URL
https://opencores.org/ocsvn/wbuart32/wbuart32/trunk
Subversion Repositories wbuart32
[/] [wbuart32/] [trunk/] [rtl/] [txuart.v] - Rev 15
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: txuart.v // // Project: wbuart32, a full featured UART with simulator // // Purpose: Transmit outputs over a single UART line. // // To interface with this module, connect it to your system clock, // pass it the 32 bit setup register (defined below) and the byte // of data you wish to transmit. Strobe the i_wr line high for one // clock cycle, and your data will be off. Wait until the 'o_busy' // line is low before strobing the i_wr line again--this implementation // has NO BUFFER, so strobing i_wr while the core is busy will just // cause your data to be lost. The output will be placed on the o_txuart // output line. If you wish to set/send a break condition, assert the // i_break line otherwise leave it low. // // There is a synchronous reset line, logic high. // // Now for the setup register. The register is 32 bits, so that this // UART may be set up over a 32-bit bus. // // i_setup[30] Set this to zero to use hardware flow control, and to // one to ignore hardware flow control. Only works if the hardware // flow control has been properly wired. // // If you don't want hardware flow control, fix the i_rts bit to // 1'b1, and let the synthesys tools optimize out the logic. // // i_setup[29:28] Indicates the number of data bits per word. This will // either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10 // for a six bit word, or 2'b11 for a five bit word. // // i_setup[27] Indicates whether or not to use one or two stop bits. // Set this to one to expect two stop bits, zero for one. // // i_setup[26] Indicates whether or not a parity bit exists. Set this // to 1'b1 to include parity. // // i_setup[25] Indicates whether or not the parity bit is fixed. Set // to 1'b1 to include a fixed bit of parity, 1'b0 to allow the // parity to be set based upon data. (Both assume the parity // enable value is set.) // // i_setup[24] This bit is ignored if parity is not used. Otherwise, // in the case of a fixed parity bit, this bit indicates whether // mark (1'b1) or space (1'b0) parity is used. Likewise if the // parity is not fixed, a 1'b1 selects even parity, and 1'b0 // selects odd. // // i_setup[23:0] Indicates the speed of the UART in terms of clocks. // So, for example, if you have a 200 MHz clock and wish to // run your UART at 9600 baud, you would take 200 MHz and divide // by 9600 to set this value to 24'd20834. Likewise if you wished // to run this serial port at 115200 baud from a 200 MHz clock, // you would set the value to 24'd1736 // // Thus, to set the UART for the common setting of an 8-bit word, // one stop bit, no parity, and 115200 baud over a 200 MHz clock, you // would want to set the setup value to: // // 32'h0006c8 // For 115,200 baud, 8 bit, no parity // 32'h005161 // For 9600 baud, 8 bit, no parity // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2017, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `define TXU_BIT_ZERO 4'h0 `define TXU_BIT_ONE 4'h1 `define TXU_BIT_TWO 4'h2 `define TXU_BIT_THREE 4'h3 `define TXU_BIT_FOUR 4'h4 `define TXU_BIT_FIVE 4'h5 `define TXU_BIT_SIX 4'h6 `define TXU_BIT_SEVEN 4'h7 `define TXU_PARITY 4'h8 // Constant 1 `define TXU_STOP 4'h9 // Constant 1 `define TXU_SECOND_STOP 4'ha // 4'hb // Unused // 4'hc // Unused // `define TXU_START 4'hd // An unused state `define TXU_BREAK 4'he `define TXU_IDLE 4'hf // // module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data, i_cts_n, o_uart_tx, o_busy); parameter [30:0] INITIAL_SETUP = 31'd868; input i_clk, i_reset; input [30:0] i_setup; input i_break; input i_wr; input [7:0] i_data; // Hardware flow control Ready-To-Send bit. Set this to one to use // the core without flow control. (A more appropriate name would be // the Ready-To-Receive bit ...) input i_cts_n; // And the UART input line itself output reg o_uart_tx; // A line to tell others when we are ready to accept data. If // (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte // for transmission. output wire o_busy; wire [27:0] clocks_per_baud, break_condition; wire [1:0] data_bits; wire use_parity, parity_even, dblstop, fixd_parity, fixdp_value, hw_flow_control; reg [30:0] r_setup; assign clocks_per_baud = { 4'h0, r_setup[23:0] }; assign break_condition = { r_setup[23:0], 4'h0 }; assign hw_flow_control = !r_setup[30]; assign data_bits = r_setup[29:28]; assign dblstop = r_setup[27]; assign use_parity = r_setup[26]; assign fixd_parity = r_setup[25]; assign parity_even = r_setup[24]; assign fixdp_value = r_setup[24]; reg [27:0] baud_counter; reg [3:0] state; reg [7:0] lcl_data; reg calc_parity, r_busy, zero_baud_counter; // First step ... handle any hardware flow control, if so enabled. // // Clock in the flow control data, two clocks to avoid metastability // Default to using hardware flow control (uart_setup[30]==0 to use it). // Set this high order bit off if you do not wish to use it. reg q_cts_n, qq_cts_n, ck_cts; // While we might wish to give initial values to q_rts and ck_cts, // 1) it's not required since the transmitter starts in a long wait // state, and 2) doing so will prevent the synthesizer from optimizing // this pin in the case it is hard set to 1'b1 external to this // peripheral. // // initial q_cts_n = 1'b1; // initial qq_cts_n = 1'b1; // initial ck_cts = 1'b0; always @(posedge i_clk) q_cts_n <= i_cts_n; always @(posedge i_clk) qq_cts_n <= q_cts_n; always @(posedge i_clk) ck_cts <= (!qq_cts_n)||(!hw_flow_control); initial o_uart_tx = 1'b1; initial r_busy = 1'b1; initial state = `TXU_IDLE; initial lcl_data= 8'h0; initial calc_parity = 1'b0; // initial baud_counter = clocks_per_baud;//ILLEGAL--not constant always @(posedge i_clk) begin if (i_reset) begin r_busy <= 1'b1; state <= `TXU_IDLE; end else if (i_break) begin state <= `TXU_BREAK; r_busy <= 1'b1; end else if (!zero_baud_counter) begin // r_busy needs to be set coming into here r_busy <= 1'b1; end else if (state == `TXU_BREAK) begin state <= `TXU_IDLE; r_busy <= 1'b1; end else if (state == `TXU_IDLE) // STATE_IDLE begin if ((i_wr)&&(!r_busy)) begin // Immediately start us off with a start bit r_busy <= 1'b1; case(data_bits) 2'b00: state <= `TXU_BIT_ZERO; 2'b01: state <= `TXU_BIT_ONE; 2'b10: state <= `TXU_BIT_TWO; 2'b11: state <= `TXU_BIT_THREE; endcase end else begin // Stay in idle r_busy <= !ck_cts; end end else begin // One clock tick in each of these states ... // baud_counter <= clocks_per_baud - 28'h01; r_busy <= 1'b1; if (state[3] == 0) // First 8 bits begin if (state == `TXU_BIT_SEVEN) state <= (use_parity)?`TXU_PARITY:`TXU_STOP; else state <= state + 1; end else if (state == `TXU_PARITY) begin state <= `TXU_STOP; end else if (state == `TXU_STOP) begin // two stop bit(s) if (dblstop) state <= `TXU_SECOND_STOP; else state <= `TXU_IDLE; end else // `TXU_SECOND_STOP and default: begin state <= `TXU_IDLE; // Go back to idle // Still r_busy, since we need to wait // for the baud clock to finish counting // out this last bit. end end end // o_busy // // This is a wire, designed to be true is we are ever busy above. // originally, this was going to be true if we were ever not in the // idle state. The logic has since become more complex, hence we have // a register dedicated to this and just copy out that registers value. assign o_busy = (r_busy); // r_setup // // Our setup register. Accept changes between any pair of transmitted // words. The register itself has many fields to it. These are // broken out up top, and indicate what 1) our baud rate is, 2) our // number of stop bits, 3) what type of parity we are using, and 4) // the size of our data word. initial r_setup = INITIAL_SETUP; always @(posedge i_clk) if (state == `TXU_IDLE) r_setup <= i_setup; // lcl_data // // This is our working copy of the i_data register which we use // when transmitting. It is only of interest during transmit, and is // allowed to be whatever at any other time. Hence, if r_busy isn't // true, we can always set it. On the one clock where r_busy isn't // true and i_wr is, we set it and r_busy is true thereafter. // Then, on any zero_baud_counter (i.e. change between baud intervals) // we simple logically shift the register right to grab the next bit. always @(posedge i_clk) if (!r_busy) lcl_data <= i_data; else if (zero_baud_counter) lcl_data <= { 1'b0, lcl_data[7:1] }; // o_uart_tx // // This is the final result/output desired of this core. It's all // centered about o_uart_tx. This is what finally needs to follow // the UART protocol. // // Ok, that said, our rules are: // 1'b0 on any break condition // 1'b0 on a start bit (IDLE, write, and not busy) // lcl_data[0] during any data transfer, but only at the baud // change // PARITY -- During the parity bit. This depends upon whether or // not the parity bit is fixed, then what it's fixed to, // or changing, and hence what it's calculated value is. // 1'b1 at all other times (stop bits, idle, etc) always @(posedge i_clk) if (i_reset) o_uart_tx <= 1'b1; else if ((i_break)||((i_wr)&&(!r_busy))) o_uart_tx <= 1'b0; else if (zero_baud_counter) casez(state) 4'b0???: o_uart_tx <= lcl_data[0]; `TXU_PARITY: o_uart_tx <= calc_parity; default: o_uart_tx <= 1'b1; endcase // calc_parity // // Calculate the parity to be placed into the parity bit. If the // parity is fixed, then the parity bit is given by the fixed parity // value (r_setup[24]). Otherwise the parity is given by the GF2 // sum of all the data bits (plus one for even parity). always @(posedge i_clk) if (fixd_parity) calc_parity <= fixdp_value; else if (zero_baud_counter) begin if (state[3] == 0) // First 8 bits of msg calc_parity <= calc_parity ^ lcl_data[0]; else calc_parity <= parity_even; end else if (!r_busy) calc_parity <= parity_even; // All of the above logic is driven by the baud counter. Bits must last // clocks_per_baud in length, and this baud counter is what we use to // make certain of that. // // The basic logic is this: at the beginning of a bit interval, start // the baud counter and set it to count clocks_per_baud. When it gets // to zero, restart it. // // However, comparing a 28'bit number to zero can be rather complex-- // especially if we wish to do anything else on that same clock. For // that reason, we create "zero_baud_counter". zero_baud_counter is // nothing more than a flag that is true anytime baud_counter is zero. // It's true when the logic (above) needs to step to the next bit. // Simple enough? // // I wish we could stop there, but there are some other (ugly) // conditions to deal with that offer exceptions to this basic logic. // // 1. When the user has commanded a BREAK across the line, we need to // wait several baud intervals following the break before we start // transmitting, to give any receiver a chance to recognize that we are // out of the break condition, and to know that the next bit will be // a stop bit. // // 2. A reset is similar to a break condition--on both we wait several // baud intervals before allowing a start bit. // // 3. In the idle state, we stop our counter--so that upon a request // to transmit when idle we can start transmitting immediately, rather // than waiting for the end of the next (fictitious and arbitrary) baud // interval. // // When (i_wr)&&(!r_busy)&&(state == `TXU_IDLE) then we're not only in // the idle state, but we also just accepted a command to start writing // the next word. At this point, the baud counter needs to be reset // to the number of clocks per baud, and zero_baud_counter set to zero. // // The logic is a bit twisted here, in that it will only check for the // above condition when zero_baud_counter is false--so as to make // certain the STOP bit is complete. initial zero_baud_counter = 1'b0; initial baud_counter = 28'h05; always @(posedge i_clk) begin zero_baud_counter <= (baud_counter == 28'h01); if ((i_reset)||(i_break)) begin // Give ourselves 16 bauds before being ready baud_counter <= break_condition; zero_baud_counter <= 1'b0; end else if (!zero_baud_counter) baud_counter <= baud_counter - 28'h01; else if (state == `TXU_BREAK) // Give us four idle baud intervals before becoming // available baud_counter <= clocks_per_baud<<2; else if (state == `TXU_IDLE) begin baud_counter <= 28'h0; zero_baud_counter <= 1'b1; if ((i_wr)&&(!r_busy)) begin baud_counter <= clocks_per_baud - 28'h01; zero_baud_counter <= 1'b0; end end else baud_counter <= clocks_per_baud - 28'h01; end endmodule
Go to most recent revision | Compare with Previous | Blame | View Log