URL
https://opencores.org/ocsvn/wbuart32/wbuart32/trunk
Subversion Repositories wbuart32
[/] [wbuart32/] [trunk/] [bench/] [cpp/] [uartsim.cpp] - Rev 10
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: uartsim.cpp // // Project: wbuart32, a full featured UART with simulator // // Purpose: To forward a Verilator simulated UART link over a TCP/IP pipe. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory, run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <poll.h> #include <unistd.h> #include <arpa/inet.h> #include <signal.h> #include <ctype.h> #include "uartsim.h" void UARTSIM::setup_listener(const int port) { struct sockaddr_in my_addr; signal(SIGPIPE, SIG_IGN); printf("Listening on port %d\n", port); m_skt = socket(AF_INET, SOCK_STREAM, 0); if (m_skt < 0) { perror("Could not allocate socket: "); exit(-1); } // Set the reuse address option { int optv = 1, er; er = setsockopt(m_skt, SOL_SOCKET, SO_REUSEADDR, &optv, sizeof(optv)); if (er != 0) { perror("SockOpt Err:"); exit(-1); } } memset(&my_addr, 0, sizeof(struct sockaddr_in)); // clear structure my_addr.sin_family = AF_INET; // Use *all* internet ports to this computer, allowing connections from // any/every one of them. my_addr.sin_addr.s_addr = htonl(INADDR_ANY); my_addr.sin_port = htons(port); if (bind(m_skt, (struct sockaddr *)&my_addr, sizeof(my_addr))!=0) { perror("BIND FAILED:"); exit(-1); } if (listen(m_skt, 1) != 0) { perror("Listen failed:"); exit(-1); } } UARTSIM::UARTSIM(const int port) { m_conrd = m_conwr = m_skt = -1; if (port == 0) { m_conrd = STDIN_FILENO; m_conwr = STDOUT_FILENO; } else setup_listener(port); setup(25); // Set us up for (default) 8N1 w/ a baud rate of CLK/25 m_rx_baudcounter = 0; m_tx_baudcounter = 0; m_rx_state = RXIDLE; m_tx_state = TXIDLE; } void UARTSIM::kill(void) { // Close any active connection if (m_conrd >= 0) close(m_conrd); if ((m_conwr >= 0)&&(m_conwr != m_conrd)) close(m_conwr); if (m_skt >= 0) close(m_skt); m_conrd = m_conwr = m_skt = -1; } void UARTSIM::setup(unsigned isetup) { if (isetup != m_setup) { m_setup = isetup; m_baud_counts = (isetup & 0x0ffffff); m_nbits = 8-((isetup >> 28)&0x03); m_nstop =((isetup >> 27)&1)+1; m_nparity = (isetup >> 26)&1; m_fixdp = (isetup >> 25)&1; m_evenp = (isetup >> 24)&1; } } int UARTSIM::nettick(int i_tx) { int o_rx = 1; if ((m_conrd < 0)&&(m_conwr<0)&&(m_skt>=0)) { // Can we accept a connection? struct pollfd pb; pb.fd = m_skt; pb.events = POLLIN; poll(&pb, 1, 0); if (pb.revents & POLLIN) { m_conrd = accept(m_skt, 0, 0); m_conwr = m_conrd; if (m_conrd < 0) perror("Accept failed:"); } } if ((!i_tx)&&(m_last_tx)) m_rx_changectr = 0; else m_rx_changectr++; m_last_tx = i_tx; if (m_rx_state == RXIDLE) { if (!i_tx) { m_rx_state = RXDATA; m_rx_baudcounter =m_baud_counts+m_baud_counts/2-1; m_rx_baudcounter -= m_rx_changectr; m_rx_busy = 0; m_rx_data = 0; } } else if (m_rx_baudcounter <= 0) { if (m_rx_busy >= (1<<(m_nbits+m_nparity+m_nstop-1))) { m_rx_state = RXIDLE; if (m_conwr >= 0) { char buf[1]; buf[0] = (m_rx_data >> (32-m_nbits-m_nstop-m_nparity))&0x0ff; if (1 != send(m_conwr, buf, 1, 0)) { close(m_conwr); m_conrd = m_conwr = -1; } } } else { m_rx_busy = (m_rx_busy << 1)|1; // Low order bit is transmitted first, in this // order: // Start bit (1'b1) // bit 0 // bit 1 // bit 2 // ... // bit N-1 // (possible parity bit) // stop bit // (possible secondary stop bit) m_rx_data = ((i_tx&1)<<31) | (m_rx_data>>1); } m_rx_baudcounter = m_baud_counts-1; } else m_rx_baudcounter--; if (m_tx_state == TXIDLE) { struct pollfd pb; pb.fd = m_conrd; pb.events = POLLIN; if (poll(&pb, 1, 0) < 0) perror("Polling error:"); if (pb.revents & POLLIN) { char buf[1]; if (1 == recv(m_conrd, buf, 1, MSG_DONTWAIT)) { m_tx_data = (-1<<(m_nbits+m_nparity+1)) // << nstart_bits |((buf[0]<<1)&0x01fe); if (m_nparity) { int p; // If m_nparity is set, we need to then // create the parity bit. if (m_fixdp) p = m_evenp; else { p = (m_tx_data >> 1)&0x0ff; p = p ^ (p>>4); p = p ^ (p>>2); p = p ^ (p>>1); p &= 1; p ^= m_evenp; } m_tx_data |= (p<<(m_nbits+m_nparity)); } m_tx_busy = (1<<(m_nbits+m_nparity+m_nstop+1))-1; m_tx_state = TXDATA; o_rx = 0; m_tx_baudcounter = m_baud_counts-1; } } } else if (m_tx_baudcounter <= 0) { m_tx_data >>= 1; m_tx_busy >>= 1; if (!m_tx_busy) m_tx_state = TXIDLE; else m_tx_baudcounter = m_baud_counts-1; o_rx = m_tx_data&1; } else { m_tx_baudcounter--; o_rx = m_tx_data&1; } return o_rx; } int UARTSIM::fdtick(int i_tx) { int o_rx = 1; if ((!i_tx)&&(m_last_tx)) m_rx_changectr = 0; else m_rx_changectr++; m_last_tx = i_tx; if (m_rx_state == RXIDLE) { if (!i_tx) { m_rx_state = RXDATA; m_rx_baudcounter =m_baud_counts+m_baud_counts/2-1; m_rx_baudcounter -= m_rx_changectr; m_rx_busy = 0; m_rx_data = 0; } } else if (m_rx_baudcounter <= 0) { if (m_rx_busy >= (1<<(m_nbits+m_nparity+m_nstop-1))) { m_rx_state = RXIDLE; if (m_conwr >= 0) { char buf[1]; buf[0] = (m_rx_data >> (32-m_nbits-m_nstop-m_nparity))&0x0ff; if (1 != write(m_conwr, buf, 1)) { fprintf(stderr, "ERR while attempting to write out--closing output port\n"); perror("UARTSIM::write() "); m_conrd = m_conwr = -1; } } } else { m_rx_busy = (m_rx_busy << 1)|1; // Low order bit is transmitted first, in this // order: // Start bit (1'b1) // bit 0 // bit 1 // bit 2 // ... // bit N-1 // (possible parity bit) // stop bit // (possible secondary stop bit) m_rx_data = ((i_tx&1)<<31) | (m_rx_data>>1); } m_rx_baudcounter = m_baud_counts-1; } else m_rx_baudcounter--; if ((m_tx_state == TXIDLE)&&(m_conrd >= 0)) { struct pollfd pb; pb.fd = m_conrd; pb.events = POLLIN; if (poll(&pb, 1, 0) < 0) perror("Polling error:"); if (pb.revents & POLLIN) { char buf[1]; int nr; if (1==(nr = read(m_conrd, buf, 1))) { m_tx_data = (-1<<(m_nbits+m_nparity+1)) // << nstart_bits |((buf[0]<<1)&0x01fe); if (m_nparity) { int p; // If m_nparity is set, we need to then // create the parity bit. if (m_fixdp) p = m_evenp; else { p = (m_tx_data >> 1)&0x0ff; p = p ^ (p>>4); p = p ^ (p>>2); p = p ^ (p>>1); p &= 1; p ^= m_evenp; } m_tx_data |= (p<<(m_nbits+m_nparity)); } m_tx_busy = (1<<(m_nbits+m_nparity+m_nstop+1))-1; m_tx_state = TXDATA; o_rx = 0; m_tx_baudcounter = m_baud_counts-1; } else if (nr < 0) { fprintf(stderr, "ERR while attempting to read in--closing input port\n"); perror("UARTSIM::read() "); m_conrd = -1; } // and we really don't care if nr == 0 except that // the poll above is supposed to keep it from happening } } else if (m_tx_baudcounter == 0) { m_tx_data >>= 1; m_tx_busy >>= 1; if (!m_tx_busy) m_tx_state = TXIDLE; else m_tx_baudcounter = m_baud_counts-1; o_rx = m_tx_data&1; } else { m_tx_baudcounter--; o_rx = m_tx_data&1; } return o_rx; }
Go to most recent revision | Compare with Previous | Blame | View Log