URL
https://opencores.org/ocsvn/xgate/xgate/trunk
Subversion Repositories xgate
[/] [xgate/] [trunk/] [bench/] [verilog/] [tst_bench_top.v] - Rev 40
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // WISHBONE revB.2 compliant Xgate Coprocessor - Test Bench // // Author: Bob Hayes // rehayes@opencores.org // // Downloaded from: http://www.opencores.org/projects/xgate..... // //////////////////////////////////////////////////////////////////////////////// // Copyright (c) 2009, Robert Hayes // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Supplemental terms. // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Neither the name of the <organization> nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY Robert Hayes ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL Robert Hayes BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// // 45678901234567890123456789012345678901234567890123456789012345678901234567890 `include "timescale.v" module tst_bench_top(); parameter MAX_CHANNEL = 127; // Max XGATE Interrupt Channel Number parameter STOP_ON_ERROR = 1'b0; parameter MAX_VECTOR = 2200; parameter L_BYTE = 2'bx1; parameter H_BYTE = 2'b1x; parameter WORD = 2'b11; // Name Address Locations parameter XGATE_BASE = 32'b0; parameter XGATE_XGMCTL = XGATE_BASE + 5'h00; parameter XGATE_XGCHID = XGATE_BASE + 5'h01; parameter XGATE_XGISPHI = XGATE_BASE + 5'h02; parameter XGATE_XGISPLO = XGATE_BASE + 5'h03; parameter XGATE_XGVBR = XGATE_BASE + 5'h04; parameter XGATE_XGIF_7 = XGATE_BASE + 5'h05; parameter XGATE_XGIF_6 = XGATE_BASE + 5'h06; parameter XGATE_XGIF_5 = XGATE_BASE + 5'h07; parameter XGATE_XGIF_4 = XGATE_BASE + 5'h08; parameter XGATE_XGIF_3 = XGATE_BASE + 5'h09; parameter XGATE_XGIF_2 = XGATE_BASE + 5'h0a; parameter XGATE_XGIF_1 = XGATE_BASE + 5'h0b; parameter XGATE_XGIF_0 = XGATE_BASE + 5'h0c; parameter XGATE_XGSWT = XGATE_BASE + 5'h0d; parameter XGATE_XGSEM = XGATE_BASE + 5'h0e; parameter XGATE_RES1 = XGATE_BASE + 5'h0f; parameter XGATE_XGCCR = XGATE_BASE + 5'h10; parameter XGATE_XGPC = XGATE_BASE + 5'h11; parameter XGATE_RES2 = XGATE_BASE + 5'h12; parameter XGATE_XGR1 = XGATE_BASE + 5'h13; parameter XGATE_XGR2 = XGATE_BASE + 5'h14; parameter XGATE_XGR3 = XGATE_BASE + 5'h15; parameter XGATE_XGR4 = XGATE_BASE + 5'h16; parameter XGATE_XGR5 = XGATE_BASE + 5'h17; parameter XGATE_XGR6 = XGATE_BASE + 5'h18; parameter XGATE_XGR7 = XGATE_BASE + 5'h19; // Define bits in XGATE Control Register parameter XGMCTL_XGEM = 16'h8000; parameter XGMCTL_XGFRZM = 16'h4000; parameter XGMCTL_XGDBGM = 15'h2000; parameter XGMCTL_XGSSM = 15'h1000; parameter XGMCTL_XGFACTM = 15'h0800; parameter XGMCTL_XGBRKIEM = 15'h0400; parameter XGMCTL_XGSWEIFM = 15'h0200; parameter XGMCTL_XGIEM = 15'h0100; parameter XGMCTL_XGE = 16'h0080; parameter XGMCTL_XGFRZ = 16'h0040; parameter XGMCTL_XGDBG = 15'h0020; parameter XGMCTL_XGSS = 15'h0010; parameter XGMCTL_XGFACT = 15'h0008; parameter XGMCTL_XGBRKIE = 15'h0004; parameter XGMCTL_XGSWEIF = 15'h0002; parameter XGMCTL_XGIE = 15'h0001; parameter CHECK_POINT = 16'h8000; parameter CHANNEL_ACK = CHECK_POINT + 2; parameter CHANNEL_ERR = CHECK_POINT + 4; parameter SYS_RAM_BASE = 32'h0002_0000; // // wires && regs // reg mstr_test_clk; reg [19:0] vector; reg [15:0] error_count; reg [ 7:0] test_num; reg [15:0] q, qq; reg [ 7:0] check_point_reg; reg [ 7:0] channel_ack_reg; reg [ 7:0] channel_err_reg; event check_point_wrt; event channel_ack_wrt; event channel_err_wrt; reg rstn; reg sync_reset; reg por_reset_b; reg stop_mode; reg wait_mode; reg debug_mode; reg scantestmode; reg wbm_ack_i; wire [15:0] dat_i, dat1_i, dat2_i, dat3_i; wire ack, ack_2, ack_3, ack_4; reg [MAX_CHANNEL:0] channel_req; // XGATE Interrupt inputs wire [MAX_CHANNEL:0] xgif; // XGATE Interrupt outputs wire [ 7:0] xgswt; // XGATE Software Trigger outputs wire xg_sw_irq; // Xgate Software Error interrupt wire [15:0] wbm_dat_o; // WISHBONE Master Mode data output from XGATE wire [15:0] wbm_dat_i; // WISHBONE Master Mode data