumeDirectives = 1
; Control the simulation of PSL and SVA
; These switches can be overridden by the vsim command line switches:
; -psl, -nopsl, -sva, -nosva.
; Set SimulatePSL = 0 to disable PSL simulation
; Set SimulatePSL = 1 to enable PSL simulation (default)
; SimulatePSL = 1
; Set SimulateSVA = 0 to disable SVA simulation
; Set SimulateSVA = 1 to enable concurrent SVA simulation (default)
; SimulateSVA = 1
; Directives to license manager can be set either as single value or as
; space separated multi-values:
; vhdl Immediately reserve a VHDL license
; vlog Immediately reserve a Verilog license
; plus Immediately reserve a VHDL and Verilog license
; noqueue Do not wait in the license queue when a license is not available
; viewsim Try for viewer license but accept simulator license(s) instead
; of queuing for viewer license (PE ONLY)
; noviewer Disable checkout of msimviewer and vsim-viewer license
; features (PE ONLY)
; noslvhdl Disable checkout of qhsimvh and vsim license features
; noslvlog Disable checkout of qhsimvl and vsimvlog license features
; nomix Disable checkout of msimhdlmix and hdlmix license features
; nolnl Disable checkout of msimhdlsim and hdlsim license features
; mixedonly Disable checkout of qhsimvh,qhsimvl,vsim,vsimvlog license
; features
; lnlonly Disable checkout of qhsimvh,qhsimvl,vsim,vsimvlog,msimhdlmix,
; hdlmix license features
; Single value:
; License = plus
; Multi-value:
; License = noqueue plus
; Stop the simulator after a VHDL assertion message.
; Or stop the simulator after SystemVerilog severity system task.
; The severity of VHDL assertion or severity system task
; should be higher or equal.
; 0 = Note 1 = Warning 2 = Error 3 = Failure 4 = Fatal
BreakOnAssertion = 3
; VHDL assertion Message Format
; %S - Severity Level
; %R - Report Message
; %T - Time of assertion
; %D - Delta
; %I - Instance or Region pathname (if available)
; %i - Instance pathname with process
; %O - Process name
; %K - Kind of object path is to return: Instance, Signal, Process or Unknown
; %P - Instance or Region path without leaf process
; %F - File
; %L - Line number of assertion or, if assertion is in a subprogram, line
; from which the call is made
; %% - Print '%' character
; If specific format for assertion level is defined, use its format.
; If specific format is not defined for assertion level:
; - and if failure occurs during elaboration, use MessageFormatBreakLine;
; - and if assertion triggers a breakpoint (controlled by BreakOnAssertion
; level), use MessageFormatBreak;
; - otherwise, use MessageFormat.
; MessageFormatBreakLine = "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F Line: %L\n"
; MessageFormatBreak = "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"
; MessageFormat = "** %S: %R\n Time: %T Iteration: %D%I\n"
; MessageFormatNote = "** %S: %R\n Time: %T Iteration: %D%I\n"
; MessageFormatWarning = "** %S: %R\n Time: %T Iteration: %D%I\n"
; MessageFormatError = "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"
; MessageFormatFail = "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"
; MessageFormatFatal = "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"
; Error File - alternate file for storing error messages
; ErrorFile = error.log
; Simulation Breakpoint messages
; This flag controls the display of function names when reporting the location
; where the simulator stops do to a breakpoint or fatal error.
; Example w/function name: # Break in Process ctr at counter.vhd line 44
; Example wo/function name: # Break at counter.vhd line 44
ShowFunctions = 1
; Default radix for all windows and commands.
; Set to symbolic, ascii, binary, octal, decimal, hex, unsigned
DefaultRadix = symbolic
; VSIM Startup command
; Startup = do startup.do
; VSIM Shutdown file
; Filename to save u/i formats and configurations.
; ShutdownFile = restart.do
; To explicitly disable auto save:
; ShutdownFile = --disable-auto-save
; File for saving command transcript
TranscriptFile = transcript
; File for saving command history
; CommandHistory = cmdhist.log
; Specify whether paths in simulator commands should be described
; in VHDL or Verilog format.
; For VHDL, PathSeparator = /
; For Verilog, PathSeparator = .
; Must not be the same character as DatasetSeparator.
PathSeparator = /
; Specify the dataset separator for fully rooted contexts.
; The default is ':'. For example: sim:/top
; Must not be the same character as PathSeparator.
DatasetSeparator = :
; Specify a unique path separator for the Signal Spy set of functions.
; The default will be to use the PathSeparator variable.
; Must not be the same character as DatasetSeparator.
; SignalSpyPathSeparator = /
; Used to control parsing of HDL identifiers input to the tool.
; This includes CLI commands, vsim/vopt/vlog/vcom options,
; string arguments to FLI/VPI/DPI calls, etc.
; If set to 1, accept either Verilog escaped Id syntax or
; VHDL extended id syntax, regardless of source language.
; If set to 0, the syntax of the source language must be used.
; Each identifier in a hierarchical name may need different syntax,
; e.g. "/top/\vhdl*ext*id\/middle/\vlog*ext*id /bottom" or
; "top.\vhdl*ext*id\.middle.\vlog*ext*id .bottom"
; GenerousIdentifierParsing = 1
; Disable VHDL assertion messages
; IgnoreNote = 1
; IgnoreWarning = 1
; IgnoreError = 1
; IgnoreFailure = 1
; Disable SystemVerilog assertion messages
; IgnoreSVAInfo = 1
; IgnoreSVAWarning = 1
; IgnoreSVAError = 1
; IgnoreSVAFatal = 1
; Do not print any additional information from Severity System tasks.
