URL
https://opencores.org/ocsvn/yifive/yifive/trunk
Subversion Repositories yifive
[/] [yifive/] [trunk/] [caravel_yifive/] [verilog/] [dv/] [user_risc_boot/] [user_risc_boot_tb.v] - Rev 23
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Standalone User validation Test bench //// //// //// //// This file is part of the YIFive cores project //// //// http://www.opencores.org/cores/yifive/ //// //// //// //// Description //// // This is a standalone test bench to validate the //// // Digital core. //// // 1. User Risc core is booted using compiled code of //// // user_risc_boot.c //// // 2. User Risc core uses Serial Flash and SDRAM to boot //// // 3. After successful boot, Risc core will write signature //// // in to user register from 0x3000_0018 to 0x3000_002C //// // 4. Through the External Wishbone Interface we read back //// // and validate the user register to declared pass fail //// //// //// //// To Do: //// //// nothing //// //// //// //// Author(s): //// //// - Dinesh Annayya, dinesha@opencores.org //// //// //// //// Revision : //// //// 0.1 - 16th Feb 2021, Dinesh A //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `default_nettype none `timescale 1 ns / 1 ps `include "uprj_netlists.v" `include "spiflash.v" `include "mt48lc8m8a2.v" module user_risc_boot_tb; reg clock; reg RSTB; reg power1, power2; reg power3, power4; reg wbd_ext_cyc_i; // strobe/request reg wbd_ext_stb_i; // strobe/request reg [31:0] wbd_ext_adr_i; // address reg wbd_ext_we_i; // write reg [31:0] wbd_ext_dat_i; // data output reg [3:0] wbd_ext_sel_i; // byte enable wire [31:0] wbd_ext_dat_o; // data input wire wbd_ext_ack_o; // acknowlegement wire wbd_ext_err_o; // error // User I/O wire [37:0] io_oeb; wire [37:0] io_out; wire [37:0] io_in; wire gpio; wire [37:0] mprj_io; wire [7:0] mprj_io_0; reg test_fail; reg [31:0] read_data; // External clock is used by default. Make this artificially fast for the // simulation. Normally this would be a slow clock and the digital PLL // would be the fast clock. always #12.5 clock <= (clock === 1'b0); initial begin clock = 0; wbd_ext_cyc_i ='h0; // strobe/request wbd_ext_stb_i ='h0; // strobe/request wbd_ext_adr_i ='h0; // address wbd_ext_we_i ='h0; // write wbd_ext_dat_i ='h0; // data output wbd_ext_sel_i ='h0; // byte enable end `ifdef WFDUMP initial begin $dumpfile("risc_boot.vcd"); $dumpvars(0, user_risc_boot_tb); end `endif initial begin #200; // Wait for reset removal repeat (10) @(posedge clock); $display("Monitor: Standalone User Risc Boot Test Started"); #1; //------------ SDRAM Config - 2 wb_user_core_write('h3000_0014,'h100_019E); repeat (2) @(posedge clock); #1; //------------ SDRAM Config - 1 wb_user_core_write('h3000_0010,'h2F17_2242); repeat (2) @(posedge clock); #1; // Remove all the reset wb_user_core_write('h3000_0000,'h7); // Repeat cycles of 1000 clock edges as needed to complete testbench repeat (30) begin repeat (1000) @(posedge clock); // $display("+1000 cycles"); end $display("Monitor: Reading Back the expected value"); // User RISC core expect to write these value in global // register, read back and decide on pass fail // 0x30000018 = 0x11223344; // 0x3000001C = 0x22334455; // 0x30000020 = 0x33445566; // 0x30000024 = 0x44556677; // 0x30000028 = 0x55667788; // 0x3000002C = 0x66778899; test_fail = 0; wb_user_core_read(32'h30000018,read_data); if(read_data != 32'h11223344) test_fail = 1; wb_user_core_read(32'h3000001C,read_data); if(read_data != 32'h22334455) test_fail = 1; wb_user_core_read(32'h30000020,read_data); if(read_data != 32'h33445566) test_fail = 1; wb_user_core_read(32'h30000024,read_data); if(read_data!