input to XGATE wire [15:0] wbm_adr_o; // WISHBONE Master Mode address output from XGATE wire [ 1:0] wbm_sel_o; reg mem_wait_state_enable; wire [15:0] tb_ram_out; wire [31:0] sys_addr; // Registers used to mirror internal registers reg [15:0] data_xgmctl; reg [15:0] data_xgchid; reg [15:0] data_xgvbr; reg [15:0] data_xgswt; reg [15:0] data_xgsem; wire sys_cyc; wire sys_stb; wire sys_we; wire [ 1:0] sys_sel; wire [31:0] sys_adr; wire [15:0] sys_dout; wire host_ack; wire [15:0] host_dout; wire host_cyc; wire host_stb; wire host_we; wire [ 1:0] host_sel; wire [31:0] host_adr; wire [15:0] host_din; wire xgate_ack; wire [15:0] xgate_dout; wire xgate_cyc; wire xgate_stb; wire xgate_we; wire [ 1:0] xgate_sel; wire [15:0] xgate_adr; wire [15:0] xgate_din; wire xgate_s_stb; wire xgate_s_ack; wire [15:0] xgate_s_dout; wire slv2_stb; wire ram_ack; wire [15:0] ram_dout; // initial values and testbench setup initial begin mstr_test_clk = 0; vector = 0; test_num = 0; por_reset_b = 0; stop_mode = 0; wait_mode = 0; debug_mode = 0; scantestmode = 0; check_point_reg = 0; channel_ack_reg = 0; channel_err_reg = 0; error_count = 0; wbm_ack_i = 1; mem_wait_state_enable = 0; // channel_req = 0; `ifdef WAVES $shm_open("waves"); $shm_probe("AS",tst_bench_top,"AS"); $display("\nINFO: Signal dump enabled ...\n\n"); `endif `ifdef WAVES_V $dumpfile ("xgate_wave_dump.lxt"); $dumpvars (0, tst_bench_top); $dumpon; $display("\nINFO: VCD Signal dump enabled ...\n\n"); `endif end // generate clock always #20 mstr_test_clk = ~mstr_test_clk; // Keep a count of how many clocks we've simulated always @(posedge mstr_test_clk) begin vector <= vector + 1; if (vector > MAX_VECTOR) begin error_count <= error_count + 1; $display("\n ------ !!!!! Simulation Timeout at vector=%d\n -------", vector); wrap_up; end end // Add up errors tha come from WISHBONE read compares always @host.cmp_error_detect begin error_count <= error_count + 1; end // Throw in some wait states from the memory always @(posedge mstr_test_clk) if (((vector % 5) == 0) && (xgate.risc.load_next_inst || xgate.risc.data_access)) // if ((vector % 5) == 0) wbm_ack_i <= 1'b0; else wbm_ack_i <= 1'b1; // Special Memory Mapped Testbench Registers always @(posedge mstr_test_clk or negedge rstn) begin if (!rstn) begin check_point_reg <= 0; channel_ack_reg <= 0; channel_err_reg <= 0; end if (wbm_sel_o[0] && wbm_ack_i && (wbm_adr_o == CHECK_POINT)) begin check_point_reg <= wbm_dat_o[7:0]; #1; -> check_point_wrt; end if (wbm_sel_o[0] && wbm_ack_i && (wbm_adr_o == CHANNEL_ACK)) begin channel_ack_reg <= wbm_dat_o[7:0]; #1; -> channel_ack_wrt; end if (wbm_sel_o[0] && wbm_ack_i && (wbm_adr_o == CHANNEL_ERR)) begin channel_err_reg <= wbm_dat_o[7:0]; #1; -> channel_err_wrt; end end always @check_point_wrt $display("\nSoftware Checkpoint #%h -- at vector=%d\n", check_point_reg, vector); always @channel_err_wrt begin $display("\n ------ !!!!! Software Error #%d -- at vector=%d\n -------", channel_err_reg, vector); error_count = error_count + 1; if (STOP_ON_ERROR == 1'b1) wrap_up; end wire [ 6:0] current_active_channel = xgate.risc.xgchid; always @channel_ack_wrt clear_channel(current_active_channel); // Address decoding for different XGATE module instances wire stb0 = host_stb && ~host_adr[6] && ~host_adr[5] && ~|host_adr[31:16]; wire stb1 = host_stb && ~host_adr[6] && host_adr[5] && ~|host_adr[31:16]; wire stb2 = host_stb && host_adr[6] && ~host_adr[5] && ~|host_adr[31:16]; wire stb3 = host_stb && host_adr[6] && host_adr[5] && ~|host_adr[31:16]; assign dat1_i = 16'h0000; assign dat2_i = 16'h0000; assign dat3_i = 16'h0000; assign ack_2 = 1'b0; assign ack_3 = 1'b0; assign ack_4 = 1'b0; // Create the Read Data Bus assign dat_i = ({16{stb0}} & xgate_s_dout) | ({16{stb1}} & dat1_i) | ({16{stb2}} & dat2_i) | ({16{stb3}} & {8'b0, dat3_i[7:0]}); assign ack = xgate_s_ack || ack_2 || ack_3 || ack_4; // Aribartration Logic for Testbench RAM access assign sys_addr = 1'b1 ? {16'b0, wbm_adr_o} : host_adr; // Testbench