URL
https://opencores.org/ocsvn/zet86/zet86/trunk
Subversion Repositories zet86
[/] [zet86/] [trunk/] [src/] [bochs-diff-2.3.7/] [cpu/] [cpu.cc] - Rev 49
Go to most recent revision | Compare with Previous | Blame | View Log
///////////////////////////////////////////////////////////////////////// // $Id: cpu.cc,v 1.5 2009-02-06 03:48:30 zeus Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "iodev/iodev.h" #if BX_EXTERNAL_DEBUGGER #include "extdb.h" #endif // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RIP EIP #define RCX ECX #endif // ICACHE instrumentation code #if BX_SUPPORT_ICACHE #define InstrumentICACHE 0 #if InstrumentICACHE static unsigned iCacheLookups=0; static unsigned iCacheMisses=0; #define InstrICache_StatsMask 0xffffff #define InstrICache_Stats() {\ if ((iCacheLookups & InstrICache_StatsMask) == 0) { \ BX_INFO(("ICACHE lookups: %u, misses: %u, hit rate = %6.2f%% ", \ iCacheLookups, \ iCacheMisses, \ (iCacheLookups-iCacheMisses) * 100.0 / iCacheLookups)); \ iCacheLookups = iCacheMisses = 0; \ } \ } #define InstrICache_Increment(v) (v)++ #else #define InstrICache_Stats() #define InstrICache_Increment(v) #endif #endif // BX_SUPPORT_ICACHE // The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few // instructions and then return so that the other processors have a chance to // run. This is used by bochs internal debugger or when simulating // multiple processors. // // If maximum instructions have been executed, return. The zero-count // means run forever. #if BX_SUPPORT_SMP || BX_DEBUGGER #define CHECK_MAX_INSTRUCTIONS(count) \ if ((count) > 0) { \ (count)--; \ if ((count) == 0) return; \ } #else #define CHECK_MAX_INSTRUCTIONS(count) #endif void BX_CPU_C::cpu_loop(Bit32u max_instr_count) { #if BX_DEBUGGER BX_CPU_THIS_PTR break_point = 0; BX_CPU_THIS_PTR magic_break = 0; BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON; #endif if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) { // only from exception function we can get here ... BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID); BX_TICK1_IF_SINGLE_PROCESSOR(); #if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB if (dbg_instruction_epilog()) return; #endif CHECK_MAX_INSTRUCTIONS(max_instr_count); #if BX_GDBSTUB if (bx_dbg.gdbstub_enabled) return; #endif } // If the exception() routine has encountered a nasty fault scenario, // the debugger may request that control is returned to it so that // the situation may be examined. #if BX_DEBUGGER if (bx_guard.interrupt_requested) return; #endif // We get here either by a normal function call, or by a longjmp // back from an exception() call. In either case, commit the // new EIP/ESP, and set up other environmental fields. This code // mirrors similar code below, after the interrupt() call. BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP BX_CPU_THIS_PTR speculative_rsp = 0; BX_CPU_THIS_PTR EXT = 0; BX_CPU_THIS_PTR errorno = 0; while (1) { // check on events which occurred for previous instructions (traps) // and ones which are asynchronous to the CPU (hardware interrupts) /* * Zet: we don't handle external interrupts * if (BX_CPU_THIS_PTR async_event) { if (handleAsyncEvent()) { // If request to return to caller ASAP. return; } } */ no_async_event: Bit32u eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) { prefetch(); eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; } #if BX_SUPPORT_ICACHE bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrA20Page + eipBiased; bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.get_entry(pAddr); bxInstruction_c *i = entry->i; InstrICache_Increment(iCacheLookups); InstrICache_Stats(); if ((entry->pAddr == pAddr) && (entry->writeStamp == *(BX_CPU_THIS_PTR currPageWriteStampPtr))) { // iCache hit. An instruction was found in the iCache. #if BX_INSTRUMENTATION BX_INSTR_OPCODE(BX_CPU_ID, BX_CPU_THIS_PTR eipFetchPtr + eipBiased, i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode()); #endif } else { // iCache miss. No validated instruction with matching fetch parameters // is in the iCache. InstrICache_Increment(iCacheMisses); serveICacheMiss(entry, eipBiased, pAddr); i = entry->i; } #else bxInstruction_c iStorage, *i = &iStorage; unsigned remainingInPage = BX_CPU_THIS_PTR eipPageWindowSize - eipBiased; const Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased; fetchInstruction(i, fetchPtr, remainingInPage); #endif #if BX_SUPPORT_TRACE_CACHE unsigned length = entry->ilen; for(;;i++) { #endif // An instruction will have been fetched using either the normal case, // or the boundary fetch (across pages), by this point. BX_INSTR_FETCH_DECODE_COMPLETED(BX_CPU_ID, i); #if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB if (dbg_instruction_prolog()) return; #endif #if BX_DISASM if (BX_CPU_THIS_PTR trace) { // print the instruction that is about to be executed debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip); } #endif // decoding instruction compeleted -> continue with execution BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); RIP += i->ilen(); BX_CPU_CALL_METHOD(i->execute, (i)); // might iterate repeat instruction BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i); BX_TICK1_IF_SINGLE_PROCESSOR(); // inform instrumentation about new instruction BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID); // note instructions generating exceptions never reach this point #if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB if (dbg_instruction_epilog()) return; #endif CHECK_MAX_INSTRUCTIONS(max_instr_count); #if BX_SUPPORT_TRACE_CACHE if (BX_CPU_THIS_PTR async_event) { // clear stop trace magic indication that probably was set by repeat or branch32/64 BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE; break; } if (--length == 0) goto no_async_event; } #endif } // while (1) } void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat(bxInstruction_c *i, BxExecutePtr_tR execute) { // non repeated instruction if (! i->repUsedL()) { BX_CPU_CALL_METHOD(execute, (i)); return; } #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP #if BX_SUPPORT_TRACE_CACHE // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif } void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat_ZFL(bxInstruction_c *i, BxExecutePtr_tR execute) { // non repeated instruction if (! i->repUsedL()) { BX_CPU_CALL_METHOD(execute, (i)); return; } unsigned rep = i->repUsedValue(); #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (rep==3 && get_ZF()==0) return; if (rep==2 && get_ZF()!=0) return; if (RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (rep==3 && get_ZF()==0) return; if (rep==2 && get_ZF()!=0) return; if (ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_METHOD(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (rep==3 && get_ZF()==0) return; if (rep==2 && get_ZF()!=0) return; if (CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_TICK1_IF_SINGLE_PROCESSOR(); } } RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP #if BX_SUPPORT_TRACE_CACHE // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif } unsigned BX_CPU_C::handleAsyncEvent(void) { // // This area is where we process special conditions and events. // if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_SPECIAL) { // I made up the bitmask above to mean HALT state. // for one processor, pass the time as quickly as possible until // an interrupt wakes up the CPU. while (1) { if ((BX_CPU_INTR && (BX_CPU_THIS_PTR get_IF() || (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_MWAIT_IF))) || BX_CPU_THIS_PTR nmi_pending || BX_CPU_THIS_PTR smi_pending) { // interrupt ends the HALT condition #if BX_SUPPORT_MONITOR_MWAIT if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_MWAIT) BX_MEM(0)->clear_monitor(BX_CPU_THIS_PTR bx_cpuid); #endif BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume break; } if ((BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_SPECIAL) == 0) { BX_INFO(("handleAsyncEvent: reset detected in HLT state")); break; } // for multiprocessor simulation, even if this CPU is halted we still // must give the others a chance to simulate. If an interrupt has // arrived, then clear the HALT condition; otherwise just return from // the CPU loop with stop_reason STOP_CPU_HALTED. #if BX_SUPPORT_SMP if (BX_SMP_PROCESSORS > 