URL
https://opencores.org/ocsvn/zet86/zet86/trunk
Subversion Repositories zet86
[/] [zet86/] [trunk/] [src/] [bochs-diff-2.3.7/] [instrument/] [zet/] [instrument.cc] - Rev 52
Compare with Previous | Blame | View Log
///////////////////////////////////////////////////////////////////////// // $Id: instrument.cc,v 1.23 2008/04/19 10:12:09 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include <assert.h> #include <map> #include <string> #include <iostream> using std::cerr; using std::endl; #include "bochs.h" #include "cpu/cpu.h" // maximum size of an instruction #define MAX_OPCODE_SIZE 16 // maximum physical addresses an instruction can generate #define MAX_DATA_ACCESSES 1024 // Use this variable to turn on/off collection of instrumentation data // If you are not using the debugger to turn this on/off, then possibly // start this at 1 instead of 0. typedef std::map<std::string, unsigned> TStrUIntMap; TStrUIntMap *stats = 0; unsigned long ninstr = 0; static disassembler bx_disassembler; static struct instruction_t { bx_bool valid; // is current instruction valid unsigned opcode_size; unsigned nprefixes; Bit8u opcode[MAX_OPCODE_SIZE]; bx_bool is32, is64; unsigned num_data_accesses; struct { bx_address laddr; // linear address bx_phy_address paddr; // physical address unsigned op; // BX_READ, BX_WRITE or BX_RW unsigned size; // 1 .. 8 } data_access[MAX_DATA_ACCESSES]; bx_bool is_branch; bx_bool is_taken; bx_address target_linear; } *instruction; static logfunctions *instrument_log = new logfunctions (); #define LOG_THIS instrument_log-> void bx_instr_init(unsigned cpu) { assert(cpu < BX_SMP_PROCESSORS); if (instruction == NULL) instruction = new struct instruction_t[BX_SMP_PROCESSORS]; fprintf(stderr, "Initialize cpu %d\n", cpu); bx_disassembler.toggle_syntax_mode(); } void bx_instr_reset(unsigned cpu) { instruction[cpu].valid = 0; instruction[cpu].nprefixes = 0; instruction[cpu].num_data_accesses = 0; instruction[cpu].is_branch = 0; } void bx_instr_print() { if (stats) { cerr << "stats contains:\nKey\tValue\n"; // use const_iterator to walk through elements of pairs for ( std::map<std::string, unsigned> ::const_iterator iter = stats->begin(); iter != stats->end(); ++iter ) cerr << iter->first << '\t' << iter->second << '\n'; cerr << endl; cerr << "# instr: " << ninstr << endl; } else { cerr << "There's no statistics to show!" << endl; } } void bx_instr_start() { if (stats) cerr << "instrumentation already started" << endl; else stats = new TStrUIntMap; } void bx_instr_stop() { if (stats) { delete stats; stats = 0; } else { cerr << "there's no statistics to stop!" << endl; } } void bx_instr_new_instruction(unsigned cpu) { Bit16u sel; if (!stats) return; ninstr++; instruction_t *i = &instruction[cpu]; if (i->valid) { char disasm_tbuf[512]; // buffer for instruction disassembly unsigned length = i->opcode_size, n; bx_disassembler.disasm(i->is32, i->is64, 0, 0, i->opcode, disasm_tbuf); if(length != 0) { sel = bx_cpu.sregs[BX_SEG_REG_CS].selector.value; if (sel!=0xf000 && sel!=0xc000) { (*stats)[std::string(disasm_tbuf)]++; } } } instruction[cpu].valid = 0; instruction[cpu].nprefixes = 0; instruction[cpu].num_data_accesses = 0; instruction[cpu].is_branch = 0; } static void branch_taken(unsigned cpu, bx_address new_eip) { if (!stats || !instruction[cpu].valid) return; // find linear address bx_address laddr = BX_CPU(cpu)->get_laddr(BX_SEG_REG_CS, new_eip); instruction[cpu].is_branch = 1; instruction[cpu].is_taken = 1; instruction[cpu].target_linear = laddr; } void bx_instr_cnear_branch_taken(unsigned cpu, bx_address new_eip) { branch_taken(cpu, new_eip); } void bx_instr_cnear_branch_not_taken(unsigned cpu) { if (!stats || !instruction[cpu].valid) return; instruction[cpu].is_branch = 1; instruction[cpu].is_taken = 0; } void bx_instr_ucnear_branch(unsigned cpu, unsigned what, bx_address new_eip) { branch_taken(cpu, new_eip); } void bx_instr_far_branch(unsigned cpu, unsigned what, Bit16u new_cs, bx_address new_eip) { branch_taken(cpu, new_eip); } void bx_instr_opcode(unsigned cpu, const Bit8u *opcode, unsigned len, bx_bool is32, bx_bool is64) { if (!stats) return; for(unsigned i=0;i<len;i++) { instruction[cpu].opcode[i] = opcode[i]; } instruction[cpu].is32 = is32; instruction[cpu].is64 = is64; instruction[cpu].opcode_size = len; } void bx_instr_fetch_decode_completed(unsigned cpu, bxInstruction_c *i) { if(stats) instruction[cpu].valid = 1; } void bx_instr_prefix(unsigned cpu, Bit8u prefix) { if(stats) instruction[cpu].nprefixes++; } void bx_instr_interrupt(unsigned cpu, unsigned vector) { char tmpbuf[50]; Bit16u sel; if(stats) { sel = bx_cpu.sregs[BX_SEG_REG_CS].selector.value; if (sel!=0xf000 && sel!=0xc000) { sprintf(tmpbuf, "int %02xh AH=%02x", vector, bx_cpu.gen_reg[0].word.byte.rh); (*stats)[std::string(tmpbuf)]++; } } } void bx_instr_exception(unsigned cpu, unsigned vector) { char tmpbuf[50]; if(stats) { sprintf(tmpbuf, "exc %02xh", vector); (*stats)[std::string(tmpbuf)]++; } } void bx_instr_hwinterrupt(unsigned cpu, unsigned vector, Bit16u cs, bx_address eip) { char tmpbuf[50]; if(stats) { sprintf(tmpbuf, "hwint %02xh", vector); (*stats)[std::string(tmpbuf)]++; } } void bx_instr_mem_data(unsigned cpu, unsigned seg, bx_address offset, unsigned len, unsigned rw) { unsigned index; bx_phy_address phy; if(!stats || !instruction[cpu].valid) return; if (instruction[cpu].num_data_accesses >= MAX_DATA_ACCESSES) { return; } bx_address lin = BX_CPU(cpu)->get_laddr(seg, offset); bx_bool page_valid = BX_CPU(cpu)->dbg_xlate_linear2phy(lin, &phy); phy = A20ADDR(phy); // If linear translation doesn't exist, a paging exception will occur. // Invalidate physical address data for now. if (!page_valid) { phy = 0; } index = instruction[cpu].num_data_accesses; instruction[cpu].data_access[index].laddr = lin; instruction[cpu].data_access[index].paddr = phy; instruction[cpu].data_access[index].op = rw; // instruction[cpu].data_access[index].size = size; instruction[cpu].num_data_accesses++; } void bx_instr_mem_data_access(unsigned cpu, unsigned seg, unsigned offset, unsigned len, unsigned rw) { return; }