RAM for Xgate program storage and Load/Store instruction tests ram p_ram ( // Outputs .ram_out( ram_dout ), // inputs .address( sys_addr[15:0] ), // sys_addr sys_adr .ram_in( sys_dout ), .we( sys_we ), .ce( 1'b1 ), .stb( mstr_test_clk ), .sel( sys_sel ) // wbm_sel_o sys_sel ); // hookup wishbone master model wb_master_model #(.dwidth(16), .awidth(32)) host( // Outputs .cyc( host_cyc ), .stb( host_stb ), .we( host_we ), .sel( host_sel ), .adr( host_adr ), .dout( host_dout ), // inputs .din(host_din), .clk(mstr_test_clk), .ack(host_ack), .rst(rstn), .err(1'b0), .rty(1'b0) ); bus_arbitration #(.dwidth(16), .awidth(32)) arb( // System bus I/O .sys_cyc( sys_cyc ), .sys_stb( sys_stb ), .sys_we( sys_we ), .sys_sel( sys_sel ), .sys_adr( sys_adr ), .sys_dout( sys_dout ), // Host bus I/O .host_ack( host_ack ), .host_dout( host_din ), .host_cyc( host_cyc ), .host_stb( host_stb ), .host_we( host_we ), .host_sel( host_sel ), .host_adr( host_adr ), .host_din( host_dout ), // Alternate Bus Master #1 Bus I/O .alt1_ack( xgate_ack ), .alt1_dout( xgate_din ), .alt1_cyc( wbm_cyc_o ), .alt1_stb( wbm_stb_o ), .alt1_we( wbm_we_o ), .alt1_sel( wbm_sel_o ), .alt1_adr( {16'h0001, wbm_adr_o} ), .alt1_din( wbm_dat_o ), // Slave #1 Bus I/O .slv1_stb( xgate_s_stb ), .slv1_ack( xgate_s_ack ), .slv1_din( xgate_s_dout ), // Slave #2 Bus I/O .slv2_stb( slv2_stb ), .slv2_ack( wbm_ack_i ), .slv2_din( ram_dout ), // Miscellaneous .host_clk( mstr_test_clk ), .risc_clk( mstr_test_clk ), .rst( rstn ), // No Connect .err( 1'b0 ), // No Connect .rty( 1'b0 ) // No Connect ); // hookup XGATE core - Parameters take all default values // Async Reset, 16 bit Bus, 8 bit Granularity xgate_top #(.SINGLE_CYCLE(1'b1), .MAX_CHANNEL(MAX_CHANNEL)) // Max XGATE Interrupt Channel Number xgate( // Wishbone slave interface .wbs_clk_i( mstr_test_clk ), .wbs_rst_i( 1'b0 ), // sync_reset .arst_i( rstn ), // async resetn .wbs_adr_i( sys_adr[4:0] ), .wbs_dat_i( sys_dout ), .wbs_dat_o( xgate_s_dout ), .wbs_we_i( sys_we ), .wbs_stb_i( xgate_s_stb ), .wbs_cyc_i( sys_cyc ), .wbs_sel_i( sys_sel ), .wbs_ack_o( xgate_s_ack ), // Wishbone master Signals .wbm_dat_o( wbm_dat_o ), .wbm_we_o( wbm_we_o ), .wbm_stb_o( wbm_stb_o ), .wbm_cyc_o( wbm_cyc_o ), .wbm_sel_o( wbm_sel_o ), .wbm_adr_o( wbm_adr_o ), .wbm_dat_i( ram_dout ), .wbm_ack_i( wbm_ack_i ), .xgif( xgif ), // XGATE Interrupt Flag output .xg_sw_irq( xg_sw_irq ), // XGATE Software Error Interrupt Flag output .xgswt( xgswt ), .risc_clk( mstr_test_clk ), .chan_req_i( {channel_req[MAX_CHANNEL:40], xgswt, channel_req[31:0]} ), .scantestmode( scantestmode ) ); //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Test Program initial begin $display("\nstatus at time: %t Testbench started", $time); // reset system rstn = 1'b1; // negate reset channel_req = 1; // repeat(1) @(posedge mstr_test_clk); sync_reset = 1'b1; // Make the sync reset 1 clock cycle long #2; // move the async reset away from the clock edge rstn = 1'b0; // assert async reset #5; // Keep the async reset pulse with less than a clock cycle rstn = 1'b1; // negate async reset por_reset_b = 1'b1; channel_req = 0; // repeat(1) @(posedge mstr_test_clk); sync_reset = 1'b0; channel_req = 0; // $display("\nstatus at time: %t done reset", $time); test_inst_set; test_debug_mode; test_debug_bit; test_chid_debug; // host_ram; // End testing wrap_up; reg_test_16; repeat(10) @(posedge mstr_test_clk); wrap_up; end //////////////////////////////////////////////////////////////////////////////// // Test CHID Debug mode operation task test_chid_debug; begin test_num = test_num + 1; $display("\nTEST #%d Starts at vector=%d, test_chid_debug", test_num, vector); $readmemh("../../../bench/verilog/debug_test.v", p_ram.ram_8); data_xgmctl = XGMCTL_XGBRKIEM | XGMCTL_XGBRKIE; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Enable interrupt on BRK instruction activate_thread_sw(3); wait_debug_set; // Debug Status bit is set by BRK instruction host.wb_cmp(0, XGATE_XGPC, 16'h20c6, WORD); // See