OpenCores
URL https://opencores.org/ocsvn/zet86/zet86/trunk

Subversion Repositories zet86

[/] [zet86/] [trunk/] [cores/] [zet/] [rtl/] [fetch.v] - Rev 55

Compare with Previous | Blame | View Log

/*
 *  Copyright (c) 2008  Zeus Gomez Marmolejo <zeus@opencores.org>
 *
 *  This file is part of the Zet processor. This processor is free
 *  hardware; you can redistribute it and/or modify it under the terms of
 *  the GNU General Public License as published by the Free Software
 *  Foundation; either version 3, or (at your option) any later version.
 *
 *  Zet is distrubuted in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
 *  License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with Zet; see the file COPYING. If not, see
 *  <http://www.gnu.org/licenses/>.
 */
 
`timescale 1ns/10ps
 
`include "defines.v"
 
module fetch (
`ifdef DEBUG
    output reg [2:0] state,
    output [2:0] next_state,
    output       ext_int,
    output       end_seq,
`endif
    input clk,
    input rst,
    input [15:0] cs,
    input [15:0] ip,
    input of,
    input zf,
    input cx_zero,
    input [15:0] data,
    output [`IR_SIZE-1:0] ir,
    output [15:0] off,
    output [15:0] imm,
    output [19:0] pc,
    output bytefetch,
    output fetch_or_exec,
    input  block,
    input  div_exc,
    output wr_ip0,
    input  intr,
    input  ifl,
    output inta
  );
 
  // Registers, nets and parameters
  parameter opcod_st = 3'h0;
  parameter modrm_st = 3'h1;
  parameter offse_st = 3'h2;
  parameter immed_st = 3'h3;
  parameter execu_st = 3'h4;
 
`ifndef DEBUG
  reg  [2:0] state;
  wire [2:0] next_state;
  wire       end_seq;
  wire       ext_int;
`endif
 
  wire [`IR_SIZE-1:0] rom_ir;
  wire [7:0] opcode, modrm;
  wire exec_st;
  wire [15:0] imm_d;
  wire prefix, repz_pr, sovr_pr;
  wire next_in_opco, next_in_exec;
  wire need_modrm, need_off, need_imm, off_size, imm_size;
 
  reg [7:0] opcode_l, modrm_l;
  reg [15:0] off_l, imm_l;
  reg [1:0] pref_l;
  reg [2:0] sop_l;
 
  // Module instantiation
  decode decode0(opcode, modrm, off_l, imm_l, pref_l[1], clk, rst, block,
                 exec_st, div_exc, need_modrm, need_off, need_imm, off_size,
                 imm_size, rom_ir, off, imm_d, end_seq, sop_l, intr, ifl,
                 inta, ext_int, pref_l[1]);
  next_or_not nn0(pref_l, opcode[7:1], cx_zero, zf, ext_int, next_in_opco,
                  next_in_exec);
  nstate ns0(state, prefix, need_modrm, need_off, need_imm, end_seq,
             rom_ir[28:23], of, next_in_opco, next_in_exec, block, div_exc,
             intr, ifl, next_state);
 
  // Assignments
  assign pc = (cs << 4) + ip;
 
  assign ir     = (state == execu_st) ? rom_ir : `ADD_IP;
  assign opcode = (state == opcod_st) ? data[7:0] : opcode_l;
  assign modrm  = (state == modrm_st) ? data[7:0] : modrm_l;
  assign fetch_or_exec = (state == execu_st);
  assign bytefetch = (state == offse_st) ? ~off_size
                   : ((state == immed_st) ? ~imm_size : 1'b1);
  assign exec_st = (state == execu_st);
  assign imm = (state == execu_st) ? imm_d
              : (((state == offse_st) & off_size
                | (state == immed_st) & imm_size) ? 16'd2
              : 16'd1);
  assign wr_ip0 = (state == opcod_st) && !pref_l[1] && !sop_l[2];
 
  assign sovr_pr = (opcode[7:5]==3'b001 && opcode[2:0]==3'b110);
  assign repz_pr = (opcode[7:1]==7'b1111_001);
  assign prefix  = sovr_pr || repz_pr;
 