= 32'h44556677) test_fail = 1; wb_user_core_read(32'h30000028,read_data); if(read_data!= 32'h55667788) test_fail = 1; wb_user_core_read(32'h3000002C,read_data) ; if(read_data != 32'h66778899) test_fail = 1; $display("###################################################"); if(test_fail == 0) begin `ifdef GL $display("Monitor: Standalone User Risc Boot (GL) Passed"); `else $display("Monitor: Standalone User Risc Boot (RTL) Passed"); `endif end else begin `ifdef GL $display("Monitor: Standalone User Risc Boot (GL) Failed"); `else $display("Monitor: Standalone User Risc Boot (RTL) Failed"); `endif end $display("###################################################"); $finish; end initial begin RSTB <= 1'b0; #100; RSTB <= 1'b1; // Release reset end digital_core u_core( `ifdef USE_POWER_PINS .vdda1(), // User area 1 3.3V supply .vdda2(), // User area 2 3.3V supply .vssa1(), // User area 1 analog ground .vssa2(), // User area 2 analog ground .vccd1(), // User area 1 1.8V supply .vccd2(), // User area 2 1.8v supply .vssd1(), // User area 1 digital ground .vssd2(), // User area 2 digital ground `endif .clk (clock), // System clock .rtc_clk (1'b1), // Real-time clock .rst_n (RSTB), // Regular Reset signal .wbd_ext_cyc_i (wbd_ext_cyc_i), // strobe/request .wbd_ext_stb_i (wbd_ext_stb_i), // strobe/request .wbd_ext_adr_i (wbd_ext_adr_i), // address .wbd_ext_we_i (wbd_ext_we_i), // write .wbd_ext_dat_i (wbd_ext_dat_i), // data output .wbd_ext_sel_i (wbd_ext_sel_i), // byte enable .wbd_ext_dat_o (wbd_ext_dat_o), // data input .wbd_ext_ack_o (wbd_ext_ack_o), // acknowlegement .wbd_ext_err_o (wbd_ext_err_o), // error // Logic Analyzer Signals .la_data_in ('0) , .la_data_out (), .la_oenb ('0), // IOs .io_in (io_in) , .io_out (io_out) , .io_oeb (io_oeb) , .irq () ); //------------------------------------------------------ // Integrate the Serial flash with qurd support to // user core using the gpio pads // ---------------------------------------------------- wire flash_clk = io_out[30]; wire flash_csb = io_out[31]; tri flash_io0 = (io_oeb[32]== 1'b0) ? io_out[32] : 1'bz; tri flash_io1 = (io_oeb[33]== 1'b0) ? io_out[33] : 1'bz; tri flash_io2 = (io_oeb[34]== 1'b0) ? io_out[34] : 1'bz; tri flash_io3 = (io_oeb[35]== 1'b0) ? io_out[35] : 1'bz; assign io_in[32] = flash_io0; assign io_in[33] = flash_io1; assign io_in[34] = flash_io2; assign io_in[35] = flash_io3; // Quard flash spiflash #( .FILENAME("user_risc_boot.hex") ) u_user_spiflash ( .csb(flash_csb), .clk(flash_clk), .io0(flash_io0), .io1(flash_io1), .io2(flash_io2), .io3(flash_io3) ); //------------------------------------------------ // Integrate the SDRAM 8 BIT Memory // ----------------------------------------------- wire [7:0] Dq ; // SDRAM Read/Write Data Bus wire [0:0] sdr_dqm ; // SDRAM DATA Mask wire [1:0] sdr_ba ; // SDRAM Bank Select wire [12:0] sdr_addr ; // SDRAM ADRESS wire sdr_cs_n ; // chip select wire sdr_cke ; // clock gate wire sdr_ras_n ; // ras wire sdr_cas_n ; // cas wire sdr_we_n ; // write enable wire sdram_clk ; assign Dq[7:0] = (io_oeb[7:0] == 8'h0) ? io_out [7:0] : 8'hZZ; assign sdr_addr[12:0] = io_out [20:8] ; assign sdr_ba[1:0] = io_out [22:21] ; assign sdr_dqm[0] = io_out [23] ; assign sdr_we_n = io_out [24] ; assign sdr_cas_n = io_out [25] ; assign sdr_ras_n = io_out [26] ; assign sdr_cs_n = io_out [27] ; assign sdr_cke = io_out [28] ; assign sdram_clk = io_out [29] ; assign io_in[29] = sdram_clk; assign #(1) io_in[7:0] = Dq; // to fix the sdram interface timing issue wire #(1) sdram_clk_d = sdram_clk; // SDRAM 8bit mt48lc8m8a2 #(.data_bits(8)) u_sdram8 ( .Dq (Dq ) , .Addr (sdr_addr[11:0] ), .Ba (sdr_ba ), .Clk (sdram_clk_d ), .Cke (sdr_cke ), .Cs_n (sdr_cs_n ), .Ras_n (sdr_ras_n ), .Cas_n (sdr_cas_n ), .We_n (sdr_we_n ), .Dqm (sdr_dqm ) ); task wb_user_core_write; input [31:0] address; input [31:0] data; begin repeat (1) @(posedge clock); wbd_ext_adr_i =address; // address wbd_ext_we_i ='h1; // write wbd_ext_dat_i =data; // data output wbd_ext_sel_i ='hF; // byte enable wbd_ext_cyc_i ='h1; // strobe/request wbd_ext_stb_i ='h1; // strobe/request wait(wbd_ext_ack_o == 1); repeat (1) @(posedge clock); wbd_ext_cyc_i ='h0; // strobe/request wbd_ext_stb_i ='h0; // strobe/request wbd_ext_adr_i ='h0; // address wbd_ext_we_i ='h0; // write wbd_ext_dat_i ='h0; // data output wbd_ext_sel_i ='h0; // byte enable $display("DEBUG WB USER ACCESS WRITE Address : %x, Data : %x",address,data); repeat (2) @(posedge clock); end endtask task wb_user_core_read; input [31:0] address; output [31:0] data; reg [31:0] data; begin repeat (1) @(posedge clock); wbd_ext_adr_i =address; // address wbd_ext_we_i ='h0; // write wbd_ext_dat_i ='0; // data output wbd_ext_sel_i ='hF; // byte enable wbd_ext_cyc_i ='h1; // strobe/request wbd_ext_stb_i ='h1; // strobe/request wait(wbd_ext_ack_o == 1); data = wbd_ext_dat_o; repeat (1) @(posedge clock); wbd_ext_cyc_i ='h0; // strobe/request wbd_ext_stb_i ='h0; // strobe/request wbd_ext_adr_i ='h0; // address wbd_ext_we_i ='h0; // write wbd_ext_dat_i ='h0; // data output wbd_ext_sel_i ='h0; // byte enable $display("DEBUG WB USER ACCESS READ Address : %x, Data : %x",address,data); repeat (2) @(posedge clock); end endtask ////----------------------------------------------------------------------------- //// RISC IMEM amd DMEM Monitoring TASK ////----------------------------------------------------------------------------- //logic [`SCR1_DMEM_AWIDTH-1:0] core2imem_addr_o_r; // DMEM address //logic [`SCR1_DMEM_AWIDTH-1:0] core2dmem_addr_o_r; // DMEM address //logic core2dmem_cmd_o_r; // //`define RISC_CORE user_risc_boot_tb.u_core.u_riscv_top.i_core_top // //always@(posedge `RISC_CORE.clk) begin // if(`RISC_CORE.imem2core_req_ack_i && `RISC_CORE.core2imem_req_o) // core2imem_addr_o_r <= `RISC_CORE.core2imem_addr_o; // // if(`RISC_CORE.dmem2core_req_ack_i && `RISC_CORE.core2dmem_req_o) begin // core2dmem_addr_o_r <= `RISC_CORE.core2dmem_addr_o; // core2dmem_cmd_o_r <= `RISC_CORE.core2dmem_cmd_o; // end // // if(`RISC_CORE.imem2core_resp_i !=0) // $display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x Resonse: %x", core2imem_addr_o_r,`RISC_CORE.imem2core_rdata_i,`RISC_CORE.imem2core_resp_i); // if((`RISC_CORE.dmem2core_resp_i !=0) && core2dmem_cmd_o_r) // $display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", core2dmem_addr_o_r,`RISC_CORE.core2dmem_wdata_o,`RISC_CORE.dmem2core_resp_i); // if((`RISC_CORE.dmem2core_resp_i !=0) && !core2dmem_cmd_o_r) // $display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", core2dmem_addr_o_r,`RISC_CORE.dmem2core_rdata_i,`RISC_CORE.dmem2core_resp_i); //end endmodule `default_nettype wire
Go to most recent revision | Compare with Previous | Blame | View Log