Program code (BRK). host.wb_cmp(0, XGATE_XGR3, 16'h0001, WORD); // See Program code.R3 = 1 host.wb_cmp(0, XGATE_XGCHID, 16'h0003, WORD); // Check for Correct CHID channel_req[5] = 1'b1; // repeat(7) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGCHID, 16'h0003, WORD); // Check for Correct CHID host.wb_write(0, XGATE_XGCHID, 16'h000f, WORD); // Change CHID host.wb_cmp(0, XGATE_XGCHID, 16'h000f, WORD); // Check for Correct CHID host.wb_write(0, XGATE_XGCHID, 16'h0000, WORD); // Change CHID to 00, RISC should go to IDLE state repeat(1) @(posedge mstr_test_clk); host.wb_write(0, XGATE_XGCHID, 16'h0004, WORD); // Change CHID repeat(8) @(posedge mstr_test_clk); data_xgmctl = XGMCTL_XGDBGM; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Debug Mode Control Bit wait_debug_set; // Debug Status bit is set by BRK instruction host.wb_cmp(0, XGATE_XGCHID, 16'h0004, WORD); // Check for Correct CHID host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Debug Mode Control Bit (Excape from Break State and run) wait_debug_set; // Debug Status bit is set by BRK instruction host.wb_cmp(0, XGATE_XGCHID, 16'h0005, WORD); // Check for Correct CHID activate_channel(6); host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Debug Mode Control Bit (Excape from Break State and run) wait_debug_set; // Debug Status bit is set by BRK instruction host.wb_cmp(0, XGATE_XGCHID, 16'h0006, WORD); // Check for Correct CHID host.wb_cmp(0, XGATE_XGPC, 16'h211c, WORD); // See Program code (BRK) data_xgmctl = XGMCTL_XGSSM | XGMCTL_XGSS; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step repeat(8) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h211e, WORD); // See Program code (BRA) host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step repeat(8) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h2122, WORD); // See Program code () repeat(20) @(posedge mstr_test_clk); data_xgmctl = XGMCTL_XGDBGM; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Debug Mode Control Bit repeat(50) @(posedge mstr_test_clk); p_ram.dump_ram(0); end endtask //////////////////////////////////////////////////////////////////////////////// // Test Debug bit operation task test_debug_bit; begin test_num = test_num + 1; $display("\nTEST #%d Starts at vector=%d, test_debug_bit", test_num, vector); $readmemh("../../../bench/verilog/debug_test.v", p_ram.ram_8); data_xgmctl = XGMCTL_XGBRKIEM | XGMCTL_XGBRKIE; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Enable interrupt on BRK instruction activate_thread_sw(2); repeat(25) @(posedge mstr_test_clk); data_xgmctl = XGMCTL_XGDBGM | XGMCTL_XGDBG; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Set Debug Mode Control Bit repeat(5) @(posedge mstr_test_clk); host.wb_read(1, XGATE_XGR3, q, WORD); data_xgmctl = XGMCTL_XGSSM | XGMCTL_XGSS; qq = q; // The Xgate test program is in an infinate loop incrementing R3 while (qq == q) // Look for change in R3 register begin host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step repeat(5) @(posedge mstr_test_clk); host.wb_read(1, XGATE_XGR3, q, WORD); end if (q != (qq+1)) begin $display("Error! - Unexpected value of R3 at vector=%d", vector); error_count = error_count + 1; end host.wb_write(1, XGATE_XGPC, 16'h2094, WORD); // Write to PC to force exit from infinate loop repeat(5) @(posedge mstr_test_clk); data_xgmctl = XGMCTL_XGSSM | XGMCTL_XGSS; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (Load ADDL instruction) repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGR4, 16'h0002, WORD); // See Program code.(R4 <= R4 + 1) host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (Load ADDL instruction) repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGR4, 16'h0003, WORD); // See Program code.