  // Behaviour
  always @(posedge clk)
    if (rst)
      begin
        state <= execu_st;
        opcode_l <= `OP_NOP;
      end
    else if (!block)
      case (next_state)
        default:  // opcode or prefix
          begin
            case (state)
              opcod_st:
                begin // There has been a prefix
                  pref_l <= repz_pr ? { 1'b1, opcode[0] } : pref_l;
                  sop_l  <= sovr_pr ? { 1'b1, opcode[4:3] } : sop_l;
                end
              default: begin pref_l <= 2'b0; sop_l <= 3'b0; end
            endcase
            state <= opcod_st;
            off_l <= 16'd0;
            modrm_l <= 8'b0000_0110;
          end
 
        modrm_st:  // modrm
          begin
            opcode_l  <= data[7:0];
            state <= modrm_st;
          end
 
        offse_st:  // offset
          begin
            case (state)
              opcod_st: opcode_l <= data[7:0];
              default: modrm_l <= data[7:0];
            endcase
            state <= offse_st;
          end
 
        immed_st:  // immediate
          begin
            case (state)
              opcod_st: opcode_l <= data[7:0];
              modrm_st: modrm_l <= data[7:0];
              default: off_l <= data;
            endcase
            state <= immed_st;
          end
 
        execu_st:  // execute
          begin
            case (state)
              opcod_st: opcode_l <= data[7:0];
              modrm_st: modrm_l <= data[7:0];
              offse_st: off_l <= data;
              immed_st: imm_l <= data;
            endcase
            state <= execu_st;
          end
      endcase
endmodule
 
module nstate (
    input [2:0] state,
    input prefix,
    input need_modrm,
    input need_off,
    input need_imm,
    input end_seq,
    input [5:0] ftype,
    input of,
    input next_in_opco,
    input next_in_exec,
    input block,
    input div_exc,
    input intr,
    input ifl,
    output [2:0] next_state
  );
 
  // Net declarations
  parameter opcod_st = 3'h0;
  parameter modrm_st = 3'h1;
  parameter offse_st = 3'h2;
  parameter immed_st = 3'h3;
  parameter execu_st = 3'h4;
  wire into, end_instr, end_into;
  wire [2:0] n_state;
  wire       intr_ifl;
 
  // Assignments
  assign into = (ftype==6'b111_010);
  assign end_into = into ? ~of : end_seq;
  assign end_instr = !div_exc && !intr_ifl && end_into && !next_in_exec;
  assign intr_ifl = intr & ifl;
 
  assign n_state = (state == opcod_st) ? (prefix ? opcod_st
                         : (next_in_opco ? opcod_st
                         : (need_modrm ? modrm_st
                         : (need_off ? offse_st
                         : (need_imm ? immed_st : execu_st)))))
                     : (state == modrm_st) ? (need_off ? offse_st
                                           : (need_imm ? immed_st : execu_st))
                     : (state == offse_st) ? (need_imm ? immed_st : execu_st)
                     : (state == immed_st) ? (execu_st)
   /* state == execu_st */ : (end_instr ? opcod_st : execu_st);
 
  assign next_state = block ? state : n_state;
endmodule
 
module next_or_not (
    input [1:0] prefix,
    input [7:1] opcode,
    input cx_zero,
    input zf,
    input ext_int,
    output next_in_opco,
    output next_in_exec
  );
 
  // Net declarations
  wire exit_z, cmp_sca, exit_rep, valid_ops;
 
  // Assignments
  assign cmp_sca = opcode[2] & opcode[1];
  assign exit_z = prefix[0] ? /* repz */ (cmp_sca ? ~zf : 1'b0 )
                            : /* repnz */ (cmp_sca ? zf : 1'b0 );
  assign exit_rep = cx_zero | exit_z;
  assign valid_ops = (opcode[7:1]==7'b1010_010   // movs
                   || opcode[7:1]==7'b1010_011   // cmps
                   || opcode[7:1]==7'b1010_101   // stos
                   || opcode[7:1]==7'b1010_110   // lods
                   || opcode[7:1]==7'b1010_111); // scas
  assign next_in_exec = prefix[1] && valid_ops && !exit_rep && !ext_int;
  assign next_in_opco = prefix[1] && valid_ops && cx_zero;
endmodule
 
module decode (
    input [7:0] opcode,
    input [7:0] modrm,
    input [15:0] off_i,
    input [15:0] imm_i,
    input       rep,
    input clk,
    input rst,
    input block,
    input exec_st,
    input div_exc,
 
    output need_modrm,
    output need_off,
    output need_imm,
    output off_size,
    output imm_size,
 
    output [`IR_SIZE-1:0] ir,
    output [15:0] off_o,
    output [15:0] imm_o,
    output end_seq,
 
    input  [2:0] sop_l,
 
    input        intr,
    input        ifl,
    output reg   inta,
    output reg   ext_int,
    input        repz_pr
  );
 
  // Net declarations
  wire [`SEQ_ADDR_WIDTH-1:0] base_addr, seq_addr;
  wire [`SEQ_DATA_WIDTH-2:0] micro_addr;
  wire [3:0] src, dst, base, index;
  wire [1:0] seg;
  reg  [`SEQ_ADDR_WIDTH-1:0] seq;
  reg  dive;
  reg  old_ext_int;
 
