URL
https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk
Subversion Repositories xulalx25soc
[/] [xulalx25soc/] [trunk/] [rtl/] [cpu/] [wbdmac.v] - Rev 97
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // // Filename: wbdmac.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: Wishbone DMA controller // // This module is controllable via the wishbone, and moves values from // one location in the wishbone address space to another. The amount of // memory moved at any given time can be up to 4kB, or equivalently 1kW. // Four registers control this DMA controller: a control/status register, // a length register, a source WB address and a destination WB address. // These register may be read at any time, but they may only be written // to when the controller is idle. // // The meanings of three of the setup registers should be self explanatory: // - The length register controls the total number of words to // transfer. // - The source address register controls where the DMA controller // reads from. This address may or may not be incremented // after each read, depending upon the setting in the // control/status register. // - The destination address register, which controls where the DMA // controller writes to. This address may or may not be // incremented after each write, also depending upon the // setting in the control/status register. // // It is the control/status register, at local address zero, that needs // more definition: // // Bits: // 31 R Write protect If this is set to one, it means the // write protect bit is set and the controller // is therefore idle. This bit will be set upon // completing any transfer. // 30 R Error. The controller stopped mid-transfer // after receiving a bus error. // 29 R/W inc_s_n If set to one, the source address // will not increment from one read to the next. // 28 R/W inc_d_n If set to one, the destination address // will not increment from one write to the next. // 27 R Always 0 // 26..16 R nread Indicates how many words have been read, // and not necessarily written (yet). This // combined with the cfg_len parameter should tell // exactly where the controller is at mid-transfer. // 27..16 W WriteProtect When a 12'h3db is written to these // bits, the write protect bit will be cleared. // // 15 R/W on_dev_trigger When set to '1', the controller will // wait for an external interrupt before starting. // 14..10 R/W device_id This determines which external interrupt // will trigger a transfer. // 9..0 R/W transfer_len How many bytes to transfer at one time. // The minimum transfer length is one, while zero // is mapped to a transfer length of 1kW. // // // To use this, follow this checklist: // 1. Wait for any prior DMA operation to complete // (Read address 0, wait 'till either top bit is set or cfg_len==0) // 2. Write values into length, source and destination address. // (writei(3, &vals) should be sufficient for this.) // 3. Enable the DMAC interrupt in whatever interrupt controller is present // on the system. // 4. Write the final start command to the setup/control/status register: // Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger, // appropriately for your task // Write 12'h3db to the upper word. // Set the lower word to either all zeros, or a smaller transfer // length if desired. // 5. wait() for the interrupt and the operation to complete. // Prior to completion, number of items successfully transferred // be read from the length register. If the internal buffer is // being used, then you can read how much has been read into that // buffer by reading from bits 25..16 of this control/status // register. // // Creator: Dan Gisselquist // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015-2016, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////// // // `define DMA_IDLE 3'b000 `define DMA_WAIT 3'b001 `define DMA_READ_REQ 3'b010 `define DMA_READ_ACK 3'b011 `define DMA_PRE_WRITE 3'b100 `define DMA_WRITE_REQ 3'b101 `define DMA_WRITE_ACK 3'b110 module wbdmac(i_clk, i_rst, i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data, o_swb_ack, o_swb_stall, o_swb_data, o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data, i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err, i_dev_ints, o_interrupt); parameter ADDRESS_WIDTH=32, LGMEMLEN = 10, DW=32, LGDV=5,AW=ADDRESS_WIDTH; input i_clk, i_rst; // Slave/control