(R4 <= R4 + 1) data_xgmctl = XGMCTL_XGDBGM; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Debug Mode Control Bit // Should be back in Run Mode // data_xgmctl = XGMCTL_XGSWEIFM | XGMCTL_XGSWEIF | XGMCTL_XGBRKIEM; // host.wb_write(0, XGATE_XGMCTL, data_xgmctl); // Clear Software Interrupt and BRK Interrupt Enable Bit repeat(15) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// // Test Debug mode operation task test_debug_mode; begin test_num = test_num + 1; $display("\nTEST #%d Starts at vector=%d, test_debug_mode", test_num, vector); $readmemh("../../../bench/verilog/debug_test.v", p_ram.ram_8); data_xgmctl = XGMCTL_XGBRKIEM | XGMCTL_XGBRKIE; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Enable interrupt on BRK instruction activate_thread_sw(1); wait_debug_set; // Debug Status bit is set by BRK instruction host.wb_cmp(0, XGATE_XGPC, 16'h203a, WORD); // See Program code (BRK). host.wb_cmp(0, XGATE_XGR3, 16'h0001, WORD); // See Program code.R3 = 1 data_xgmctl = XGMCTL_XGSSM | XGMCTL_XGSS; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (Load ADDL instruction) repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h203c, WORD); // PC + 2. host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (Load NOP instruction) repeat(5) @(posedge mstr_test_clk); // Execute ADDL instruction host.wb_cmp(0, XGATE_XGR3, 16'h0002, WORD); // See Program code.(R3 <= R3 + 1) host.wb_cmp(0, XGATE_XGCCR, 16'h0000, WORD); // See Program code. host.wb_cmp(0, XGATE_XGPC, 16'h203e, WORD); // PC + 2. repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h203e, WORD); // Still no change. host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (Load BRA instruction) repeat(9) @(posedge mstr_test_clk); // Execute NOP instruction host.wb_cmp(0, XGATE_XGPC, 16'h2040, WORD); // See Program code. host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step repeat(5) @(posedge mstr_test_clk); // Execute BRA instruction host.wb_cmp(0, XGATE_XGPC, 16'h2064, WORD); // PC = Branch destination. // Load ADDL instruction host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (Load LDW R7 instruction) repeat(5) @(posedge mstr_test_clk); // Execute ADDL instruction host.wb_cmp(0, XGATE_XGPC, 16'h2066, WORD); // PC + 2. host.wb_cmp(0, XGATE_XGR3, 16'h0003, WORD); // See Program code.(R3 <= R3 + 1) host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (LDW R7) repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h2068, WORD); // PC + 2. host.wb_cmp(0, XGATE_XGR7, 16'h00c3, WORD); // See Program code repeat(1) @(posedge mstr_test_clk); host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (BRA) repeat(9) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h2048, WORD); // See Program code. host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (STW R3) repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h204a, WORD); // PC + 2. host.wb_cmp(0, XGATE_XGR3, 16'h0003, WORD); // See Program code.(R3 <= R3 + 1) host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Do a Single Step (R3 <= R3 + 1) repeat(5) @(posedge mstr_test_clk); host.wb_cmp(0, XGATE_XGPC, 16'h204c, WORD); // PC + 2. repeat(5) @(posedge mstr_test_clk); data_xgmctl = XGMCTL_XGDBGM; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Debug Mode Control Bit // Should be back in Run Mode wait_irq_set(1); host.wb_write(1, XGATE_XGIF_0, 16'h0002, WORD); data_xgmctl = XGMCTL_XGSWEIFM | XGMCTL_XGSWEIF | XGMCTL_XGBRKIEM; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Clear Software Interrupt and BRK Interrupt Enable Bit repeat(15) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// // Test instruction set task test_inst_set; begin $readmemh("../../../bench/verilog/inst_test.v", p_ram.ram_8); test_num = test_num + 1; $display("\nTEST #%d Starts at vector=%d, inst_test", test_num, vector); repeat(1) @(posedge mstr_test_clk); activate_thread_sw(1); wait_irq_set(1); host.wb_write(1, XGATE_XGIF_0, 16'h0002, WORD); activate_thread_sw(2); wait_irq_set(2); host.wb_write(1, XGATE_XGIF_0, 16'h0004, WORD); activate_thread_sw(3); wait_irq_set(3); host.wb_write(1, XGATE_XGIF_0, 16'h0008, WORD); activate_thread_sw(4); wait_irq_set(4); host.wb_write(1, XGATE_XGIF_0, 