  // Module instantiations
  opcode_deco opcode_deco0 (opcode, modrm, rep, sop_l, base_addr, need_modrm,
                            need_off, need_imm, off_size, imm_size, src, dst,
                            base, index, seg);
  seq_rom seq_rom0 (seq_addr, {end_seq, micro_addr});
  micro_data mdata0 (micro_addr, off_i, imm_i, src, dst, base, index, seg,
                     ir, off_o, imm_o);
 
  // Assignments
  assign seq_addr = (dive ? `INTD
    : (ext_int ? (repz_pr ? `EINTP : `EINT) : base_addr)) + seq;
 
  // Behaviour
  // seq
  always @(posedge clk)
    if (rst) seq <= `SEQ_ADDR_WIDTH'd0;
    else if (!block)
      seq <= (exec_st && !end_seq && !rst) ? (seq + `SEQ_ADDR_WIDTH'd1)
                                : `SEQ_ADDR_WIDTH'd0;
  // dive
  always @(posedge clk)
    if (rst) dive <= 1'b0;
    else dive <= block ? dive
     : (div_exc ? 1'b1 : (dive ? !end_seq : 1'b0));
 
  // ext_int
  always @(posedge clk)
    if (rst) ext_int <= 1'b0;
    else ext_int <= block ? ext_int
      : ((intr & ifl & exec_st & end_seq) ? 1'b1
        : (ext_int ? !end_seq : 1'b0));
 
  // old_ext_int
  always @(posedge clk) old_ext_int <= rst ? 1'b0 : ext_int;
 
  // inta
  always @(posedge clk)
    inta <= rst ? 1'b0 : (!old_ext_int & ext_int);
 
endmodule
 
module opcode_deco (
    input [7:0] op,
    input [7:0] modrm,
    input       rep,
    input [2:0] sovr_pr,
 
    output reg [`SEQ_ADDR_WIDTH-1:0] seq_addr,
    output reg need_modrm,
    output reg need_off,
    output reg need_imm,
    output     off_size,
    output reg imm_size,
 
    output reg [3:0] src,
    output reg [3:0] dst,
    output [3:0] base,
    output [3:0] index,
    output [1:0] seg
  );
 
  // Net declarations
  wire [1:0] mod;
  wire [2:0] regm;
  wire [2:0] rm;
  wire       d, b, sm, dm;
  wire       off_size_mod, need_off_mod;
  wire [2:0] srcm, dstm;
  wire       off_size_from_mod;
 
  // Module instantiations
  memory_regs mr(rm, mod, sovr_pr, base, index, seg);
 
  // Assignments
  assign mod  = modrm[7:6];
  assign regm = modrm[5:3];
  assign rm   = modrm[2:0];
  assign d    = op[1];
  assign dstm = d ? regm : rm;
  assign sm   = d & (mod != 2'b11);
  assign dm   = ~d & (mod != 2'b11);
  assign srcm = d ? rm : regm;
  assign b    = ~op[0];
  assign off_size_mod = (base == 4'b1100 && index == 4'b1100) ? 1'b1 : mod[1];
  assign need_off_mod = (base == 4'b1100 && index == 4'b1100) || ^mod;
  assign off_size_from_mod = !op[7] | (!op[5] & !op[4]) | (op[6] & op[4]);
  assign off_size = !off_size_from_mod | off_size_mod;
 
  // Behaviour
  always @(op or dm or b or need_off_mod or srcm or sm or dstm
           or mod or rm or regm or rep or modrm)
    casex (op)
      8'b0000_000x: // add r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ADDRRB : `ADDRRW)
                                     : (b ? `ADDRMB : `ADDRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0000_001x: // add r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ADDRRB : `ADDRRW)
                                     : (b ? `ADDMRB : `ADDMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0000_010x: // add i->r
        begin
          seq_addr   <= b ? `ADDIRB : `ADDIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b000x_x110: // push seg
        begin
          seq_addr <= `PUSHR;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= { 2'b10, op[4:3] };
          dst <= 4'b0;
        end
 
      8'b0000_100x: // or r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ORRRB : `ORRRW)
                                     : (b ? `ORRMB : `ORRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0000_101x: // or r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ORRRB : `ORRRW)
                                     : (b ? `ORMRB : `ORMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0000_110x: // or i->r
        begin
          seq_addr   <= b ? `ORIRB : `ORIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b000x_x111: // pop seg
        begin
          seq_addr <= `POPR;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src      <= 4'b0;
          dst      <= { 2'b10, op[4:3] };
        end
 
