URL
https://opencores.org/ocsvn/wbscope/wbscope/trunk
Subversion Repositories wbscope
[/] [wbscope/] [trunk/] [rtl/] [wbscope.v] - Rev 14
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: wbscope.v // // Project: WBScope, a wishbone hosted scope // // Purpose: This is a generic/library routine for providing a bus accessed // 'scope' or (perhaps more appropriately) a bus accessed logic analyzer. // The general operation is such that this 'scope' can record and report // on any 32 bit value transiting through the FPGA. Once started and // reset, the scope records a copy of the input data every time the clock // ticks with the circuit enabled. That is, it records these values up // until the trigger. Once the trigger goes high, the scope will record // for br_holdoff more counts before stopping. Values may then be read // from the buffer, oldest to most recent. After reading, the scope may // then be reset for another run. // // In general, therefore, operation happens in this fashion: // 1. A reset is issued. // 2. Recording starts, in a circular buffer, and continues until // 3. The trigger line is asserted. // The scope registers the asserted trigger by setting // the 'o_triggered' output flag. // 4. A counter then ticks until the last value is written // The scope registers that it has stopped recording by // setting the 'o_stopped' output flag. // 5. The scope recording is then paused until the next reset. // 6. While stopped, the CPU can read the data from the scope // 7. -- oldest to most recent // 8. -- one value per i_rd&i_data_clk // 9. Writes to the data register reset the address to the // beginning of the buffer // // Although the data width DW is parameterized, it is not very changable, // since the width is tied to the width of the data bus, as is the // control word. Therefore changing the data width would require changing // the interface. It's doable, but it would be a change to the interface. // // The SYNCHRONOUS parameter turns on and off meta-stability // synchronization. Ideally a wishbone scope able to handle one or two // clocks would have a changing number of ports as this SYNCHRONOUS // parameter changed. Other than running another script to modify // this, I don't know how to do that so ... we'll just leave it running // off of two clocks or not. // // // Internal to this routine, registers and wires are named with one of the // following prefixes: // // i_ An input port to the routine // o_ An output port of the routine // br_ A register, controlled by the bus clock // dr_ A register, controlled by the data clock // bw_ A wire/net, controlled by the bus clock // dw_ A wire/net, controlled by the data clock // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // module wbscope(i_data_clk, i_ce, i_trigger, i_data, i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, o_wb_ack, o_wb_stall, o_wb_data, o_interrupt); parameter [4:0] LGMEM = 5'd10; parameter BUSW = 32; parameter [0:0] SYNCHRONOUS=1; parameter HOLDOFFBITS = 20; parameter [(HOLDOFFBITS-1):0] DEFAULT_HOLDOFF = ((1<<(LGMEM-1))-4); // The input signals that we wish to record input wire i_data_clk, i_ce, i_trigger; input wire [(BUSW-1):0] i_data; // The WISHBONE bus for reading and configuring this scope input wire i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we; input wire i_wb_addr; // One address line only input wire [(BUSW-1):0] i_wb_data; output wire o_wb_ack, o_wb_stall; output wire [(BUSW-1):0] o_wb_data; // And, finally, for a final flair --- offer to interrupt the CPU after // our trigger has gone off. This line is equivalent to the scope // being stopped. It is not maskable here. output wire o_interrupt; wire bus_clock; assign bus_clock = i_wb_clk; /////////////////////////////////////////////////// // // Decode and handle the WB bus signaling in a // (somewhat) portable manner // /////////////////////////////////////////////////// // // assign o_wb_stall = 1'b0; wire read_from_data; assign read_from_data = (i_wb_stb)&&(!i_wb_we)&&(i_wb_addr); wire write_stb; assign write_stb = (i_wb_stb)&&(i_wb_we); wire write_to_control; assign write_to_control = (write_stb)&&(!i_wb_addr); reg read_address; always @(posedge bus_clock) read_address <= i_wb_addr; reg [(LGMEM-1):0] raddr; reg [(BUSW-1):0] mem[0:((1<<LGMEM)-1)]; // Our status/config register wire bw_reset_request, bw_manual_trigger, bw_disable_trigger, bw_reset_complete; reg [2:0] br_config; reg [(HOLDOFFBITS-1):0] br_holdoff; initial br_config = 3'b0; initial br_holdoff = DEFAULT_HOLDOFF; always @(posedge bus_clock) if (write_to_control) begin br_config <= { i_wb_data[31], i_wb_data[27], i_wb_data[26] }; br_holdoff <= i_wb_data[(HOLDOFFBITS-1):0]; end else if (bw_reset_complete) br_config[2] <= 1'b1; assign bw_reset_request = (!br_config[2]); assign bw_manual_trigger = (br_config[1]); assign bw_disable_trigger = (br_config[0]); wire dw_reset, dw_manual_trigger, dw_disable_trigger; generate if (SYNCHRONOUS > 0) begin assign dw_reset = bw_reset_request; assign dw_manual_trigger = bw_manual_trigger; assign dw_disable_trigger = bw_disable_trigger; assign bw_reset_complete = bw_reset_request; end else begin reg r_reset_complete; (* ASYNC_REG = "TRUE" *) reg [2:0] q_iflags; reg [2:0] r_iflags; // Resets are synchronous to the bus clock, not the data clock // so do a clock transfer here initial q_iflags = 3'b000; initial r_reset_complete = 1'b0; always @(posedge i_data_clk) begin q_iflags <= { bw_reset_request, bw_manual_trigger, bw_disable_trigger }; r_iflags <= q_iflags; r_reset_complete <= (dw_reset); end assign dw_reset = r_iflags[2]; assign dw_manual_trigger = r_iflags[1]; assign dw_disable_trigger = r_iflags[0]; (* ASYNC_REG = "TRUE" *) reg q_reset_complete; reg qq_reset_complete; // Pass an acknowledgement back from the data clock to the bus // clock that the reset has been accomplished initial q_reset_complete = 1'b0; initial qq_reset_complete = 1'b0; always @(posedge bus_clock) begin q_reset_complete <= r_reset_complete; qq_reset_complete <= q_reset_complete; end assign bw_reset_complete = qq_reset_complete; end endgenerate // // Set up the trigger // // // Write with the i-clk, or input clock. All outputs read with the // bus clock, or bus_clock as we've called it here. reg dr_triggered, dr_primed; wire dw_trigger; assign dw_trigger = (dr_primed)&&( ((i_trigger)&&(!dw_disable_trigger)) ||(dw_manual_trigger)); initial dr_triggered = 1'b0; always @(posedge i_data_clk) if (dw_reset) dr_triggered <= 1'b0; else if ((i_ce)&&(dw_trigger)) dr_triggered <= 1'b1; // // Determine when memory is full and capture is complete // // Writes take place on the data clock // The counter is unsigned (* ASYNC_REG="TRUE" *) reg [(HOLDOFFBITS-1):0] counter; reg dr_stopped; initial dr_stopped = 1'b0; initial counter = 0; always @(posedge i_data_clk) if (dw_reset) counter <= 0; else if ((i_ce)&&(dr_triggered)&&(!dr_stopped)) begin counter <= counter + 1'b1; end always @(posedge i_data_clk) if ((!dr_triggered)||(dw_reset)) dr_stopped <= 1'b0; else if (HOLDOFFBITS > 1) // if (i_ce) dr_stopped <= (counter >= br_holdoff); else if (HOLDOFFBITS <= 1) dr_stopped <= ((i_ce)&&(dw_trigger)); // // Actually do our writes to memory. Record, via 'primed' when // the memory is full. // // The 'waddr' address that we are using really crosses two clock // domains. While writing and changing, it's in the data clock // domain. Once stopped, it becomes part of the bus clock domain. // The clock transfer on the stopped line handles the clock // transfer for these signals. // reg [(LGMEM-1):0] waddr; initial waddr = {(LGMEM){1'b0}}; initial dr_primed = 1'b0; always @(posedge i_data_clk) if (dw_reset) // For simulation purposes, supply a valid value begin