; Only the message provided by the user is printed along with severity
; information.
; SVAPrintOnlyUserMessage = 1;
; Default force kind. May be freeze, drive, deposit, or default
; or in other terms, fixed, wired, or charged.
; A value of "default" will use the signal kind to determine the
; force kind, drive for resolved signals, freeze for unresolved signals
; DefaultForceKind = freeze
; Control the iteration of events when a VHDL signal is forced to a value
; This flag can be set to honour the signal update event in next iteration,
; the default is to update and propagate in the same iteration.
; ForceSigNextIter = 1
; If zero, open files when elaborated; otherwise, open files on
; first read or write. Default is 0.
; DelayFileOpen = 1
; Control VHDL files opened for write.
; 0 = Buffered, 1 = Unbuffered
UnbufferedOutput = 0
; Control the number of VHDL files open concurrently.
; This number should always be less than the current ulimit
; setting for max file descriptors.
; 0 = unlimited
ConcurrentFileLimit = 40
; Control the number of hierarchical regions displayed as
; part of a signal name shown in the Wave window.
; A value of zero tells VSIM to display the full name.
; The default is 0.
; WaveSignalNameWidth = 0
; Turn off warnings when changing VHDL constants and generics
; Default is 1 to generate warning messages
; WarnConstantChange = 0
; Turn off warnings from accelerated versions of the std_logic_arith,
; std_logic_unsigned, and std_logic_signed packages.
; StdArithNoWarnings = 1
; Turn off warnings from accelerated versions of the IEEE numeric_std
; and numeric_bit packages.
; NumericStdNoWarnings = 1
; Use old-style (pre-6.6) VHDL FOR generate statement iteration names
; in the design hierarchy.
; This style is controlled by the value of the GenerateFormat
; value described next. Default is to use new-style names, which
; comprise the generate statement label, '(', the value of the generate
; parameter, and a closing ')'.
; Uncomment this to use old-style names.
; OldVhdlForGenNames = 1
; Control the format of the old-style VHDL FOR generate statement region
; name for each iteration. Do not quote it.
; The format string here must contain the conversion codes %s and %d,
; in that order, and no other conversion codes. The %s represents
; the generate statement label; the %d represents the generate parameter value
; at a particular iteration (this is the position number if the generate parameter
; is of an enumeration type). Embedded whitespace is allowed (but discouraged);
; leading and trailing whitespace is ignored.
; Application of the format must result in a unique region name over all
; loop iterations for a particular immediately enclosing scope so that name
; lookup can function properly. The default is %s__%d.
; GenerateFormat = %s__%d
; Specify whether checkpoint files should be compressed.
; The default is 1 (compressed).
; CheckpointCompressMode = 0
; Specify gcc compiler used in the compilation of automatically generated DPI exportwrapper.
; Use custom gcc compiler located at this path rather than the default path.
; The path should point directly at a compiler executable.
; DpiCppPath = <your-gcc-installation>/bin/gcc
; Specify whether to enable SystemVerilog DPI "out-of-the-blue" calls.
; The term "out-of-the-blue" refers to SystemVerilog export function calls
; made from C functions that don't have the proper context setup
; (as is the case when running under "DPI-C" import functions).
; When this is enabled, one can call a DPI export function
; (but not task) from any C code.
; the setting of this variable can be one of the following values:
; 0 : dpioutoftheblue call is disabled (default)
; 1 : dpioutoftheblue call is enabled, but export call debug support is not available.
; 2 : dpioutoftheblue call is enabled, and limited export call debug support is available.
; DpiOutOfTheBlue = 1
; Specify whether continuous assignments are run before other normal priority
; processes scheduled in the same iteration. This event ordering minimizes race
; differences between optimized and non-optimized designs, and is the default
; behavior beginning with the 6.5 release. For pre-6.5 event ordering, set
; ImmediateContinuousAssign to 0.
; The default is 1 (enabled).
; ImmediateContinuousAssign = 0
; List of dynamically loaded objects for Verilog PLI applications
; Veriuser = veriuser.sl
; Which default VPI object model should the tool conform to?
; The 1364 modes are Verilog-only, for backwards compatibility with older
; libraries, and SystemVerilog objects are not available in these modes.
;
; In the absence of a user-specified default, the tool default is the
; latest available LRM behavior.
; Options for PliCompatDefault are:
; VPI_COMPATIBILITY_VERSION_1364v1995
; VPI_COMPATIBILITY_VERSION_1364v2001
; VPI_COMPATIBILITY_VERSION_1364v2005
; VPI_COMPATIBILITY_VERSION_1800v2005
; VPI_COMPATIBILITY_VERSION_1800v2008
;
; Synonyms for each string are also recognized:
; VPI_COMPATIBILITY_VERSION_1364v1995 (1995, 95, 1364v1995, 1364V1995, VL1995)
; VPI_COMPATIBILITY_VERSION_1364v2001 (2001, 01, 1364v2001, 1364V2001, VL2001)
; VPI_COMPATIBILITY_VERSION_1364v2005 (1364v2005, 1364V2005, VL2005)
; VPI_COMPATIBILITY_VERSION_1800v2005 (2005, 05, 1800v2005, 1800V2005, SV2005)
; VPI_COMPATIBILITY_VERSION_1800v2008 (2008, 08, 1800v2008, 1800V2008, SV2008)
; PliCompatDefault = VPI_COMPATIBILITY_VERSION_1800v2005
; Specify default options for the restart command. Options can be one
; or more of: -force -nobreakpoint -nolist -nolog -nowave -noassertions
; DefaultRestartOptions = -force
; Turn on (1) or off (0) WLF file compression.