      8'b0001_000x: // adc r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ADCRRB : `ADCRRW)
                                     : (b ? `ADCRMB : `ADCRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0001_001x: // adc r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ADCRRB : `ADCRRW)
                                     : (b ? `ADCMRB : `ADCMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0001_010x: // adc i->r
        begin
          seq_addr   <= b ? `ADCIRB : `ADCIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0001_100x: // sbb r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `SBBRRB : `SBBRRW)
                                     : (b ? `SBBRMB : `SBBRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0001_101x: // sbb r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `SBBRRB : `SBBRRW)
                                     : (b ? `SBBMRB : `SBBMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0001_110x: // sbb i->r
        begin
          seq_addr   <= b ? `SBBIRB : `SBBIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0010_000x: // and r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ANDRRB : `ANDRRW)
                                     : (b ? `ANDRMB : `ANDRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0010_001x: // and r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `ANDRRB : `ANDRRW)
                                     : (b ? `ANDMRB : `ANDMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0010_010x: // and i->r
        begin
          seq_addr   <= b ? `ANDIRB : `ANDIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0010_0111: // daa
        begin
          seq_addr   <= `DAA;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0010_100x: // sub r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `SUBRRB : `SUBRRW)
                                     : (b ? `SUBRMB : `SUBRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0010_101x: // sub r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `SUBRRB : `SUBRRW)
                                     : (b ? `SUBMRB : `SUBMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0010_110x: // sub i->r
        begin
          seq_addr   <= b ? `SUBIRB : `SUBIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0010_1111: // das
        begin
          seq_addr   <= `DAS;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0011_000x: // xor r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `XORRRB : `XORRRW)
                                     : (b ? `XORRMB : `XORRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0011_001x: // xor r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `XORRRB : `XORRRW)
                                     : (b ? `XORMRB : `XORMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0011_010x: // and i->r
        begin
          seq_addr   <= b ? `XORIRB : `XORIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0011_0111: // aaa
        begin
          seq_addr   <= `AAA;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0011_100x: // cmp r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `CMPRRB : `CMPRRW)
                                     : (b ? `CMPRMB : `CMPRMW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0011_101x: // cmp r->r, m->r
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `CMPRRB : `CMPRRW)
                                     : (b ? `CMPMRB : `CMPMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, dstm };
          src        <= { 1'b0, srcm };
        end
 
      8'b0011_110x: // cmp i->r
        begin
          seq_addr   <= b ? `CMPIRB : `CMPIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0011_1111: // aas
        begin
          seq_addr   <= `AAS;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b0100_0xxx: // inc
        begin
          seq_addr   <= `INCRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= { 1'b0, op[2:0] };
        end
 
      8'b0100_1xxx: // dec
        begin
          seq_addr   <= `DECRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= { 1'b0, op[2:0] };
        end
 
      8'b0101_0xxx: // push reg
        begin
          seq_addr <= `PUSHR;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= { 1'b0, op[2:0] };
          dst <= 4'b0;
        end
 
      8'b0101_1xxx: // pop reg
        begin
          seq_addr <= `POPR;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= { 1'b0, op[2:0] };
        end
 
      8'b0111_xxxx: // jcc
        begin
          seq_addr <= `JCC;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= { op[3:0] };
          dst <= 4'b0;
        end
 
      8'b1000_00xx: // and, or i->r, i->m
        begin
          seq_addr   <= regm == 3'b111 ?
             ((mod==2'b11) ? (b ? `CMPIRB : `CMPIRW)
                           : (b ? `CMPIMB : `CMPIMW))
           : (regm == 3'b101 ? ((mod==2'b11) ? (b ? `SUBIRB : `SUBIRW)
                          : (b ? `SUBIMB : `SUBIMW))
           : (regm == 3'b011 ? ((mod==2'b11) ? (b ? `SBBIRB : `SBBIRW)
                          : (b ? `SBBIMB : `SBBIMW))
           : (regm == 3'b010 ? ((mod==2'b11) ? (b ? `ADCIRB : `ADCIRW)
                          : (b ? `ADCIMB : `ADCIMW))
           : (regm == 3'b000 ? ((mod==2'b11) ? (b ? `ADDIRB : `ADDIRW)
                          : (b ? `ADDIMB : `ADDIMW))
           : (regm == 3'b100 ? ((mod==2'b11) ? (b ? `ANDIRB : `ANDIRW)
                             : (b ? `ANDIMB : `ANDIMW))
           : (regm == 3'b001 ? ((mod==2'b11) ? (b ? `ORIRB : `ORIRW)
                                             : (b ? `ORIMB : `ORIMW))
           : ((mod==2'b11) ? (b ? `XORIRB : `XORIRW)
                           : (b ? `XORIMB : `XORIMW))))))));
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b1;
          imm_size   <= !op[1] & op[0];
          dst        <= { 1'b0, modrm[2:0] };
          src        <= 4'b0;
        end
 
      8'b1000_010x: // test r->r, r->m
        begin
          seq_addr   <= (mod==2'b11) ? (b ? `TSTRRB : `TSTRRW)
                                     : (b ? `TSTMRB : `TSTMRW);
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= { 1'b0, srcm };
          src        <= { 1'b0, dstm };
        end
 