16'h0010, WORD); activate_thread_sw(5); wait_irq_set(5); host.wb_write(1, XGATE_XGIF_0, 16'h0020, WORD); activate_thread_sw(6); wait_irq_set(6); host.wb_write(1, XGATE_XGIF_0, 16'h0040, WORD); activate_thread_sw(7); wait_irq_set(7); host.wb_write(1, XGATE_XGIF_0, 16'h0080, WORD); activate_thread_sw(8); wait_irq_set(8); host.wb_write(1, XGATE_XGIF_0, 16'h0100, WORD); activate_thread_sw(9); wait_irq_set(9); host.wb_write(1, XGATE_XGIF_0, 16'h0200, WORD); host.wb_write(1, XGATE_XGSEM, 16'h5050, WORD); host.wb_cmp(0, XGATE_XGSEM, 16'h0050, WORD); // activate_thread_sw(10); wait_irq_set(10); host.wb_write(1, XGATE_XGIF_0, 16'h0400, WORD); host.wb_write(1, XGATE_XGSEM, 16'hff00, WORD); // clear the old settings host.wb_cmp(0, XGATE_XGSEM, 16'h0000, WORD); // host.wb_write(1, XGATE_XGSEM, 16'ha0a0, WORD); // Verify that bits were unlocked by RISC host.wb_cmp(0, XGATE_XGSEM, 16'h00a0, WORD); // Verify bits were set host.wb_write(1, XGATE_XGSEM, 16'hff08, WORD); // Try to set the bit that was left locked by the RISC host.wb_cmp(0, XGATE_XGSEM, 16'h0000, WORD); // Verify no bits were set repeat(20) @(posedge mstr_test_clk); p_ram.dump_ram(0); end endtask //////////////////////////////////////////////////////////////////////////////// // check register bits - reset, read/write task reg_test_16; begin test_num = test_num + 1; $display("TEST #%d Starts at vector=%d, reg_test_16", test_num, vector); host.wb_cmp(0, XGATE_XGMCTL, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGCHID, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGISPHI, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGISPLO, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGVBR, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_7, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_6, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_5, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_4, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_3, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_2, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_1, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGIF_0, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGSWT, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGSEM, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGCCR, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGPC, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR1, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR2, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR3, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR4, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR5, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR6, 16'h0000, WORD); // verify reset host.wb_cmp(0, XGATE_XGR7, 16'h0000, WORD); // verify reset host.wb_write(1, XGATE_XGR1, 16'h5555, WORD); host.wb_cmp( 0, XGATE_XGR1, 16'h5555, WORD); host.wb_write(1, XGATE_XGR2, 16'haaaa, WORD); host.wb_cmp( 0, XGATE_XGR2, 16'haaaa, WORD); host.wb_write(1, XGATE_XGR3, 16'h9999, WORD); host.wb_cmp( 0, XGATE_XGR3, 16'h9999, WORD); host.wb_write(1, XGATE_XGR4, 16'hcccc, WORD); host.wb_cmp( 0, XGATE_XGR4, 16'hcccc, WORD); host.wb_write(1, XGATE_XGR5, 16'h3333, WORD); host.wb_cmp( 0, XGATE_XGR5, 16'h3333, WORD); host.wb_write(1, XGATE_XGR6, 16'h6666, WORD); host.wb_cmp( 0, XGATE_XGR6, 16'h6666, WORD); host.wb_write(1, XGATE_XGR7, 16'ha5a5, WORD); host.wb_cmp( 0, XGATE_XGR7, 16'ha5a5, WORD); host.wb_write(1, XGATE_XGPC, 16'h5a5a, WORD); host.wb_cmp( 0, XGATE_XGPC, 16'h5a5a, WORD); host.wb_write(1, XGATE_XGCCR, 16'hfffa, WORD); host.wb_cmp( 0, XGATE_XGCCR, 16'h000a, WORD); host.wb_write(1, XGATE_XGCCR, 16'hfff5, WORD); host.wb_cmp( 0, XGATE_XGCCR, 16'h0005, WORD); end endtask //////////////////////////////////////////////////////////////////////////////// // check RAM Read/Write from host task host_ram; begin test_num = test_num + 1; $display("TEST #%d Starts at vector=%d, host_ram", test_num, vector); host.wb_write(1, SYS_RAM_BASE, 16'h5555, WORD); host.wb_cmp( 