1) { // HALT condition remains, return so other CPUs have a chance #if BX_DEBUGGER BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED; #endif return 1; // Return to caller of cpu_loop. } #endif #if BX_DEBUGGER if (bx_guard.interrupt_requested) return 1; // Return to caller of cpu_loop. #endif BX_TICK1(); } } else if (bx_pc_system.kill_bochs_request) { // setting kill_bochs_request causes the cpu loop to return ASAP. return 1; // Return to caller of cpu_loop. } // Priority 1: Hardware Reset and Machine Checks // RESET // Machine Check // (bochs doesn't support these) // Priority 2: Trap on Task Switch // T flag in TSS is set if (BX_CPU_THIS_PTR debug_trap & 0x00008000) { BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap; exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt } // Priority 3: External Hardware Interventions // FLUSH // STOPCLK // SMI // INIT // (bochs doesn't support these) if (BX_CPU_THIS_PTR smi_pending && ! BX_CPU_THIS_PTR smm_mode()) { // clear SMI pending flag and disable NMI when SMM was accepted BX_CPU_THIS_PTR smi_pending = 0; BX_CPU_THIS_PTR nmi_disable = 1; enter_system_management_mode(); } // Priority 4: Traps on Previous Instruction // Breakpoints // Debug Trap Exceptions (TF flag set or data/IO breakpoint) if (BX_CPU_THIS_PTR debug_trap && !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG)) { // A trap may be inhibited on this boundary due to an instruction // which loaded SS. If so we clear the inhibit_mask below // and don't execute this code until the next boundary. // Commit debug events to DR6 BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap; exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt } // Priority 5: External Interrupts // NMI Interrupts // Maskable Hardware Interrupts if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) { // Processing external interrupts is inhibited on this // boundary because of certain instructions like STI. // inhibit_mask is cleared below, in which case we will have // an opportunity to check interrupts on the next instruction // boundary. } else if (BX_CPU_THIS_PTR nmi_pending) { BX_CPU_THIS_PTR nmi_pending = 0; BX_CPU_THIS_PTR nmi_disable = 1; BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; /* external event */ BX_INSTR_HWINTERRUPT(BX_CPU_ID, 2, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(2, 0, 0, 0); } else if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF() && BX_DBG_ASYNC_INTR) { Bit8u vector; // NOTE: similar code in ::take_irq() #if BX_SUPPORT_APIC if (BX_CPU_THIS_PTR local_apic.INTR) vector = BX_CPU_THIS_PTR local_apic.acknowledge_int(); else #endif // if no local APIC, always acknowledge the PIC. vector = DEV_pic_iac(); // may set INTR with next interrupt BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; /* external event */ BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); interrupt(vector, 0, 0, 0); // Set up environment, as would be when this main cpu loop gets // invoked. At the end of normal instructions, we always commmit // the new EIP/ESP values. But here, we call interrupt() much like // it was a sofware interrupt instruction, and need to effect the // commit here. This code mirrors similar code above. BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP BX_CPU_THIS_PTR speculative_rsp = 0; BX_CPU_THIS_PTR EXT = 0; BX_CPU_THIS_PTR errorno = 0; } else if (BX_HRQ && BX_DBG_ASYNC_DMA) { // NOTE: similar code in ::take_dma() // assert Hold Acknowledge (HLDA) and go into a bus hold state DEV_dma_raise_hlda(); } // Priority 6: Faults from fetching next instruction // Code breakpoint fault // Code segment limit violation (priority 7 on 486/Pentium) // Code page fault (priority 7 on 486/Pentium) // (handled in main decode loop) // Priority 7: Faults from decoding next instruction // Instruction length > 15 bytes // Illegal opcode // Coprocessor not available // (handled in main decode loop etc) // Priority 8: Faults on executing an instruction // Floating point execution // Overflow // Bound error // Invalid TSS // Segment not present // Stack fault // General protection // Data page fault // Alignment check // (handled