      8'b1000_011x: // xchg
        begin
          seq_addr <= (mod==2'b11) ? (b ? `XCHRRB : `XCHRRW)
                                   : (b ? `XCHRMB : `XCHRMW);
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          dst <= { 1'b0, dstm };
          src <= { 1'b0, srcm };
        end
      8'b1000_10xx: // mov: r->r, r->m, m->r
        begin
          if (dm)   // r->m
            begin
              seq_addr <= b ? `MOVRMB : `MOVRMW;
              need_off <= need_off_mod;
              src <= { 1'b0, srcm };
              dst <= 4'b0;
            end
          else if(sm) // m->r
            begin
              seq_addr <= b ? `MOVMRB : `MOVMRW;
              need_off <= need_off_mod;
              src <= 4'b0;
              dst <= { 1'b0, dstm };
            end
          else     // r->r
            begin
              seq_addr <= b ? `MOVRRB : `MOVRRW;
              need_off <= 1'b0;
              dst <= { 1'b0, dstm };
              src <= { 1'b0, srcm };
            end
          need_imm <= 1'b0;
          need_modrm <= 1'b1;
          imm_size <= 1'b0;
        end
 
      8'b1000_1100: // mov: s->m, s->r
        begin
          if (dm)   // s->m
            begin
              seq_addr <= `MOVRMW;
              need_off <= need_off_mod;
              src <= { 1'b1, srcm };
              dst <= 4'b0;
            end
          else     // s->r
            begin
              seq_addr <= `MOVRRW;
              need_off <= 1'b0;
              src <= { 1'b1, srcm };
              dst <= { 1'b0, dstm };
            end
          need_imm <= 1'b0;
          need_modrm <= 1'b1;
          imm_size <= 1'b0;
        end
 
      8'b1000_1101: // lea
        begin
          seq_addr <= `LEA;
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= { 1'b0, srcm };
          dst <= 4'b0;
        end
 
      8'b1000_1110: // mov: m->s, r->s
        begin
          if (sm)   // m->s
            begin
              seq_addr <= `MOVMRW;
              need_off <= need_off_mod;
              src <= 4'b0;
              dst <= { 1'b1, dstm };
            end
          else     // r->s
            begin
              seq_addr <= `MOVRRW;
              need_off <= 1'b0;
              src <= { 1'b0, srcm };
              dst <= { 1'b1, dstm };
            end
          need_modrm <= 1'b1;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
        end
 
      8'b1000_1111: // pop mem or (pop reg non-standard)
        begin
          seq_addr <= (mod==2'b11) ? `POPR : `POPM;
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= { 1'b0, rm };
        end
 
      8'b1001_0xxx: // nop, xchg acum
        begin
          seq_addr <= `XCHRRW;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0000;
          dst <= { 1'b0, op[2:0] };
        end
 
      8'b1001_1000: // cbw
        begin
          seq_addr   <= `CBW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b1001_1001: // cwd
        begin
          seq_addr   <= `CWD;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b0;
          imm_size   <= 1'b0;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b1001_1010: // call different seg
        begin
          seq_addr <= `CALLF;
          need_modrm <= 1'b0;
          need_off <= 1'b1;
          need_imm <= 1'b1;
          imm_size <= 1'b1;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1001_1100: // pushf
        begin
          seq_addr <= `PUSHF;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
 
          imm_size <= 1'b0;
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1001_1101: // popf
        begin
          seq_addr <= `POPF;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1001_1110: // sahf
        begin
          seq_addr <= `SAHF;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1001_1111: // lahf
        begin
          seq_addr <= `LAHF;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_000x: // mov: m->a
        begin
          seq_addr <= b ? `MOVMAB : `MOVMAW;
          need_modrm <= 1'b0;
          need_off <= 1'b1;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_001x: // mov: a->m
        begin
          seq_addr <= b ? `MOVAMB : `MOVAMW;
          need_modrm <= 1'b0;
          need_off <= 1'b1;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_010x: // movs
        begin
          seq_addr <= rep ? (b ? `MOVSBR : `MOVSWR) : (b ? `MOVSB : `MOVSW);
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_011x: // cmps
        begin
          seq_addr <= rep ? (b ? `CMPSBR : `CMPSWR) : (b ? `CMPSB : `CMPSW);
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_100x: // test i->r
        begin
          seq_addr   <= b ? `TSTIRB : `TSTIRW;
          need_modrm <= 1'b0;
          need_off   <= 1'b0;
          need_imm   <= 1'b1;
          imm_size   <= ~b;
          dst        <= 4'b0;
          src        <= 4'b0;
        end
 