; The default is 1 (compress WLF file).
; WLFCompress = 0
; Specify whether to save all design hierarchy (1) in the WLF file
; or only regions containing logged signals (0).
; The default is 0 (save only regions with logged signals).
; WLFSaveAllRegions = 1
; WLF file time limit. Limit WLF file by time, as closely as possible,
; to the specified amount of simulation time. When the limit is exceeded
; the earliest times get truncated from the file.
; If both time and size limits are specified the most restrictive is used.
; UserTimeUnits are used if time units are not specified.
; The default is 0 (no limit). Example: WLFTimeLimit = {100 ms}
; WLFTimeLimit = 0
; WLF file size limit. Limit WLF file size, as closely as possible,
; to the specified number of megabytes. If both time and size limits
; are specified then the most restrictive is used.
; The default is 0 (no limit).
; WLFSizeLimit = 1000
; Specify whether or not a WLF file should be deleted when the
; simulation ends. A value of 1 will cause the WLF file to be deleted.
; The default is 0 (do not delete WLF file when simulation ends).
; WLFDeleteOnQuit = 1
; Specify whether or not a WLF file should be indexed during
; simulation. If set to 0, the WLF file will not be indexed.
; The default is 1, indexed the WLF file.
; WLFIndex = 0
; Specify whether or not a WLF file should be optimized during
; simulation. If set to 0, the WLF file will not be optimized.
; The default is 1, optimize the WLF file.
; WLFOptimize = 0
; Specify the name of the WLF file.
; The default is vsim.wlf
; WLFFilename = vsim.wlf
; Specify whether to lock the WLF file using system lockd locking mechanism.
; Locking the file prevents other invocations of ModelSim/Questa tools from
; inadvertently overwriting the WLF file.
; The default is 1, lock the WLF file.
; WLFFileLock = 0
; Specify the WLF reader cache size limit for each open WLF file.
; The size is giving in megabytes. A value of 0 turns off the
; WLF cache.
; WLFSimCacheSize allows a different cache size to be set for
; simulation WLF file independent of post-simulation WLF file
; viewing. If WLFSimCacheSize is not set it defaults to the
; WLFCacheSize setting.
; The default WLFCacheSize setting is enabled to 256M per open WLF file.
; WLFCacheSize = 2000
; WLFSimCacheSize = 500
; Specify the WLF file event collapse mode.
; 0 = Preserve all events and event order. (same as -wlfnocollapse)
; 1 = Only record values of logged objects at the end of a simulator iteration.
; (same as -wlfcollapsedelta)
; 2 = Only record values of logged objects at the end of a simulator time step.
; (same as -wlfcollapsetime)
; The default is 1.
; WLFCollapseMode = 0
; Specify whether WLF file logging can use threads on multi-processor machines
; if 0, no threads will be used, if 1, threads will be used if the system has
; more than one processor
; WLFUseThreads = 1
; Turn on/off undebuggable SystemC type warnings. Default is on.
; ShowUndebuggableScTypeWarning = 0
; Turn on/off unassociated SystemC name warnings. Default is off.
; ShowUnassociatedScNameWarning = 1
; Turn on/off SystemC IEEE 1666 deprecation warnings. Default is off.
; ScShowIeeeDeprecationWarnings = 1
; Turn on/off the check for multiple drivers on a SystemC sc_signal. Default is off.
; ScEnableScSignalWriteCheck = 1
; Set SystemC default time unit.
; Set to fs, ps, ns, us, ms, or sec with optional
; prefix of 1, 10, or 100. The default is 1 ns.
; The ScTimeUnit value is honored if it is coarser than Resolution.
; If ScTimeUnit is finer than Resolution, it is set to the value
; of Resolution. For example, if Resolution is 100ps and ScTimeUnit is ns,
; then the default time unit will be 1 ns. However if Resolution
; is 10 ns and ScTimeUnit is ns, then the default time unit will be 10 ns.
ScTimeUnit = ns
; Set SystemC sc_main stack size. The stack size is set as an integer
; number followed by the unit which can be Kb(Kilo-byte), Mb(Mega-byte) or
; Gb(Giga-byte). Default is 10 Mb. The stack size for sc_main depends
; on the amount of data on the sc_main() stack and the memory required
; to succesfully execute the longest function call chain of sc_main().
ScMainStackSize = 10 Mb
; Turn on/off execution of remainder of sc_main upon quitting the current
; simulation session. If the cumulative length of sc_main() in terms of
; simulation time units is less than the length of the current simulation
; run upon quit or restart, sc_main() will be in the middle of execution.
; This switch gives the option to execute the remainder of sc_main upon
; quitting simulation. The drawback of not running sc_main till the end
; is memory leaks for objects created by sc_main. If on, the remainder of
; sc_main will be executed ignoring all delays. This may cause the simulator
; to crash if the code in sc_main is dependent on some simulation state.
; Default is on.
ScMainFinishOnQuit = 1
; Set the SCV relationship name that will be used to identify phase
; relations. If the name given to a transactor relation matches this
; name, the transactions involved will be treated as phase transactions
ScvPhaseRelationName = mti_phase
; Customize the vsim kernel shutdown behavior at the end of the simulation.
; Some common causes of the end of simulation are $finish (implicit or explicit),
; sc_stop(), tf_dofinish(), and assertion failures.
; This should be set to "ask", "exit", or "stop". The default is "ask".
; "ask" -- In batch mode, the vsim kernel will abruptly exit.
; In GUI mode, a dialog box will pop up and ask for user confirmation
; whether or not to quit the simulation.
; "stop" -- Cause the simulation to stay loaded in memory. This can make some
; post-simulation tasks easier.