by rest of the code) if (BX_CPU_THIS_PTR get_TF()) { // TF is set before execution of next instruction. Schedule // a debug trap (#DB) after execution. After completion of // next instruction, the code above will invoke the trap. BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6 } // Now we can handle things which are synchronous to instruction // execution. if (BX_CPU_THIS_PTR get_RF()) { BX_CPU_THIS_PTR clear_RF(); } #if BX_X86_DEBUGGER else { // only bother comparing if any breakpoints enabled if (BX_CPU_THIS_PTR dr7 & 0x000000ff) { bx_address iaddr = get_laddr(BX_SEG_REG_CS, BX_CPU_THIS_PTR prev_rip); Bit32u dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction, BX_HWDebugInstruction); if (dr6_bits) { // Add to the list of debug events thus far. BX_CPU_THIS_PTR async_event = 1; BX_CPU_THIS_PTR debug_trap |= dr6_bits; // If debug events are not inhibited on this boundary, // fire off a debug fault. Otherwise handle it on the next // boundary. (becomes a trap) if (! (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG)) { // Commit debug events to DR6 BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap; exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt } } } } #endif // We have ignored processing of external interrupts and // debug events on this boundary. Reset the mask so they // will be processed on the next boundary. BX_CPU_THIS_PTR inhibit_mask = 0; if (!(BX_CPU_INTR || BX_CPU_THIS_PTR debug_trap || BX_HRQ || BX_CPU_THIS_PTR get_TF() #if BX_X86_DEBUGGER || (BX_CPU_THIS_PTR dr7 & 0xff) #endif )) BX_CPU_THIS_PTR async_event = 0; return 0; // Continue executing cpu_loop. } // boundaries of consideration: // // * physical memory boundary: 1024k (1Megabyte) (increments of...) // * A20 boundary: 1024k (1Megabyte) // * page boundary: 4k // * ROM boundary: 2k (dont care since we are only reading) // * segment boundary: any void BX_CPU_C::prefetch(void) { bx_address temp_rip = RIP; bx_address laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, temp_rip); bx_phy_address pAddr; unsigned pageOffset = PAGE_OFFSET(laddr); // Calculate RIP at the beginning of the page. BX_CPU_THIS_PTR eipPageBias = pageOffset - RIP; BX_CPU_THIS_PTR eipPageWindowSize = 4096; #if BX_SUPPORT_X86_64 if (Is64BitMode()) { if (! IsCanonical(RIP)) { BX_ERROR(("prefetch: #GP(0): RIP crossed canonical boundary")); exception(BX_GP_EXCEPTION, 0, 0); } } else #endif { Bit32u temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled; if (((Bit32u) temp_rip) > temp_limit) { BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", (Bit32u) temp_rip, temp_limit)); exception(BX_GP_EXCEPTION, 0, 0); } if (temp_limit + BX_CPU_THIS_PTR eipPageBias < 4096) { BX_CPU_THIS_PTR eipPageWindowSize = temp_limit + BX_CPU_THIS_PTR eipPageBias + 1; } } bx_address lpf = LPFOf(laddr); unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; Bit8u *fetchPtr = 0; if (tlbEntry->lpf == lpf && (tlbEntry->accessBits & (0x01 << CPL))) { pAddr = A20ADDR(tlbEntry->ppf | pageOffset); #if BX_SupportGuest2HostTLB fetchPtr = (Bit8u*) (tlbEntry->hostPageAddr); #endif } else { if (BX_CPU_THIS_PTR cr0.get_PG()) { pAddr = translate_linear(laddr, CPL, BX_READ, CODE_ACCESS); pAddr = A20ADDR(pAddr); } else { pAddr = A20ADDR(laddr); } } BX_CPU_THIS_PTR pAddrA20Page = LPFOf(pAddr); if (fetchPtr) { BX_CPU_THIS_PTR eipFetchPtr = fetchPtr; } else { BX_CPU_THIS_PTR eipFetchPtr = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, BX_CPU_THIS_PTR pAddrA20Page, BX_READ, CODE_ACCESS); } // Sanity checks if (! BX_CPU_THIS_PTR eipFetchPtr) { if (pAddr >= BX_MEM(0)->get_memory_len()) { BX_PANIC(("prefetch: running in bogus memory, pAddr=0x" FMT_PHY_ADDRX, pAddr)); } else { BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x" FMT_PHY_ADDRX, pAddr)); } } #if BX_SUPPORT_ICACHE BX_CPU_THIS_PTR currPageWriteStampPtr = pageWriteStampTable.getPageWriteStampPtr(pAddr); Bit32u pageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr); pageWriteStamp &= ~ICacheWriteStampFetchModeMask; // Clear out old fetch mode bits pageWriteStamp |= BX_CPU_THIS_PTR fetchModeMask; // And add new ones pageWriteStampTable.setPageWriteStamp(pAddr, pageWriteStamp); #endif } void BX_CPU_C::boundaryFetch(const Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i) { unsigned j; Bit8u fetchBuffer[16]; // Really only need 15 unsigned ret; if (remainingInPage >= 15) { BX_ERROR(("boundaryFetch #GP(0): too many instruction prefixes")); exception(BX_GP_EXCEPTION, 0, 0); } // Read all leftover bytes in current page up to boundary. for (j=0; j<remainingInPage; j++) { fetchBuffer[j] = *fetchPtr++; } // The 2nd chunk of the instruction is on the next page. // Set RIP to the 0th byte of the 2nd page, and force a // prefetch so direct access of that physical page is possible, and // all the associated info is updated. RIP += remainingInPage; prefetch(); unsigned fetchBufferLimit = 15; if (BX_CPU_THIS_PTR eipPageWindowSize < 15) { BX_DEBUG(("boundaryFetch: small window size after prefetch - %d bytes", BX_CPU_THIS_PTR eipPageWindowSize)); fetchBufferLimit = BX_CPU_THIS_PTR eipPageWindowSize; } // We can fetch straight from the 0th byte, which is eipFetchPtr; fetchPtr = BX_CPU_THIS_PTR eipFetchPtr; // read leftover bytes in next page for (; j<fetchBufferLimit; j++) { fetchBuffer[j] = *fetchPtr++; } #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) ret = fetchDecode64(fetchBuffer, i, fetchBufferLimit); else #endif ret = fetchDecode32(fetchBuffer, i, fetchBufferLimit); if (ret==0) { BX_INFO(("boundaryFetch #GP(0): failed to complete instruction decoding")); exception(BX_GP_EXCEPTION, 0, 0); } // Restore EIP since we fudged it to start at the 2nd page boundary. RIP = BX_CPU_THIS_PTR prev_rip; // Since we cross an instruction boundary, note that we need a prefetch() // again on the next instruction. Perhaps we can optimize this to // eliminate the extra prefetch() since we do it above, but have to // think about repeated instructions, etc. invalidate_prefetch_q(); BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode()); } void BX_CPU_C::deliver_NMI(void) { BX_CPU_THIS_PTR nmi_pending = 1; BX_CPU_THIS_PTR async_event = 1; } void BX_CPU_C::deliver_SMI(void) { BX_CPU_THIS_PTR smi_pending = 1; BX_CPU_THIS_PTR async_event = 1; } #if BX_EXTERNAL_DEBUGGER void BX_CPU_C::ask(int level, const char *prefix, const char *fmt, va_list ap) { char buf1[1024]; vsprintf (buf1, fmt, ap); printf ("%s %s\n", prefix, buf1); trap_debugger(1, BX_CPU_THIS); } #endif #if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB bx_bool BX_CPU_C::dbg_instruction_prolog(void) { #if BX_DEBUGGER if(dbg_check_begin_instr_bpoint()) return 1; #endif #if BX_EXTERNAL_DEBUGGER bx_external_debugger(BX_CPU_THIS); #endif return 0; } bx_bool BX_CPU_C::dbg_instruction_epilog(void) { #if BX_DEBUGGER if (dbg_check_end_instr_bpoint()) return 1; #endif #if BX_GDBSTUB if (bx_dbg.gdbstub_enabled) { unsigned reason = bx_gdbstub_check(EIP); if (reason != GDBSTUB_STOP_NO_REASON) return 1; } #endif return 0; } #endif // BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB #if BX_DEBUGGER extern unsigned dbg_show_mask; bx_bool BX_CPU_C::dbg_check_begin_instr_bpoint(void) { Bit64u tt = bx_pc_system.time_ticks(); bx_address debug_eip = RIP; Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; BX_CPU_THIS_PTR guard_found.cs = cs; BX_CPU_THIS_PTR guard_found.eip = debug_eip; BX_CPU_THIS_PTR guard_found.laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, debug_eip); BX_CPU_THIS_PTR guard_found.is_32bit_code = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b; BX_CPU_THIS_PTR guard_found.is_64bit_code = Is64BitMode(); // support for 'show' command in debugger if(dbg_show_mask) { int rv = bx_dbg_show_symbolic(); if (rv) return(rv); } // see if debugger is looking for iaddr breakpoint of any type if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) { #if (BX_DBG_MAX_VIR_BPOINTS > 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) { if ((BX_CPU_THIS_PTR guard_found.icount!=0) || (tt != BX_CPU_THIS_PTR guard_found.time_tick)) { for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) { if (bx_guard.iaddr.vir[i].enabled && (bx_guard.iaddr.vir[i].cs == cs) && (bx_guard.iaddr.vir[i].eip == debug_eip)) { BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR; BX_CPU_THIS_PTR guard_found.iaddr_index = i; BX_CPU_THIS_PTR guard_found.time_tick = tt; return(1); // on a breakpoint } } } } #endif #if (BX_DBG_MAX_LIN_BPOINTS > 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) { if ((BX_CPU_THIS_PTR guard_found.icount!