      8'b1010_101x: // stos
        begin
          seq_addr <= rep ? (b ? `STOSBR : `STOSWR) : (b ? `STOSB : `STOSW);
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_110x: // lods
        begin
          seq_addr <= rep ? (b ? `LODSBR : `LODSWR) : (b ? `LODSB : `LODSW);
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1010_111x: // scas
        begin
          seq_addr <= rep ? (b ? `SCASBR : `SCASWR) : (b ? `SCASB : `SCASW);
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1011_xxxx: // mov: i->r
        begin
          seq_addr <= op[3] ? `MOVIRW : `MOVIRB;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= op[3];
 
          src <= 4'b0;
          dst <= { 1'b0, op[2:0] };
        end
 
      8'b1100_0010: // ret near with value
        begin
          seq_addr <= `RETNV;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b1;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_0011: // ret near
        begin
          seq_addr <= `RETN0;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_0100: // les
        begin
          seq_addr <= `LES;
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= { 1'b0, srcm };
          dst <= 4'b0;
        end
 
      8'b1100_0101: // lds
        begin
          seq_addr <= `LDS;
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= { 1'b0, srcm };
          dst <= 4'b0;
        end
 
      8'b1100_011x: // mov: i->m (or i->r non-standard)
        begin
          seq_addr <= (mod==2'b11) ? (b ? `MOVIRB : `MOVIRW)
                                   : (b ? `MOVIMB : `MOVIMW);
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b1;
          imm_size <= ~b;
 
          src <= 4'b0;
          dst <= { 1'b0, rm };
        end
 
      8'b1100_1010: // ret far with value
        begin
          seq_addr <= `RETFV;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b1;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_1011: // ret far
        begin
          seq_addr <= `RETF0;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_1100: // int 3
        begin
          seq_addr <= `INT3;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_1101: // int
        begin
          seq_addr <= `INT;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_1110: // into
        begin
          seq_addr <= `INTO;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1100_1111: // iret
        begin
          seq_addr <= `IRET;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1101_00xx: // sal/shl
        begin
          seq_addr <= (regm==3'b010) ? ((mod==2'b11) ?
            (op[1] ? (op[0] ? `RCLCRW : `RCLCRB )
                       : (op[0] ? `RCL1RW : `RCL1RB ))
          : (op[1] ? (op[0] ? `RCLCMW : `RCLCMB )
                       : (op[0] ? `RCL1MW : `RCL1MB )))
         : ((regm==3'b011) ? ((mod==2'b11) ?
            (op[1] ? (op[0] ? `RCRCRW : `RCRCRB )
                       : (op[0] ? `RCR1RW : `RCR1RB ))
          : (op[1] ? (op[0] ? `RCRCMW : `RCRCMB )
                       : (op[0] ? `RCR1MW : `RCR1MB )))
         : ((regm==3'b001) ? ((mod==2'b11) ?
            (op[1] ? (op[0] ? `RORCRW : `RORCRB )
                       : (op[0] ? `ROR1RW : `ROR1RB ))
          : (op[1] ? (op[0] ? `RORCMW : `RORCMB )
                       : (op[0] ? `ROR1MW : `ROR1MB )))
         : ((regm==3'b000) ? ((mod==2'b11) ?
            (op[1] ? (op[0] ? `ROLCRW : `ROLCRB )
                       : (op[0] ? `ROL1RW : `ROL1RB ))
          : (op[1] ? (op[0] ? `ROLCMW : `ROLCMB )
                       : (op[0] ? `ROL1MW : `ROL1MB )))
         : ( (regm==3'b100) ? ((mod==2'b11) ?
            (op[1] ? (op[0] ? `SALCRW : `SALCRB )
                       : (op[0] ? `SAL1RW : `SAL1RB ))
          : (op[1] ? (op[0] ? `SALCMW : `SALCMB )
                       : (op[0] ? `SAL1MW : `SAL1MB )))
         : ( (regm==3'b111) ? ((mod==2'b11) ?
            (op[1] ? (op[0] ? `SARCRW : `SARCRB )
                       : (op[0] ? `SAR1RW : `SAR1RB ))
          : (op[1] ? (op[0] ? `SARCMW : `SARCMB )
                       : (op[0] ? `SAR1MW : `SAR1MB )))
           : ((mod==2'b11) ?
            (op[1] ? (op[0] ? `SHRCRW : `SHRCRB )
                       : (op[0] ? `SHR1RW : `SHR1RB ))
          : (op[1] ? (op[0] ? `SHRCMW : `SHRCMB )
                       : (op[0] ? `SHR1MW : `SHR1MB ))))))));
 
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= rm;
          dst <= rm;
        end
 