; "exit" -- The simulation will abruptly exit without asking for any confirmation.
; "final" -- Run SystemVerilog final blocks then behave as "stop".
; Note: This variable can be overridden with the vsim "-onfinish" command line switch.
OnFinish = ask
; Print pending deferred assertion messages.
; Deferred assertion messages may be scheduled after the $finish in the same
; time step. Deferred assertions scheduled to print after the $finish are
; printed before exiting with severity level NOTE since it's not known whether
; the assertion is still valid due to being printed in the active region
; instead of the reactive region where they are normally printed.
; OnFinishPendingAssert = 1;
; Print "simstats" result at the end of simulation before shutdown.
; If this is enabled, the simstats result will be printed out before shutdown.
; The default is off.
; PrintSimStats = 1
; Assertion File - alternate file for storing VHDL/PSL/Verilog assertion messages
; AssertFile = assert.log
; Run simulator in assertion debug mode. Default is off.
; AssertionDebug = 1
; Turn on/off PSL/SVA/VHDL assertion enable. Default is on.
; AssertionEnable = 0
; Set PSL/SVA/VHDL concurrent assertion fail limit. Default is -1.
; Any positive integer, -1 for infinity.
; AssertionLimit = 1
; Turn on/off PSL concurrent assertion pass log. Default is off.
; The flag does not affect SVA
; AssertionPassLog = 1
; Turn on/off PSL concurrent assertion fail log. Default is on.
; The flag does not affect SVA
; AssertionFailLog = 0
; Turn on/off SVA concurrent assertion local var printing in -assertdebug mode. Default is on.
; AssertionFailLocalVarLog = 0
; Set action type for PSL/SVA concurrent assertion fail action. Default is continue.
; 0 = Continue 1 = Break 2 = Exit
; AssertionFailAction = 1
; Enable the active thread monitor in the waveform display when assertion debug is enabled.
; AssertionActiveThreadMonitor = 1
; Control how many waveform rows will be used for displaying the active threads. Default is 5.
; AssertionActiveThreadMonitorLimit = 5
; Assertion thread limit after which assertion would be killed/switched off.
; The default is -1 (unlimited). If the number of threads for an assertion go
; beyond this limit, the assertion would be either switched off or killed. This
; limit applies to only assert directives.
;AssertionThreadLimit = -1
; Action to be taken once the assertion thread limit is reached. Default
; is kill. It can have a value of off or kill. In case of kill, all the existing
; threads are terminated and no new attempts are started. In case of off, the
; existing attempts keep on evaluating but no new attempts are started. This
; variable applies to only assert directives.
;AssertionThreadLimitAction = kill
; Cover thread limit after which cover would be killed/switched off.
; The default is -1 (unlimited). If the number of threads for a cover go
; beyond this limit, the cover would be either switched off or killed. This
; limit applies to only cover directives.
;CoverThreadLimit = -1
; Action to be taken once the cover thread limit is reached. Default
; is kill. It can have a value of off or kill. In case of kill, all the existing
; threads are terminated and no new attempts are started. In case of off, the
; existing attempts keep on evaluating but no new attempts are started. This
; variable applies to only cover directives.
;CoverThreadLimitAction = kill
; By default immediate assertions do not participate in Assertion Coverage calculations
; unless they are executed. This switch causes all immediate assertions in the design
; to participate in Assertion Coverage calculations, whether attempted or not.
; UnattemptedImmediateAssertions = 0
; As per strict 1850-2005 PSL LRM, an always property can either pass
; or fail. However, by default, Questa reports multiple passes and
; multiple fails on top always/never property (always/never operator
; is the top operator under Verification Directive). The reason
; being that Questa reports passes and fails on per attempt of the
; top always/never property. Use the following flag to instruct
; Questa to strictly follow LRM. With this flag, all assert/never
; directives will start an attempt once at start of simulation.
; The attempt can either fail, match or match vacuously.
; For e.g. if always is the top operator under assert, the always will
; keep on checking the property at every clock. If the property under
; always fails, the directive will be considered failed and no more
; checking will be done for that directive. A top always property,
; if it does not fail, will show a pass at end of simulation.
; The default value is '0' (i.e. zero is off). For example:
; PslOneAttempt = 1
; Specify the number of clock ticks to represent infinite clock ticks.
; This affects eventually!, until! and until_!. If at End of Simulation
; (EOS) an active strong-property has not clocked this number of
; clock ticks then neither pass or fail (vacuous match) is returned
; else respective fail/pass is returned. The default value is '0' (zero)
; which effectively does not check for clock tick condition. For example:
; PslInfinityThreshold = 5000
; Control how many thread start times will be preserved for ATV viewing for a given assertion
; instance. Default is -1 (ALL).
; ATVStartTimeKeepCount = -1
; Turn on/off code coverage
; CodeCoverage = 0
; Count all code coverage condition and expression truth table rows that match.
; CoverCountAll = 1
; Turn off automatic inclusion of VHDL integers in toggle coverage. Default
; is to include them.
; ToggleNoIntegers = 1
; Set the maximum number of values that are collected for toggle coverage of
; VHDL integers. Default is 100;
; ToggleMaxIntValues = 100
; Set the maximum number of values that are collected for toggle coverage of
; Verilog real. Default is 100;
; ToggleMaxRealValues = 100
; Turn on automatic inclusion of Verilog integers in toggle coverage, except
; for enumeration types. Default is to include them.
; ToggleVlogIntegers = 0
; Turn on automatic inclusion of Verilog real type in toggle coverage, except
; for shortreal types. Default is to not include them.
