URL
https://opencores.org/ocsvn/z80control/z80control/trunk
Subversion Repositories z80control
[/] [z80control/] [trunk/] [CII_Starter_USB_API_v1/] [HW/] [Multi_Sdram/] [command.v] - Rev 12
Compare with Previous | Blame | View Log
//Legal Notice: (C)2006 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. module command( CLK, RESET_N, SADDR, NOP, READA, WRITEA, REFRESH, PRECHARGE, LOAD_MODE, REF_REQ, INIT_REQ, PM_STOP, PM_DONE, REF_ACK, CM_ACK, OE, SA, BA, CS_N, CKE, RAS_N, CAS_N, WE_N ); `include "Sdram_Params.h" input CLK; // System Clock input RESET_N; // System Reset input [`ASIZE-1:0] SADDR; // Address input NOP; // Decoded NOP command input READA; // Decoded READA command input WRITEA; // Decoded WRITEA command input REFRESH; // Decoded REFRESH command input PRECHARGE; // Decoded PRECHARGE command input LOAD_MODE; // Decoded LOAD_MODE command input REF_REQ; // Hidden refresh request input INIT_REQ; // Hidden initial request input PM_STOP; // Page mode stop input PM_DONE; // Page mode done output REF_ACK; // Refresh request acknowledge output CM_ACK; // Command acknowledge output OE; // OE signal for data path module output [11:0] SA; // SDRAM address output [1:0] BA; // SDRAM bank address output [1:0] CS_N; // SDRAM chip selects output CKE; // SDRAM clock enable output RAS_N; // SDRAM RAS output CAS_N; // SDRAM CAS output WE_N; // SDRAM WE_N reg CM_ACK; reg REF_ACK; reg OE; reg [11:0] SA; reg [1:0] BA; reg [1:0] CS_N; reg CKE; reg RAS_N; reg CAS_N; reg WE_N; // Internal signals reg do_reada; reg do_writea; reg do_refresh; reg do_precharge; reg do_load_mode; reg do_initial; reg command_done; reg [7:0] command_delay; reg [1:0] rw_shift; reg do_act; reg rw_flag; reg do_rw; reg [6:0] oe_shift; reg oe1; reg oe2; reg oe3; reg oe4; reg [3:0] rp_shift; reg rp_done; reg ex_read; reg ex_write; wire [`ROWSIZE - 1:0] rowaddr; wire [`COLSIZE - 1:0] coladdr; wire [`BANKSIZE - 1:0] bankaddr; assign rowaddr = SADDR[`ROWSTART + `ROWSIZE - 1: `ROWSTART]; // assignment of the row address bits from SADDR assign coladdr = SADDR[`COLSTART + `COLSIZE - 1:`COLSTART]; // assignment of the column address bits assign bankaddr = SADDR[`BANKSTART + `BANKSIZE - 1:`BANKSTART]; // assignment of the bank address bits // This always block monitors the individual command lines and issues a command // to the next stage if there currently another command already running. // always @(posedge CLK or negedge RESET_N) begin if (RESET_N == 0) begin do_reada <= 0; do_writea <= 0; do_refresh <= 0; do_precharge <= 0; do_load_mode <= 0; do_initial <= 0; command_done <= 0; command_delay <= 0; rw_flag <= 0; rp_shift <= 0; rp_done <= 0; ex_read <= 0; ex_write <= 0; end else begin // Issue the appropriate command if the sdram is not currently busy if( INIT_REQ == 1 ) begin do_reada <= 0; do_writea <= 0; do_refresh <= 0; do_precharge <= 0; do_load_mode <= 0; do_initial <= 1; command_done <= 0; command_delay <= 0; rw_flag <= 0; rp_shift <= 0; rp_done <= 0; ex_read <= 0; ex_write <= 0; end else begin do_initial <= 0; if ((REF_REQ == 1 | REFRESH == 1) & command_done == 0 & do_refresh == 0 & rp_done == 0 // Refresh & do_reada == 0 & do_writea == 0) do_refresh <= 1; else do_refresh <= 0; if ((READA == 1) & (command_done == 0) & (do_reada == 0) & (rp_done == 0) & (REF_REQ == 0)) // READA begin do_reada <= 1; ex_read <= 1; end else do_reada <= 0; if ((WRITEA == 1) & (command_done == 0) & (do_writea == 0) & (rp_done == 0) & (REF_REQ == 0)) // WRITEA begin do_writea <= 1; ex_write <= 1; end else do_writea <= 0; if ((PRECHARGE == 1) & (command_done == 0) & (do_precharge == 0)) // PRECHARGE do_precharge <= 1; else do_precharge <= 0; if ((LOAD_MODE == 1) & (command_done == 0) & (do_load_mode == 0)) // LOADMODE do_load_mode <= 1; else do_load_mode <= 0; // set command_delay shift register and command_done flag // The command delay shift register is a timer that is used to ensure that // the SDRAM devices have had sufficient time to finish the last command. if ((do_refresh == 1) | (do_reada == 1) | (do_writea == 1) | (do_precharge == 1) | (do_load_mode == 1)) begin command_delay <= 8'b11111111; command_done <= 1; rw_flag <= do_reada; end else begin command_done <= command_delay[0]; // the command_delay shift operation command_delay <= (command_delay>>1); end // start additional timer that is used for the refresh, writea, reada commands if (command_delay[0] == 0 & command_done == 1) begin rp_shift <= 4'b1111; rp_done <= 1; end else begin if(SC_PM == 0) begin rp_shift <= (rp_shift>>1); rp_done <= rp_shift[0]; end else begin if( (ex_read == 0) && (ex_write == 0) ) begin rp_shift <= (rp_shift>>1); rp_done <= rp_shift[0]; end else begin if( PM_STOP==1 ) begin rp_shift <= (rp_shift>>1); rp_done <= rp_shift[0]; ex_read <= 1'b0; ex_write <= 1'b0; end end end end end end end // logic that generates the OE signal for the data path module // For normal burst write he duration of OE is dependent on the configured burst length. // For page mode accesses(SC_PM=1) the OE signal is turned on at the start of the write command // and is left on until a PRECHARGE(page burst terminate) is detected. // always @(posedge CLK or negedge RESET_N) begin if (RESET_N == 0) begin oe_shift <= 0; oe1 <= 0; oe2 <= 0; OE <= 0; end else begin if (SC_PM == 0) begin if (do_writea == 1) begin if (SC_BL == 1) // Set the shift register to the appropriate oe_shift <= 0; // value based on burst length. else if (SC_BL == 2) oe_shift <= 1; else if (SC_BL == 4) oe_shift <= 7; else if (SC_BL == 8) oe_shift <= 127; oe1 <= 1; end else begin oe_shift <= (oe_shift>>1); oe1 <= oe_shift[0]; oe2 <= oe1; oe3 <= oe2; oe4 <= oe3; if (SC_RCD == 2) OE <= oe3; else OE <= oe4; end end else begin if (do_writea == 1) // OE generation for page mode accesses oe4 <= 1; else if (do_precharge == 1 | do_reada == 1 | do_refresh==1 | do_initial == 1 | PM_STOP==1 ) oe4 <= 0; OE <= oe4; end end end // This always block tracks the time between the activate command and the // subsequent WRITEA or READA command, RC. The shift register is set using // the configuration register setting SC_RCD. The shift register is loaded with // a single '1' with the position within the register dependent on SC_RCD. // When the '1' is shifted out of the register it sets so_rw which triggers // a writea or