waddr <= 0; // upon reset. dr_primed <= 1'b0; end else if ((i_ce)&&(!dr_stopped)) begin // mem[waddr] <= i_data; waddr <= waddr + {{(LGMEM-1){1'b0}},1'b1}; if (!dr_primed) dr_primed <= (&waddr); end // Delay the incoming data so that we can get our trigger // logic to line up with the data. The goal is to have a // hold off of zero place the trigger in the last memory // address. localparam STOPDELAY = 1; wire [(BUSW-1):0] wr_piped_data; generate if (STOPDELAY == 0) // No delay ... just assign the wires to our input lines assign wr_piped_data = i_data; else if (STOPDELAY == 1) begin // // Delay by one means just register this once reg [(BUSW-1):0] data_pipe; always @(posedge i_data_clk) if (i_ce) data_pipe <= i_data; assign wr_piped_data = data_pipe; end else begin // Arbitrary delay ... use a longer pipe reg [(STOPDELAY*BUSW-1):0] data_pipe; always @(posedge i_data_clk) if (i_ce) data_pipe <= { data_pipe[((STOPDELAY-1)*BUSW-1):0], i_data }; assign wr_piped_data = { data_pipe[(STOPDELAY*BUSW-1):((STOPDELAY-1)*BUSW)] }; end endgenerate always @(posedge i_data_clk) if ((i_ce)&&(!dr_stopped)) mem[waddr] <= wr_piped_data; // // Clock transfer of the status signals // wire bw_stopped, bw_triggered, bw_primed; generate if (SYNCHRONOUS > 0) begin assign bw_stopped = dr_stopped; assign bw_triggered = dr_triggered; assign bw_primed = dr_primed; end else begin // These aren't a problem, since none of these are strobe // signals. They goes from low to high, and then stays high // for many clocks. Swapping is thus easy--two flip flops to // protect against meta-stability and we're done. // (* ASYNC_REG = "TRUE" *) reg [2:0] q_oflags; reg [2:0] r_oflags; initial q_oflags = 3'h0; initial r_oflags = 3'h0; always @(posedge bus_clock) if (bw_reset_request) begin q_oflags <= 3'h0; r_oflags <= 3'h0; end else begin q_oflags <= { dr_stopped, dr_triggered, dr_primed }; r_oflags <= q_oflags; end assign bw_stopped = r_oflags[2]; assign bw_triggered = r_oflags[1]; assign bw_primed = r_oflags[0]; end endgenerate // Reads use the bus clock reg br_wb_ack, br_pre_wb_ack; initial br_wb_ack = 1'b0; wire bw_cyc_stb; assign bw_cyc_stb = (i_wb_stb); initial br_pre_wb_ack = 1'b0; initial br_wb_ack = 1'b0; always @(posedge bus_clock) begin if ((bw_reset_request)||(write_to_control)) raddr <= 0; else if ((read_from_data)&&(bw_stopped)) raddr <= raddr + 1'b1; // Data read, when stopped br_pre_wb_ack <= bw_cyc_stb; br_wb_ack <= (br_pre_wb_ack)&&(i_wb_cyc); end assign o_wb_ack = (i_wb_cyc)&&(br_wb_ack); reg [(LGMEM-1):0] this_addr; always @(posedge bus_clock) if (read_from_data) this_addr <= raddr + waddr + 1'b1; else this_addr <= raddr + waddr; reg [31:0] nxt_mem; always @(posedge bus_clock) nxt_mem <= mem[this_addr]; wire [19:0] full_holdoff; assign full_holdoff[(HOLDOFFBITS-1):0] = br_holdoff; generate if (HOLDOFFBITS < 20) assign full_holdoff[19:(HOLDOFFBITS)] = 0; endgenerate reg [31:0] o_bus_data; wire [4:0] bw_lgmem; assign bw_lgmem = LGMEM; always @(posedge bus_clock) if (!read_address) // Control register read o_bus_data <= { bw_reset_request, bw_stopped, bw_triggered, bw_primed, bw_manual_trigger, bw_disable_trigger, (raddr == {(LGMEM){1'b0}}), bw_lgmem, full_holdoff }; else if (!bw_stopped) // read, prior to stopping o_bus_data <= i_data; else // if (i_wb_addr) // Read from FIFO memory o_bus_data <= nxt_mem; // mem[raddr+waddr]; assign o_wb_data = o_bus_data; reg br_level_interrupt; initial br_level_interrupt = 1'b0; assign o_interrupt = (bw_stopped)&&(!bw_disable_trigger) &&(!br_level_interrupt); always @(posedge bus_clock) if ((bw_reset_complete)||(bw_reset_request)) br_level_interrupt<= 1'b0; else br_level_interrupt<= (bw_stopped)&&(!bw_disable_trigger); // verilator lint_off UNUSED // Make verilator happy wire [28:0] unused; assign unused = { i_wb_data[30:28], i_wb_data[25:0] }; // verilator lint_on UNUSED endmodule