; ToggleVlogReal = 1
; Turn on automatic inclusion of Verilog fixed-size unpacked arrays, VHDL multi-d arrays
; and VHDL arrays-of-arrays in toggle coverage.
; Default is to not include them.
; ToggleFixedSizeArray = 1
; Increase or decrease the maximum size of Verilog unpacked fixed-size arrays,
; VHDL multi-d arrays and VHDL arrays-of-arrays that are included for toggle coverage.
; This leads to a longer simulation time with bigger arrays covered with toggle coverage.
; Default is 1024.
; ToggleMaxFixedSizeArray = 1024
; Treat Verilog multi-dimensional packed vectors and packed structures as equivalently sized
; one-dimensional packed vectors for toggle coverage. Default is 0.
; TogglePackedAsVec = 0
; Treat Verilog enumerated types as equivalently sized one-dimensional packed vectors for
; toggle coverage. Default is 0.
; ToggleVlogEnumBits = 0
; Limit the widths of registers automatically tracked for toggle coverage. Default is 128.
; For unlimited width, set to 0.
; ToggleWidthLimit = 128
; Limit the counts that are tracked for toggle coverage. When all edges for a bit have
; reached this count, further activity on the bit is ignored. Default is 1.
; For unlimited counts, set to 0.
; ToggleCountLimit = 1
; Change the mode of extended toggle coverage. Default is 3. Valid modes are 1, 2 and 3.
; Following is the toggle coverage calculation criteria based on extended toggle mode:
; Mode 1: 0L->1H & 1H->0L & any one 'Z' transition (to/from 'Z').
; Mode 2: 0L->1H & 1H->0L & one transition to 'Z' & one transition from 'Z'.
; Mode 3: 0L->1H & 1H->0L & all 'Z' transitions.
; ExtendedToggleMode = 3
; Turn on/off all PSL/SVA cover directive enables. Default is on.
; CoverEnable = 0
; Turn on/off PSL/SVA cover log. Default is off "0".
; CoverLog = 1
; Set "at_least" value for all PSL/SVA cover directives. Default is 1.
; CoverAtLeast = 2
; Set "limit" value for all PSL/SVA cover directives. Default is -1.
; Any positive integer, -1 for infinity.
; CoverLimit = 1
; Specify the coverage database filename.
; Default is "" (i.e. database is NOT automatically saved on close).
; UCDBFilename = vsim.ucdb
; Specify the maximum limit for the number of Cross (bin) products reported
; in XML and UCDB report against a Cross. A warning is issued if the limit
; is crossed. Default is zero. vsim switch -cvgmaxrptrhscross can override this
; setting.
; MaxReportRhsSVCrossProducts = 1000
; Specify the override for the "auto_bin_max" option for the Covergroups.
; If not specified then value from Covergroup "option" is used.
; SVCoverpointAutoBinMax = 64
; Specify the override for the value of "cross_num_print_missing"
; option for the Cross in Covergroups. If not specified then value
; specified in the "option.cross_num_print_missing" is used. This
; is a runtime option. NOTE: This overrides any "cross_num_print_missing"
; value specified by user in source file and any SVCrossNumPrintMissingDefault
; specified in modelsim.ini.
; SVCrossNumPrintMissing = 0
; Specify whether to use the value of "cross_num_print_missing"
; option in report and GUI for the Cross in Covergroups. If not specified then
; cross_num_print_missing is ignored for creating reports and displaying
; covergroups in GUI. Default is 0, which means ignore "cross_num_print_missing".
; UseSVCrossNumPrintMissing = 0
; Specify the override for the value of "strobe" option for the
; Covergroup Type. If not specified then value in "type_option.strobe"
; will be used. This is runtime option which forces "strobe" to
; user specified value and supersedes user specified values in the
; SystemVerilog Code. NOTE: This also overrides the compile time
; default value override specified using "SVCovergroupStrobeDefault"
; SVCovergroupStrobe = 0
; Override for explicit assignments in source code to "option.goal" of
; SystemVerilog covergroup, coverpoint, and cross. It also overrides the
; default value of "option.goal" (defined to be 100 in the SystemVerilog
; LRM) and the value of modelsim.ini variable "SVCovergroupGoalDefault".
; SVCovergroupGoal = 100
; Override for explicit assignments in source code to "type_option.goal" of
; SystemVerilog covergroup, coverpoint, and cross. It also overrides the
; default value of "type_option.goal" (defined to be 100 in the SystemVerilog
; LRM) and the value of modelsim.ini variable "SVCovergroupTypeGoalDefault".
; SVCovergroupTypeGoal = 100
; Enforce the 6.3 behavior of covergroup get_coverage() and get_inst_coverage()
; builtin functions, and report. This setting changes the default values of
; option.get_inst_coverage and type_option.merge_instances to ensure the 6.3
; behavior if explicit assignments are not made on option.get_inst_coverage and
; type_option.merge_instances by the user. There are two vsim command line
; options, -cvg63 and -nocvg63 to override this setting from vsim command line.
; The default value of this variable from release 6.6 onwards is 0. This default
; drives compliance with the clarified behavior in the IEEE 1800-2009 standard.
; SVCovergroup63Compatibility = 0
; Enforce the 6.5 default behavior of covergroup get_coverage() builtin
; functions, GUI, and report. This setting changes the default values of
; type_option.merge_instances to ensure the 6.5 default behavior if explicit
; assignments are not made on type_option.merge_instances by the user.
; There are two vsim command line options, -cvgmergeinstances and
; -nocvgmergeinstances to override this setting from vsim command line.
; The default value of this variable from release 6.6 onwards is 0. This default
; drives compliance with the clarified behavior in the IEEE 1800-2009 standard.