reada command // always @(posedge CLK or negedge RESET_N) begin if (RESET_N == 0) begin rw_shift <= 0; do_rw <= 0; end else begin if ((do_reada == 1) | (do_writea == 1)) begin if (SC_RCD == 1) // Set the shift register do_rw <= 1; else if (SC_RCD == 2) rw_shift <= 1; else if (SC_RCD == 3) rw_shift <= 2; end else begin rw_shift <= (rw_shift>>1); do_rw <= rw_shift[0]; end end end // This always block generates the command acknowledge, CM_ACK, signal. // It also generates the acknowledge signal, REF_ACK, that acknowledges // a refresh request that was generated by the internal refresh timer circuit. always @(posedge CLK or negedge RESET_N) begin if (RESET_N == 0) begin CM_ACK <= 0; REF_ACK <= 0; end else begin if (do_refresh == 1 & REF_REQ == 1) // Internal refresh timer refresh request REF_ACK <= 1; else if ((do_refresh == 1) | (do_reada == 1) | (do_writea == 1) | (do_precharge == 1) // externa commands | (do_load_mode)) CM_ACK <= 1; else begin REF_ACK <= 0; CM_ACK <= 0; end end end // This always block generates the address, cs, cke, and command signals(ras,cas,wen) // always @(posedge CLK ) begin if (RESET_N==0) begin SA <= 0; BA <= 0; CS_N <= 1; RAS_N <= 1; CAS_N <= 1; WE_N <= 1; CKE <= 0; end else begin CKE <= 1; // Generate SA if (do_writea == 1 | do_reada == 1) // ACTIVATE command is being issued, so present the row address SA <= rowaddr; else SA <= coladdr; // else alway present column address if ((do_rw==1) | (do_precharge)) SA[10] <= !SC_PM; // set SA[10] for autoprecharge read/write or for a precharge all command // don't set it if the controller is in page mode. if (do_precharge==1 | do_load_mode==1) BA <= 0; // Set BA=0 if performing a precharge or load_mode command else BA <= bankaddr[1:0]; // else set it with the appropriate address bits if (do_refresh==1 | do_precharge==1 | do_load_mode==1 | do_initial==1) CS_N <= 0; // Select both chip selects if performing else // refresh, precharge(all) or load_mode begin CS_N[0] <= SADDR[`ASIZE-1]; // else set the chip selects based off of the CS_N[1] <= ~SADDR[`ASIZE-1]; // msb address bit end if(do_load_mode==1) SA <= {2'b00,SDR_CL,SDR_BT,SDR_BL}; //Generate the appropriate logic levels on RAS_N, CAS_N, and WE_N //depending on the issued command. // if ( do_refresh==1 ) begin // Refresh: S=00, RAS=0, CAS=0, WE=1 RAS_N <= 0; CAS_N <= 0; WE_N <= 1; end else if ((do_precharge==1) & ((oe4 == 1) | (rw_flag == 1))) begin // burst terminate if write is active RAS_N <= 1; CAS_N <= 1; WE_N <= 0; end else if (do_precharge==1) begin // Precharge All: S=00, RAS=0, CAS=1, WE=0 RAS_N <= 0; CAS_N <= 1; WE_N <= 0; end else if (do_load_mode==1) begin // Mode Write: S=00, RAS=0, CAS=0, WE=0 RAS_N <= 0; CAS_N <= 0; WE_N <= 0; end else if (do_reada == 1 | do_writea == 1) begin // Activate: S=01 or 10, RAS=0, CAS=1, WE=1 RAS_N <= 0; CAS_N <= 1; WE_N <= 1; end else if (do_rw == 1) begin // Read/Write: S=01 or 10, RAS=1, CAS=0, WE=0 or 1 RAS_N <= 1; CAS_N <= 0; WE_N <= rw_flag; end else if (do_initial ==1) begin RAS_N <= 1; CAS_N <= 1; WE_N <= 1; end else begin // No Operation: RAS=1, CAS=1, WE=1 RAS_N <= 1; CAS_N <= 1; WE_N <= 1; end end end endmodule