wishbone inputs input i_swb_cyc, i_swb_stb, i_swb_we; input [1:0] i_swb_addr; input [(DW-1):0] i_swb_data; // Slave/control wishbone outputs output reg o_swb_ack; output wire o_swb_stall; output reg [(DW-1):0] o_swb_data; // Master/DMA wishbone control output wire o_mwb_cyc, o_mwb_stb, o_mwb_we; output reg [(AW-1):0] o_mwb_addr; output reg [(DW-1):0] o_mwb_data; // Master/DMA wishbone responses from the bus input i_mwb_ack, i_mwb_stall; input [(DW-1):0] i_mwb_data; input i_mwb_err; // The interrupt device interrupt lines input [(DW-1):0] i_dev_ints; // An interrupt to be set upon completion output reg o_interrupt; // Need to release the bus for a higher priority user // This logic had lots of problems, so it is being // removed. If you want to make sure the bus is available // for a higher priority user, adjust the transfer length // accordingly. // // input i_other_busmaster_requests_bus; // reg [2:0] dma_state; reg cfg_err, cfg_len_nonzero; reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len; reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one; reg cfg_incs, cfg_incd; reg [(LGDV-1):0] cfg_dev_trigger; reg cfg_on_dev_trigger; // Single block operations: We'll read, then write, up to a single // memory block here. reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)]; reg [(LGMEMLEN):0] nread, nwritten, nwacks, nracks; wire [(AW-1):0] bus_nracks; assign bus_nracks = { {(AW-LGMEMLEN-1){1'b0}}, nracks }; reg last_read_request, last_read_ack, last_write_request, last_write_ack; reg trigger, abort; initial dma_state = `DMA_IDLE; initial o_interrupt = 1'b0; initial cfg_len = {(AW){1'b0}}; initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}}; initial cfg_on_dev_trigger = 1'b0; initial cfg_len_nonzero = 1'b0; always @(posedge i_clk) case(dma_state) `DMA_IDLE: begin o_mwb_addr <= cfg_raddr; nwritten <= 0; nread <= 0; nracks <= 0; nwacks <= 0; cfg_len_nonzero <= (|cfg_len); // When the slave wishbone writes, and we are in this // (ready) configuration, then allow the DMA to be controlled // and thus to start. if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)) begin case(i_swb_addr) 2'b00: begin if ((i_swb_data[27:16] == 12'hfed) &&(cfg_len_nonzero)) dma_state <= `DMA_WAIT; cfg_blocklen_sub_one <= i_swb_data[(LGMEMLEN-1):0] + {(LGMEMLEN){1'b1}}; // i.e. -1; cfg_dev_trigger <= i_swb_data[14:10]; cfg_on_dev_trigger <= i_swb_data[15]; cfg_incs <= ~i_swb_data[29]; cfg_incd <= ~i_swb_data[28]; end 2'b01: begin cfg_len <= i_swb_data[(AW-1):0]; cfg_len_nonzero <= (|i_swb_data[(AW-1):0]); end 2'b10: cfg_raddr <= i_swb_data[(AW-1):0]; 2'b11: cfg_waddr <= i_swb_data[(AW-1):0]; endcase end end `DMA_WAIT: begin o_mwb_addr <= cfg_raddr; nracks <= 0; nwacks <= 0; nwritten <= 0; nread <= 0; if (abort) dma_state <= `DMA_IDLE; else if (trigger) dma_state <= `DMA_READ_REQ; end `DMA_READ_REQ: begin nwritten <= 0; if (~i_mwb_stall) begin // Number of read acknowledgements needed nracks <= nracks+1; if (last_read_request) //((nracks == {1'b0, cfg_blocklen_sub_one})||(bus_nracks == cfg_len-1)) // Wishbone interruptus dma_state <= `DMA_READ_ACK; if (cfg_incs) o_mwb_addr <= o_mwb_addr + {{(AW-1){1'b0}},1'b1}; end if (i_mwb_err) begin cfg_len <= 0; dma_state <= `DMA_IDLE; end if (abort) dma_state <= `DMA_IDLE; if (i_mwb_ack) begin nread <= nread+1; if (cfg_incs) cfg_raddr <= cfg_raddr + {{(AW-1){1'b0}},1'b1}; end end `DMA_READ_ACK: begin nwritten <= 0; if (i_mwb_err) begin cfg_len <= 0; dma_state <= `DMA_IDLE; end else if (i_mwb_ack) begin nread <= nread+1; if (last_read_ack) // (nread+1 == nracks) dma_state <= `DMA_PRE_WRITE; if (cfg_incs) cfg_raddr <= cfg_raddr + {{(AW-1){1'b0}},1'b1}; end if (abort) dma_state <= `DMA_IDLE; end `DMA_PRE_WRITE: begin o_mwb_addr <= cfg_waddr; dma_state <= (abort)?`DMA_IDLE:`DMA_WRITE_REQ; end `DMA_WRITE_REQ: begin if (~i_mwb_stall) begin nwritten <= nwritten+1; if (last_write_request) // (nwritten == nread-1) // Wishbone interruptus dma_state <= `DMA_WRITE_ACK; if (cfg_incd) begin o_mwb_addr <= o_mwb_addr + {{(AW-1){1'b0}},1'b1}; cfg_waddr <= cfg_waddr + {{(AW-1){1'b0}},1'b1}; end end if (i_mwb_err) begin cfg_len <= 0; dma_state <= `DMA_IDLE; end if (i_mwb_ack) begin nwacks <= nwacks+1; cfg_len <= cfg_len +{(AW){1'b1}}; // -1 end if (abort) dma_state <= `DMA_IDLE; end `DMA_WRITE_ACK: begin if (i_mwb_err) begin cfg_len <= 0; nread <= 0; dma_state <= `DMA_IDLE; end else if (i_mwb_ack) begin nwacks <= nwacks+1; cfg_len <= cfg_len +{(AW){1'b1}};//cfg_len -= 1; if (last_write_ack) // (nwacks+1 == nwritten) begin nread <= 0; dma_state <= (cfg_len == 1)?