      8'b1101_0100: // aam
        begin
          seq_addr <= `AAM;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1101_0101: // aad
        begin
          seq_addr <= `AAD;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1101_0111: // xlat
        begin
          seq_addr <= `XLAT;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_0000: // loopne
        begin
          seq_addr <= `LOOPNE;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_0001: // loope
        begin
          seq_addr <= `LOOPE;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_0010: // loop
        begin
          seq_addr <= `LOOP;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_0011: // jcxz
        begin
          seq_addr <= `JCXZ;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_010x: // in imm
        begin
          seq_addr <= b ? `INIB : `INIW;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_011x: // out imm
        begin
          seq_addr <= b ? `OUTIB : `OUTIW;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_1000: // call same segment
        begin
          seq_addr <= `CALLN;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= 1'b1;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_10x1: // jmp direct
        begin
          seq_addr <= `JMPI;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b1;
          imm_size <= ~op[1];
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_1010: // jmp indirect different segment
        begin
          seq_addr <= `LJMPI;
          need_modrm <= 1'b0;
          need_off <= 1'b1;
          need_imm <= 1'b1;
          imm_size <= 1'b1;
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_110x: // in dx
        begin
          seq_addr <= b ? `INRB : `INRW;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1110_111x: // out dx
        begin
          seq_addr <= b ? `OUTRB : `OUTRW;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_0100: // hlt
        begin
          seq_addr <= `HLT;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_0101: // cmc
        begin
          seq_addr <= `CMC;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_011x: // test, not, neg, mul, imul
        begin
          case (regm)
            3'b000: seq_addr <= (mod==2'b11) ?
             (b ? `TSTIRB : `TSTIRW) : (b ? `TSTIMB : `TSTIMW);
            3'b010: seq_addr <= (mod==2'b11) ?
             (b ? `NOTRB : `NOTRW) : (b ? `NOTMB : `NOTMW);
            3'b011: seq_addr <= (mod==2'b11) ?
             (b ? `NEGRB : `NEGRW) : (b ? `NEGMB : `NEGMW);
            3'b100: seq_addr <= (mod==2'b11) ?
             (b ? `MULRB : `MULRW) : (b ? `MULMB : `MULMW);
            3'b101: seq_addr <= (mod==2'b11) ?
             (b ? `IMULRB : `IMULRW) : (b ? `IMULMB : `IMULMW);
            3'b110: seq_addr <= (mod==2'b11) ?
             (b ? `DIVRB : `DIVRW) : (b ? `DIVMB : `DIVMW);
            3'b111: seq_addr <= (mod==2'b11) ?
             (b ? `IDIVRB : `IDIVRW) : (b ? `IDIVMB : `IDIVMW);
            default: seq_addr <= `NOP;
          endcase
 
          need_modrm <= 1'b1;
          need_off   <= need_off_mod;
          need_imm   <= (regm == 3'b000); // imm on test
          imm_size   <= ~b;
          dst        <= { 1'b0, modrm[2:0] };
          src        <= { 1'b0, modrm[2:0] };
        end
 
      8'b1111_1000: // clc
        begin
          seq_addr <= `CLC;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_1001: // stc
        begin
          seq_addr <= `STC;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_1010: // cli
        begin
          seq_addr <= `CLI;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_1011: // sti
        begin
          seq_addr <= `STI;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_1100: // cld
        begin
          seq_addr <= `CLD;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_1101: // std
        begin
          seq_addr <= `STD;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
          src <= 4'b0;
          dst <= 4'b0;
        end
 
      8'b1111_1110: // inc
        begin
          case (regm)
            3'b000: seq_addr <= (mod==2'b11) ? `INCRB : `INCMB;
            3'b001: seq_addr <= (mod==2'b11) ? `DECRB : `DECMB;
            default: seq_addr <= `NOP;
          endcase
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
 
          src <= { 1'b0, rm };
          dst <= 4'b0;
        end
 
      8'b1111_1111:
        begin
          case (regm)
            3'b000: seq_addr <= (mod==2'b11) ? `INCRW : `INCMW;
            3'b001: seq_addr <= (mod==2'b11) ? `DECRW : `DECMW;
            3'b010: seq_addr <= (mod==2'b11) ? `CALLNR : `CALLNM;
            3'b011: seq_addr <= `CALLFM;
            3'b100: seq_addr <= (mod==2'b11) ? `JMPR : `JMPM;
            3'b101: seq_addr <= `LJMPM;
            3'b110: seq_addr <= (mod==2'b11) ? `PUSHR : `PUSHM;
            default: seq_addr <= `NOP;
          endcase
          need_modrm <= 1'b1;
          need_off <= need_off_mod;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
 
          src <= { 1'b0, rm };
          dst <= 4'b0;
        end
 
      default: // hlt
        begin
          seq_addr <= `HLT;
          need_modrm <= 1'b0;
          need_off <= 1'b0;
          need_imm <= 1'b0;
          imm_size <= 1'b0;
 
          src <= 4'b0;
          dst <= 4'b0;
        end
 
  endcase
 
endmodule
 
module memory_regs (
    input [2:0] rm,
    input [1:0] mod,
    input [2:0] sovr_pr,
 
    output reg [3:0] base,
    output reg [3:0] index,
    output     [1:0] seg
  );
 
  // Register declaration
  reg [1:0] s;
 