0, SYS_RAM_BASE, 16'h5555, WORD); repeat(5) @(posedge mstr_test_clk); p_ram.dump_ram(0); end endtask //////////////////////////////////////////////////////////////////////////////// // Poll for XGATE Interrupt set task wait_irq_set; input [ 6:0] chan_val; begin while(!xgif[chan_val]) @(posedge mstr_test_clk); // poll it until it is set $display("XGATE Interrupt Request #%d set detected at vector =%d", chan_val, vector); end endtask //////////////////////////////////////////////////////////////////////////////// // Poll for debug bit set task wait_debug_set; begin host.wb_read(1, XGATE_XGMCTL, q, WORD); while(~|(q & XGMCTL_XGDBG)) host.wb_read(1, XGATE_XGMCTL, q, WORD); // poll it until it is set $display("DEBUG Flag set detected at vector =%d", vector); end endtask //////////////////////////////////////////////////////////////////////////////// task system_reset; // reset system begin repeat(1) @(posedge mstr_test_clk); sync_reset = 1'b1; // Make the sync reset 1 clock cycle long #2; // move the async reset away from the clock edge rstn = 1'b0; // assert async reset #5; // Keep the async reset pulse with less than a clock cycle rstn = 1'b1; // negate async reset repeat(1) @(posedge mstr_test_clk); sync_reset = 1'b0; $display("\nstatus: %t System Reset Task Done", $time); test_num = test_num + 1; repeat(2) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// task activate_channel; input [ 6:0] chan_val; begin $display("Activating Channel %d", chan_val); channel_req[chan_val] = 1'b1; // repeat(1) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// task clear_channel; input [ 6:0] chan_val; begin $display("Clearing Channel interrupt input #%d", chan_val); channel_req[chan_val] = 1'b0; // repeat(1) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// task clear_irq_flag; input [ 6:0] chan_val; begin $display("Clearing Channel interrupt flag #%d", chan_val); if (0 < chan_val < 16) host.wb_write(1, XGATE_XGIF_0, 16'hffff, WORD); if (15 < chan_val < 32) host.wb_write(1, XGATE_XGIF_1, 16'hffff, WORD); if (31 < chan_val < 48) host.wb_write(1, XGATE_XGIF_2, 16'hffff, WORD); if (47 < chan_val < 64) host.wb_write(1, XGATE_XGIF_3, 16'hffff, WORD); if (63 < chan_val < 80) host.wb_write(1, XGATE_XGIF_4, 16'hffff, WORD); if (79 < chan_val < 96) host.wb_write(1, XGATE_XGIF_5, 16'hffff, WORD); if (95 < chan_val < 112) host.wb_write(1, XGATE_XGIF_6, 16'hffff, WORD); if (111 < chan_val < 128) host.wb_write(1, XGATE_XGIF_7, 16'hffff, WORD); channel_req[chan_val] = 1'b0; // repeat(1) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// task activate_thread_sw; input [ 6:0] chan_val; begin $display("Activating Sofrware Thread - Channel #%d", chan_val); data_xgmctl = XGMCTL_XGEM | XGMCTL_XGE; host.wb_write(0, XGATE_XGMCTL, data_xgmctl, WORD); // Enable XGATE channel_req[chan_val] = 1'b1; // repeat(1) @(posedge mstr_test_clk); end endtask //////////////////////////////////////////////////////////////////////////////// task wrap_up; begin test_num = test_num + 1; repeat(10) @(posedge mstr_test_clk); $display("\nSimulation Finished!! - vector =%d", vector); if (error_count == 0) $display("Simulation Passed"); else $display("Simulation Failed --- Errors =%d", error_count); $finish; end endtask //////////////////////////////////////////////////////////////////////////////// function [15:0] four_2_16; input [3:0] vector; begin case (vector) 4'h0 : four_2_16 = 16'b0000_0000_0000_0001; 4'h1 : four_2_16 = 16'b0000_0000_0000_0010; 4'h2 : four_2_16 = 16'b0000_0000_0000_0100; 4'h3 : four_2_16 = 16'b0000_0000_0000_1000; 4'h4 : four_2_16 = 16'b0000_0000_0001_0000; 4'h5 : four_2_16 = 16'b0000_0000_0010_0000; 4'h6 : four_2_16 = 16'b0000_0000_0100_0000; 4'h7 : four_2_16 = 16'b0000_0000_1000_0000; 4'h8 : four_2_16 = 16'b0000_0001_0000_0000; 4'h9 : four_2_16 = 16'b0000_0010_0000_0000; 4'ha : four_2_16 = 16'b0000_0100_0000_0000; 4'hb : four_2_16 = 16'b0000_1000_0000_0000; 4'hc : four_2_16 = 16'b0001_0000_0000_0000; 4'hd : four_2_16 = 