`DMA_IDLE:`DMA_WAIT; end end if (abort) dma_state <= `DMA_IDLE; end default: dma_state <= `DMA_IDLE; endcase initial o_interrupt = 1'b0; always @(posedge i_clk) o_interrupt <= (dma_state == `DMA_WRITE_ACK)&&(i_mwb_ack) &&(last_write_ack) &&(cfg_len == {{(AW-1){1'b0}},1'b1}); initial cfg_err = 1'b0; always @(posedge i_clk) if (dma_state == `DMA_IDLE) begin if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we) &&(i_swb_addr==2'b00)) cfg_err <= 1'b0; end else if (((i_mwb_err)&&(o_mwb_cyc))||(abort)) cfg_err <= 1'b1; initial last_read_request = 1'b0; always @(posedge i_clk) if ((dma_state == `DMA_WAIT)||(dma_state == `DMA_READ_REQ)) begin if ((~i_mwb_stall)&&(dma_state == `DMA_READ_REQ)) begin last_read_request <= (nracks + 1 == { 1'b0, cfg_blocklen_sub_one}) ||(bus_nracks == cfg_len-2); end else last_read_request <= (nracks== { 1'b0, cfg_blocklen_sub_one}) ||(bus_nracks == cfg_len-1); end else last_read_request <= 1'b0; initial last_read_ack = 1'b0; always @(posedge i_clk) if ((dma_state == `DMA_READ_REQ)||(dma_state == `DMA_READ_ACK)) begin if (i_mwb_ack) last_read_ack <= (nread+2 == nracks); else last_read_ack <= (nread+1 == nracks); end else last_read_ack <= 1'b0; initial last_write_request = 1'b0; always @(posedge i_clk) if (dma_state == `DMA_PRE_WRITE) last_write_request <= (nread <= 1); else if (dma_state == `DMA_WRITE_REQ) begin if (i_mwb_stall) last_write_request <= (nwritten >= nread-1); else last_write_request <= (nwritten >= nread-2); end else last_write_request <= 1'b0; initial last_write_ack = 1'b0; always @(posedge i_clk) if((dma_state == `DMA_WRITE_REQ)||(dma_state == `DMA_WRITE_ACK)) begin if (i_mwb_ack) last_write_ack <= (nwacks+2 == nwritten); else last_write_ack <= (nwacks+1 == nwritten); end else last_write_ack <= 1'b0; assign o_mwb_cyc = (dma_state == `DMA_READ_REQ) ||(dma_state == `DMA_READ_ACK) ||(dma_state == `DMA_WRITE_REQ) ||(dma_state == `DMA_WRITE_ACK); assign o_mwb_stb = (dma_state == `DMA_READ_REQ) ||(dma_state == `DMA_WRITE_REQ); assign o_mwb_we = (dma_state == `DMA_PRE_WRITE) ||(dma_state == `DMA_WRITE_REQ) ||(dma_state == `DMA_WRITE_ACK); // // This is tricky. In order for Vivado to consider dma_mem to be a // proper memory, it must have a simple address fed into it. Hence // the read_address (rdaddr) register. The problem is that this // register must always be one greater than the address we actually // want to read from, unless we are idling. So ... the math is touchy. // reg [(LGMEMLEN-1):0] rdaddr; always @(posedge i_clk) if((dma_state == `DMA_IDLE)||(dma_state == `DMA_WAIT) ||(dma_state == `DMA_WRITE_ACK)) rdaddr <= 0; else if ((dma_state == `DMA_PRE_WRITE) ||((dma_state==`DMA_WRITE_REQ)&&(~i_mwb_stall))) rdaddr <= rdaddr + {{(LGMEMLEN-1){1'b0}},1'b1}; always @(posedge i_clk) if ((dma_state != `DMA_WRITE_REQ)||(~i_mwb_stall)) o_mwb_data <= dma_mem[rdaddr]; always @(posedge i_clk) if((dma_state == `DMA_READ_REQ)||(dma_state == `DMA_READ_ACK)) dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data; always @(posedge i_clk) casez(i_swb_addr) 2'b00: o_swb_data <= { (dma_state != `DMA_IDLE), cfg_err, ~cfg_incs, ~cfg_incd, 1'b0, nread, cfg_on_dev_trigger, cfg_dev_trigger, cfg_blocklen_sub_one }; 2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len }; 2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr}; 2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr}; endcase // This causes us to wait a minimum of two clocks before starting: One // to go into the wait state, and then one while in the wait state to // develop the trigger. initial trigger = 1'b0; always @(posedge i_clk) trigger <= (dma_state == `DMA_WAIT) &&((~cfg_on_dev_trigger) ||(i_dev_ints[cfg_dev_trigger])); // Ack any access. We'll quietly ignore any access where we are busy, // but ack it anyway. In other words, before writing to the device, // double check that it isn't busy, and then write. always @(posedge i_clk) o_swb_ack <= (i_swb_cyc)&&(i_swb_stb); assign o_swb_stall = 1'b0; initial abort = 1'b0; always @(posedge i_clk) abort <= (i_rst)||((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we) &&(i_swb_addr == 2'b00) &&(i_swb_data == 32'hffed0000)); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log