  // Continuous assignments
  assign seg = sovr_pr[2] ? sovr_pr[1:0] : s;
 
  // Behaviour
  always @(rm or mod)
    case (rm)
      3'b000: begin base <= 4'b0011; index <= 4'b0110; s <= 2'b11; end
      3'b001: begin base <= 4'b0011; index <= 4'b0111; s <= 2'b11; end
      3'b010: begin base <= 4'b0101; index <= 4'b0110; s <= 2'b10; end
      3'b011: begin base <= 4'b0101; index <= 4'b0111; s <= 2'b10; end
      3'b100: begin base <= 4'b1100; index <= 4'b0110; s <= 2'b11; end
      3'b101: begin base <= 4'b1100; index <= 4'b0111; s <= 2'b11; end
      3'b110: begin base <= mod ? 4'b0101 : 4'b1100; index <= 4'b1100;
                    s <= mod ? 2'b10 : 2'b11; end
      3'b111: begin base <= 4'b0011; index <= 4'b1100; s <= 2'b11; end
    endcase
endmodule
 
module micro_data (
    input [`MICRO_ADDR_WIDTH-1:0] n_micro,
    input [15:0] off_i,
    input [15:0] imm_i,
    input [3:0] src,
    input [3:0] dst,
    input [3:0] base,
    input [3:0] index,
    input [1:0] seg,
    output [`IR_SIZE-1:0] ir,
    output [15:0] off_o,
    output [15:0] imm_o
  );
 
  // Net declarations
  wire [`MICRO_DATA_WIDTH-1:0] micro_o;
  wire [17:0] high_ir;
  wire var_s, var_off;
  wire [1:0] var_a, var_b, var_c, var_d;
  wire [2:0] var_imm;
 
  wire [3:0] addr_a, addr_b, addr_c, addr_d;
  wire [3:0] micro_a, micro_b, micro_c, micro_d;
  wire [1:0] addr_s, micro_s;
 
  // Module instantiations
  micro_rom m0 (n_micro, micro_o);
 
  // Assignments
  assign micro_s = micro_o[1:0];
  assign micro_a = micro_o[5:2];
  assign micro_b = micro_o[9:6];
  assign micro_c = micro_o[13:10];
  assign micro_d = micro_o[17:14];
  assign high_ir = micro_o[35:18];
  assign var_s   = micro_o[36];
  assign var_a   = micro_o[38:37];
  assign var_b   = micro_o[40:39];
  assign var_c   = micro_o[42:41];
  assign var_d   = micro_o[44:43];
  assign var_off = micro_o[45];
  assign var_imm = micro_o[48:46];
 
  assign imm_o = var_imm == 3'd0 ? (16'h0000)
               : (var_imm == 3'd1 ? (16'h0002)
               : (var_imm == 3'd2 ? (16'h0004)
               : (var_imm == 3'd3 ? off_i
               : (var_imm == 3'd4 ? imm_i
               : (var_imm == 3'd5 ? 16'hffff
               : (var_imm == 3'd6 ? 16'b11 : 16'd1))))));
 
  assign off_o = var_off ? off_i : 16'h0000;
 
  assign addr_a = var_a == 2'd0 ? micro_a
                : (var_a == 2'd1 ? base
                : (var_a == 2'd2 ? dst : src ));
  assign addr_b = var_b == 2'd0 ? micro_b
                : (var_b == 2'd1 ? index : src);
  assign addr_c = var_c == 2'd0 ? micro_c
                : (var_c == 2'd1 ? dst : src);
  assign addr_d = var_d == 2'd0 ? micro_d
                : (var_d == 2'd1 ? dst : src);
  assign addr_s = var_s ? seg : micro_s;
 
  assign ir = { high_ir, addr_d, addr_c, addr_b, addr_a, addr_s };
endmodule
 
module micro_rom (
    input [`MICRO_ADDR_WIDTH-1:0] addr,
    output [`MICRO_DATA_WIDTH-1:0] q
  );
 
  // Registers, nets and parameters
  reg [`MICRO_DATA_WIDTH-1:0] rom[0:2**`MICRO_ADDR_WIDTH-1];
 
  // Assignments
  assign q = rom[addr];
 
  // Behaviour
  initial $readmemb("/home/zeus/zet/rtl-model/micro_rom.dat", rom);
endmodule
 
module seq_rom (
    input [`SEQ_ADDR_WIDTH-1:0] addr,
    output [`SEQ_DATA_WIDTH-1:0] q
  );
 
  // Registers, nets and parameters
  reg [`SEQ_DATA_WIDTH-1:0] rom[0:2**`SEQ_ADDR_WIDTH-1];
 
  // Assignments
  assign q = rom[addr];
 
  // Behaviour
  initial $readmemb("/home/zeus/zet/rtl-model/seq_rom.dat", rom);
endmodule
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.