=0) || (tt != BX_CPU_THIS_PTR guard_found.time_tick)) { for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) { if (bx_guard.iaddr.lin[i].enabled && (bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr)) { BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN; BX_CPU_THIS_PTR guard_found.iaddr_index = i; BX_CPU_THIS_PTR guard_found.time_tick = tt; return(1); // on a breakpoint } } } } #endif #if (BX_DBG_MAX_PHY_BPOINTS > 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) { bx_phy_address phy; bx_bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr, &phy); // The "guard_found.icount!=0" condition allows you to step or // continue beyond a breakpoint. Bryce tried removing it once, // and once you get to a breakpoint you are stuck there forever. // Not pretty. if (valid && ((BX_CPU_THIS_PTR guard_found.icount!=0) || (tt != BX_CPU_THIS_PTR guard_found.time_tick))) { for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) { if (bx_guard.iaddr.phy[i].enabled && (bx_guard.iaddr.phy[i].addr == phy)) { BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY; BX_CPU_THIS_PTR guard_found.iaddr_index = i; BX_CPU_THIS_PTR guard_found.time_tick = tt; return(1); // on a breakpoint } } } } #endif } return(0); // not on a breakpoint } bx_bool BX_CPU_C::dbg_check_end_instr_bpoint(void) { BX_CPU_THIS_PTR guard_found.icount++; BX_CPU_THIS_PTR guard_found.cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; BX_CPU_THIS_PTR guard_found.eip = RIP; BX_CPU_THIS_PTR guard_found.laddr = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_CS, RIP); BX_CPU_THIS_PTR guard_found.is_32bit_code = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b; BX_CPU_THIS_PTR guard_found.is_64bit_code = Is64BitMode(); // Check if we hit read/write or time breakpoint if (BX_CPU_THIS_PTR break_point) { switch (BX_CPU_THIS_PTR break_point) { case BREAK_POINT_TIME: BX_INFO(("[" FMT_LL "d] Caught time breakpoint", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT; return(1); // on a breakpoint case BREAK_POINT_READ: BX_INFO(("[" FMT_LL "d] Caught read watch point", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT; return(1); // on a breakpoint case BREAK_POINT_WRITE: BX_INFO(("[" FMT_LL "d] Caught write watch point", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT; return(1); // on a breakpoint default: BX_PANIC(("Weird break point condition")); } } if (BX_CPU_THIS_PTR magic_break) { BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT; return(1); // on a breakpoint } // convenient point to see if user typed Ctrl-C if (bx_guard.interrupt_requested && (bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) { BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C; return(1); // Ctrl-C pressed } return(0); // no breakpoint } void BX_CPU_C::dbg_take_irq(void) { // NOTE: similar code in ::cpu_loop() if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF()) { if (setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0) { // normal return from setjmp setup unsigned vector = DEV_pic_iac(); // may set INTR with next interrupt BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; // external event BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered interrupt(vector, 0, 0, 0); } } } void BX_CPU_C::dbg_force_interrupt(unsigned vector) { // Used to force simulator to take an interrupt, without // regard to IF if (setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0) { // normal return from setjmp setup BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; // external event BX_CPU_THIS_PTR async_event = 1; // probably don't need this interrupt(vector, 0, 0, 0); } } void BX_CPU_C::dbg_take_dma(void) { // NOTE: similar code in ::cpu_loop() if (BX_HRQ) { BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered DEV_dma_raise_hlda(); } } #endif // #if BX_DEBUGGER
Go to most recent revision | Compare with Previous | Blame | View Log