; SvCovergroupMergeInstancesDefault = 1
; Enable or disable generation of more detailed information about the sampling
; of covergroup, cross, and coverpoints. It provides the details of the number
; of times the covergroup instance and type were sampled, as well as details
; about why covergroup, cross and coverpoint were not covered. A non-zero value
; is to enable this feature. 0 is to disable this feature. Default is 0
; SVCovergroupSampleInfo = 0
; Specify the maximum number of Coverpoint bins in whole design for
; all Covergroups.
; MaxSVCoverpointBinsDesign = 2147483648
; Specify maximum number of Coverpoint bins in any instance of a Covergroup
; MaxSVCoverpointBinsInst = 2147483648
; Specify the maximum number of Cross bins in whole design for
; all Covergroups.
; MaxSVCrossBinsDesign = 2147483648
; Specify maximum number of Cross bins in any instance of a Covergroup
; MaxSVCrossBinsInst = 2147483648
; Set weight for all PSL/SVA cover directives. Default is 1.
; CoverWeight = 2
; Check vsim plusargs. Default is 0 (off).
; 0 = Don't check plusargs
; 1 = Warning on unrecognized plusarg
; 2 = Error and exit on unrecognized plusarg
; CheckPlusargs = 1
; Load the specified shared objects with the RTLD_GLOBAL flag.
; This gives global visibility to all symbols in the shared objects,
; meaning that subsequently loaded shared objects can bind to symbols
; in the global shared objects. The list of shared objects should
; be whitespace delimited. This option is not supported on the
; Windows or AIX platforms.
; GlobalSharedObjectList = example1.so example2.so example3.so
; Run the 0in tools from within the simulator.
; Default is off.
; ZeroIn = 1
; Set the options to be passed to the 0in runtime tool.
; Default value set to "".
; ZeroInOptions = ""
; Initial seed for the random number generator of the root thread (SystemVerilog).
; NOTE: This variable can be overridden with the vsim "-sv_seed" command line switch.
; The default value is 0.
; Sv_Seed = 0
; Specify the solver "engine" that vsim will select for constrained random
; generation.
; Valid values are:
; "auto" - automatically select the best engine for the current
; constraint scenario
; "bdd" - evaluate all constraint scenarios using the BDD solver engine
; "act" - evaluate all constraint scenarios using the ACT solver engine
; While the BDD solver engine is generally efficient with constraint scenarios
; involving bitwise logical relationships, the ACT solver engine can exhibit
; superior performance with constraint scenarios involving large numbers of
; random variables related via arithmetic operators (+, *, etc).
; NOTE: At this time, the "auto" setting is equivalent to the "bdd" setting.
; NOTE: This variable can be overridden with the vsim "-solveengine" command
; line switch.
; The default value is "auto".
; SolveEngine = auto
; Specify if the solver should attempt to ignore overflow/underflow semantics
; for arithmetic constraints (multiply, addition, subtraction) in order to
; improve performance. The "solveignoreoverflow" attribute can be specified on
; a per-call basis to randomize() to override this setting.
; The default value is 0 (overflow/underflow is not ignored). Set to 1 to
; ignore overflow/underflow.
; SolveIgnoreOverflow = 0
; Specifies the maximum size that a dynamic array may be resized to by the
; solver. If the solver attempts to resize a dynamic array to a size greater
; than the specified limit, the solver will abort with an error.
; The default value is 2000. A value of 0 indicates no limit.
; SolveArrayResizeMax = 2000
; Error message severity when randomize() failure is detected (SystemVerilog).
; 0 = No error 1 = Warning 2 = Error 3 = Failure 4 = Fatal
; The default is 0 (no error).
; SolveFailSeverity = 0
; Enable/disable debug information for randomize() failures.
; NOTE: This variable can be overridden with the vsim "-solvefaildbug" command
; line switch.
; The default is 0 (disabled). Set to 1 to enable.
; SolveFailDebug = 0
; Specify the maximum size of the solution graph generated by the BDD solver.
; This value can be used to force the BDD solver to abort the evaluation of a
; complex constraint scenario that cannot be evaluated with finite memory.
; This value is specified in 1000s of nodes.
; The default value is 10000. A value of 0 indicates no limit.
; SolveGraphMaxSize = 10000
; Specify the maximum number of evaluations that may be performed on the
; solution graph by the BDD solver. This value can be used to force the BDD
; solver to abort the evaluation of a complex constraint scenario that cannot
; be evaluated in finite time. This value is specified in 10000s of evaluations.
; The default value is 10000. A value of 0 indicates no limit.
; SolveGraphMaxEval = 10000
; Specify the maximum number of tests that the ACT solver may evaluate before
; abandoning an attempt to solve a particular constraint scenario.
; The default value is 1000000. A value of 0 indicates no limit.
; SolveACTMaxTests = 1000000
; Specify the number of times the ACT solver will retry to evaluate a constraint
; scenario that fails due to the SolveACTMaxTests threshold.
; The default value is 0 (no retry).
; SolveACTRetryCount = 0
; SolveSpeculateLevel controls whether or not the solver performs speculation
; during the evaluation of a constraint scenario.
; Speculation is an attempt to partition complex constraint scenarios by
; choosing a 'speculation' subset of the variables and constraints. This
; 'speculation' set is solved independently of the remaining constraints.
; The solver then attempts to solve the remaining variables and constraints
; (the 'dependent' set). If this attempt fails, the solver backs up and
; re-solves the 'speculation' set, then retries the 'dependent' set.