16'b0010_0000_0000_0000; 4'he : four_2_16 = 16'b0100_0000_0000_0000; 4'hf : four_2_16 = 16'b1000_0000_0000_0000; endcase end endfunction endmodule // tst_bench_top //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// module bus_arbitration #(parameter dwidth = 32, parameter awidth = 32) ( // System bus I/O output sys_cyc, output sys_stb, output sys_we, output [dwidth/8 -1:0] sys_sel, output [awidth -1:0] sys_adr, output [dwidth -1:0] sys_dout, // Host bus I/O output host_ack, output [dwidth -1:0] host_dout, input host_cyc, input host_stb, input host_we, input [dwidth/8 -1:0] host_sel, input [awidth -1:0] host_adr, input [dwidth -1:0] host_din, // Alternate Bus Master #1 Bus I/O output alt1_ack, output [dwidth -1:0] alt1_dout, input alt1_cyc, input alt1_stb, input alt1_we, input [dwidth/8 -1:0] alt1_sel, input [awidth -1:0] alt1_adr, input [dwidth -1:0] alt1_din, // Slave #1 Bus I/O output slv1_stb, input slv1_ack, input [dwidth -1:0] slv1_din, // Slave #2 Bus I/O output slv2_stb, input slv2_ack, input [dwidth -1:0] slv2_din, // Miscellaneous input host_clk, input risc_clk, input rst, // No Connect input err, // No Connect input rty // No Connect ); ////////////////////////////////////////////////////////////////////////////// // // Local Wires and Registers // wire host_lock; // Host has the slave bus reg host_lock_ext; // Host lock extend, Hold the bus till the transaction complets reg [3:0] host_cycle_cnt; // Used to count the cycle the host and break the lock if the risc needs access wire risc_lock; // RISC has the slave bus reg risc_lock_ext; // RISC lock extend, Hold the bus till the transaction complets reg [3:0] risc_cycle_cnt; // Used to count the cycle the risc and break the lock if the host needs access // Aribartration Logic for System Bus access always @(posedge host_clk or negedge rst) if (!rst) host_lock_ext <= 1'b0; else host_lock_ext <= host_cyc && !host_ack; always @(posedge host_clk or negedge rst) if (!rst) risc_lock_ext <= 1'b0; else risc_lock_ext <= alt1_cyc && !alt1_ack; // Start counting cycles the host has the bus if the risc is also requesting the bus always @(posedge host_clk or negedge rst) if (!rst) host_cycle_cnt <= 0; else host_cycle_cnt <= (host_lock && alt1_cyc) ? (host_cycle_cnt + 1'b1) : 0; // Start counting cycles the risc has the bus if the host is also requesting the bus always @(posedge host_clk or negedge rst) if (!rst) risc_cycle_cnt <= 0; else risc_cycle_cnt <= (risc_lock && host_cyc) ? (risc_cycle_cnt + 1'b1) : 0; assign host_lock = ((host_cyc && !risc_lock_ext) || host_lock_ext) && (host_cycle_cnt < 5); assign risc_lock = !host_lock; wire alt1_master = !host_lock; // Address decoding for different XGATE module instances assign slv1_stb = sys_stb && ~sys_adr[6] && ~sys_adr[5] && ~|sys_adr[31:16]; wire slv3_stb = sys_stb && ~sys_adr[6] && sys_adr[5] && ~|sys_adr[31:16]; wire slv4_stb = sys_stb && sys_adr[6] && ~sys_adr[5] && ~|sys_adr[31:16]; wire slv5_stb = sys_stb && sys_adr[6] && sys_adr[5] && ~|sys_adr[31:16]; // Address decoding for Testbench access to RAM assign slv2_stb = alt1_master ? (alt1_stb && sys_adr[16] && ~|sys_adr[31:17]) : (host_stb && ~sys_adr[16] && sys_adr[17] && ~|sys_adr[31:18]); // Create the Host Read Data Bus assign host_dout = ({dwidth{slv1_stb}} & slv1_din) | ({dwidth{slv2_stb}} & slv2_din); // Create the Alternate #1 Read Data Bus assign alt1_dout = ({dwidth{slv1_stb}} & slv1_din) | ({dwidth{slv2_stb}} & slv2_din); assign host_ack = host_lock && (slv1_ack || slv2_ack); assign alt1_ack = risc_lock && (slv1_ack || slv2_ack); // Mux for System Bus access assign sys_cyc = alt1_cyc || host_cyc; assign sys_stb = alt1_master ? alt1_stb : host_stb; assign sys_we = alt1_master ? alt1_we : host_we; assign sys_sel = alt1_master ? alt1_sel : host_sel; assign sys_adr = alt1_master ? alt1_adr : host_adr; assign sys_dout = alt1_master ? alt1_din : host_din; endmodule // bus_arbitration
Go to most recent revision | Compare with Previous | Blame | View Log