; Valid values are:
; 0 - no speculation
; 1 - enable speculation that maintains LRM specified distribution
; 2 - enable other speculation - may yield non-LRM distribution
; Currently, distribution constraints and solve-before constraints are
; used in selecting the 'speculation' sets for speculation level 1. Non-LRM
; compliant speculation includes random variables in condition expressions.
; The default value is 0.
; SolveSpeculateLevel = 0
; By default, when speculation is enabled, the solver first tries to solve a
; constraint scenario *without* speculation. If the solver fails to evaluate
; the constraint scenario (due to time/memory limits) then the solver will
; re-evaluate the constraint scenario with speculation. If SolveSpeculateFirst
; is set to 1, the solver will skip the initial non-speculative attempt to
; evaluate the constraint scenario. (Only applies when SolveSpeculateLevel is
; non-zero)
; The default value is 0.
; SolveSpeculateFirst = 0
; Specify the maximum bit width of a variable in a conditional expression that
; may be considered as the basis for "conditional" speculation. (Only applies
; when SolveSpeculateLevel=2)
; The default value is 6.
; SolveSpeculateMaxCondWidth = 6
; Specify the maximum number of attempts to solve a speculative set of random
; variables and constraints. Exceeding this limit will cause the solver to
; abandon the current speculative set. (Only applies when SolveSpeculateLevel
; is non-zero)
; The default value is 100.
; SolveSpeculateMaxIterations = 100
; Specifies whether to attempt speculation on solve-before constraints or
; distribution constraints first. A value of 0 specifies that solve-before
; constraints are attempted first as the basis for speculative randomization.
; A value of 1 specifies that distribution constraints are attempted first
; as the basis for speculative randomization.
; The default value is 0.
; SolveSpeculateDistFirst = 0
; If the non-speculative BDD solver fails to evaluate a constraint scenario
; (due to time/memory limits) then the solver can be instructed to automatically
; re-evaluate the constraint scenario with the ACT solver engine. Set
; SolveACTbeforeSpeculate to 1 to enable this feature.
; The default value is 0 (do not re-evaluate with the ACT solver).
; SolveACTbeforeSpeculate = 0
; Use SolveFlags to specify options that will guide the behavior of the
; constraint solver. These options may improve the performance of the
; constraint solver for some testcases, and decrease the performance of the
; constraint solver for others.
; Valid flags are:
; i = disable bit interleaving for >, >=, <, <= constraints (BDD engine)
; n = disable bit interleaving for all constraints (BDD engine)
; r = reverse bit interleaving (BDD engine)
; The default value is "" (no options).
; SolveFlags =
; Specify random sequence compatiblity with a prior letter release. This
; option is used to get the same random sequences during simulation as
; as a prior letter release. Only prior letter releases (of the current
; number release) are allowed.
; NOTE: Only those random sequence changes due to solver optimizations are
; reverted by this variable. Random sequence changes due to solver bugfixes
; cannot be un-done.
; NOTE: This variable can be overridden with the vsim "-solverev" command
; line switch.
; Default value set to "" (no compatibility).
; SolveRev =
; Environment variable expansion of command line arguments has been depricated
; in favor shell level expansion. Universal environment variable expansion
; inside -f files is support and continued support for MGC Location Maps provide
; alternative methods for handling flexible pathnames.
; The following line may be uncommented and the value set to 1 to re-enable this
; deprecated behavior. The default value is 0.
; DeprecatedEnvironmentVariableExpansion = 0
; Turn on/off collapsing of bus ports in VCD dumpports output
DumpportsCollapse = 1
; Location of Multi-Level Verification Component (MVC) installation.
; The default location is the product installation directory.
; MvcHome = $MODEL_TECH/...
; Initialize SystemVerilog enums using the base type's default value
; instead of the leftmost value.
; EnumBaseInit = 1
[lmc]
; The simulator's interface to Logic Modeling's SmartModel SWIFT software
libsm = $MODEL_TECH/libsm.sl
; The simulator's interface to Logic Modeling's SmartModel SWIFT software (Windows NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling's SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling's SmartModel SWIFT software (IBM RISC System/6000)
; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling's SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling's SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll
; Logic Modeling's SmartModel SWIFT software (non-Enterprise versions of Linux)
; libswift = $LMC_HOME/lib/x86_linux.lib/libswift.so
; Logic Modeling's SmartModel SWIFT software (Enterprise versions of Linux)
; libswift = $LMC_HOME/lib/linux.lib/libswift.so
; The simulator's interface to Logic Modeling's hardware modeler SFI software
libhm = $MODEL_TECH/libhm.sl
; The simulator's interface to Logic Modeling's hardware modeler SFI software (Windows NT)
; libhm = $MODEL_TECH/libhm.dll
; Logic Modeling's hardware modeler SFI software (HP 9000 Series 700)
; libsfi = <sfi_dir>/lib/hp700/libsfi.sl
; Logic Modeling's hardware modeler SFI software (IBM RISC System/6000)
; libsfi = <sfi_dir>/lib/rs6000/libsfi.a
; Logic Modeling's hardware modeler SFI software (Sun4 Solaris)
; libsfi = <sfi_dir>/lib/sun4.solaris/libsfi.so
; Logic Modeling's hardware modeler SFI software (Windows NT)
; libsfi = <sfi_dir>/lib/pcnt/lm_sfi.dll
; Logic Modeling's hardware modeler SFI software (Linux)
; libsfi = <sfi_dir>/lib/linux/libsfi.so
[msg_system]
; Change a message severity or suppress a message.
; The format is: <msg directive> = <msg number>[,<msg number>...]
; suppress can be used to achieve +nowarn<CODE> functionality
; The format is: suppress = <CODE>,<msg number>,[<CODE>,<msg number>,...]
; Examples:
; note = 3009
; warning = 3033
; error = 3010,3016
; fatal = 3016,3033
; suppress = 3009,3016,3043
; suppress = 3009,CNNODP,3043,TFMPC
; suppress = 8683,8684
; The command verror <msg number> can be used to get the complete
; description of a message.
; Control transcripting of Verilog display system task messages and
; PLI/FLI print function call messages. The system tasks include
; $display[bho], $strobe[bho], Smonitor{bho], and $write[bho]. They
; also include the analogous file I/O tasks that write to STDOUT
; (i.e. $fwrite or $fdisplay). The PLI/FLI calls include io_printf,
; vpi_printf, mti_PrintMessage, and mti_PrintFormatted. The default
; is to have messages appear only in the transcript. The other
; settings are to send messages to the wlf file only (messages that
; are recorded in the wlf file can be viewed in the MsgViewer) or
; to both the transcript and the wlf file. The valid values are
; tran {transcript only (default)}
; wlf {wlf file only}
; both {transcript and wlf file}
; displaymsgmode = tran
; Control transcripting of elaboration/runtime messages not
; addressed by the displaymsgmode setting. The default is to
; have messages appear in the transcript and recorded in the wlf
; file (messages that are recorded in the wlf file can be viewed
; in the MsgViewer). The other settings are to send messages
; only to the transcript or only to the wlf file. The valid
; values are
; both {default}
; tran {transcript only}
; wlf {wlf file only}
; msgmode = both
[Project]
; Warning -- Do not edit the project properties directly.
; Property names are dynamic in nature and property
; values have special syntax. Changing property data directly
; can result in a corrupt MPF file. All project properties
; can be modified through project window dialogs.
Project_Version = 6
Project_DefaultLib = work
Project_SortMethod = unused
Project_Files_Count = 2
Project_File_0 = scaler.v
Project_File_P_0 = cover_toggle 0 vlog_protect 0 file_type verilog group_id 0 cover_exttoggle 0 cover_nofec 0 cover_cond 0 vlog_1995compat 0 vlog_nodebug 0 folder {Top Level} last_compile 1298530658 cover_fsm 0 cover_branch 0 vlog_noload 0 vlog_enable0In 0 cover_excludedefault 0 vlog_disableopt 0 cover_covercells 0 vlog_hazard 0 vlog_showsource 0 cover_optlevel 3 voptflow 1 ood 0 vlog_0InOptions {} toggle - vlog_options {} compile_to work vlog_upper 0 cover_noshort 0 compile_order 0 dont_compile 0 cover_expr 0 cover_stmt 0
Project_File_1 = scaler_tb.v
Project_File_P_1 = cover_toggle 0 vlog_protect 0 file_type verilog group_id 0 cover_exttoggle 0 cover_nofec 0 cover_cond 0 vlog_1995compat 0 vlog_nodebug 0 cover_fsm 0 cover_branch 0 vlog_noload 0 last_compile 1298529529 folder {Top Level} cover_excludedefault 0 vlog_enable0In 0 vlog_disableopt 0 cover_covercells 0 voptflow 1 cover_optlevel 3 vlog_showsource 0 vlog_hazard 0 toggle - vlog_0InOptions {} ood 0 cover_noshort 0 vlog_upper 0 compile_to work vlog_options {} compile_order 1 cover_expr 0 dont_compile 0 cover_stmt 0
Project_Sim_Count = 1
Project_Sim_0 = Simulation 1
Project_Sim_P_0 = Generics {} timing default -std_output {} -nopsl 0 +notimingchecks 0 -L {} selected_du {} -hazards 0 -sdf {} ok 1 -0in 0 -nosva 0 folder {Top Level} +pulse_r {} -absentisempty 0 is_vopt_opt_used 2 OtherArgs {} -multisource_delay {} +pulse_e {} vopt_env 1 -coverage 0 -sdfnoerror 0 +plusarg {} -vital2.2b 0 -t default -memprof 0 is_vopt_flow 0 additional_dus scaler_tb -noglitch 0 -nofileshare 0 -wlf {} -assertdebug 0 +no_pulse_msg 0 -0in_options {} -assertfile {} -sdfnowarn 0 -Lf {} -std_input {}
Project_Folder_Count = 0
Echo_Compile_Output = 1
Save_Compile_Report = 0
Project_Opt_Count = 0
ForceSoftPaths = 0
ProjectStatusDelay = 5000
VERILOG_DoubleClick = Edit
VERILOG_CustomDoubleClick =
SYSTEMVERILOG_DoubleClick = Edit
SYSTEMVERILOG_CustomDoubleClick =
VHDL_DoubleClick = Edit
VHDL_CustomDoubleClick =
PSL_DoubleClick = Edit
PSL_CustomDoubleClick =
TEXT_DoubleClick = Edit
TEXT_CustomDoubleClick =
SYSTEMC_DoubleClick = Edit
SYSTEMC_CustomDoubleClick =
TCL_DoubleClick = Edit
TCL_CustomDoubleClick =
MACRO_DoubleClick = Edit
MACRO_CustomDoubleClick =
VCD_DoubleClick = Edit
VCD_CustomDoubleClick =
SDF_DoubleClick = Edit
SDF_CustomDoubleClick =
XML_DoubleClick = Edit
XML_CustomDoubleClick =
LOGFILE_DoubleClick = Edit
LOGFILE_CustomDoubleClick =
UCDB_DoubleClick = Edit
UCDB_CustomDoubleClick =
PROJECT_DoubleClick = Edit
PROJECT_CustomDoubleClick =
Project_Major_Version = 6
Project_Minor_Version = 6