OpenCores
URL https://opencores.org/ocsvn/zet86/zet86/trunk

Subversion Repositories zet86

[/] [zet86/] [trunk/] [src/] [bochs-diff-2.3.7/] [instrument/] [zet/] [instrument.cc] - Rev 39

Go to most recent revision | Compare with Previous | Blame | View Log

/////////////////////////////////////////////////////////////////////////
// $Id: instrument.cc,v 1.1 2008-11-14 03:31:25 zeus Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 
 
#include <assert.h>
#include <map>
#include <string>
#include <iostream>
using std::cerr;
using std::endl;
 
 
#include "bochs.h"
#include "cpu/cpu.h"
 
// maximum size of an instruction
#define MAX_OPCODE_SIZE 16
 
// maximum physical addresses an instruction can generate
#define MAX_DATA_ACCESSES 1024
 
// Use this variable to turn on/off collection of instrumentation data
// If you are not using the debugger to turn this on/off, then possibly
// start this at 1 instead of 0.
typedef std::map<std::string, unsigned> TStrUIntMap;
TStrUIntMap *stats = 0;
 
unsigned long ninstr = 0;
 
static disassembler bx_disassembler;
 
static struct instruction_t {
  bx_bool  valid;        // is current instruction valid
  unsigned opcode_size;
  unsigned nprefixes;
  Bit8u    opcode[MAX_OPCODE_SIZE];
  bx_bool  is32, is64;
  unsigned num_data_accesses;
  struct {
    bx_address laddr;     // linear address
    bx_phy_address paddr; // physical address
    unsigned op;          // BX_READ, BX_WRITE or BX_RW
    unsigned size;        // 1 .. 8
  } data_access[MAX_DATA_ACCESSES];
  bx_bool is_branch;
  bx_bool is_taken;
  bx_address target_linear;
} *instruction;
 
static logfunctions *instrument_log = new logfunctions ();
#define LOG_THIS instrument_log->
 
void bx_instr_init(unsigned cpu)
{
  assert(cpu < BX_SMP_PROCESSORS);
 
  if (instruction == NULL)
      instruction = new struct instruction_t[BX_SMP_PROCESSORS];
 
  fprintf(stderr, "Initialize cpu %d\n", cpu);
 
  bx_disassembler.toggle_syntax_mode();
}
 
void bx_instr_reset(unsigned cpu)
{
  instruction[cpu].valid = 0;
  instruction[cpu].nprefixes = 0;
  instruction[cpu].num_data_accesses = 0;
  instruction[cpu].is_branch = 0;
}
 
void bx_instr_print()
{
   if (stats)
     {
       cerr << "stats contains:\nKey\tValue\n";
 
       // use const_iterator to walk through elements of pairs
       for ( std::map<std::string, unsigned>
              ::const_iterator iter = stats->begin();
             iter != stats->end(); ++iter )
 
         cerr << iter->first << '\t' << iter->second << '\n';
 
       cerr << endl;
       cerr << "# instr: " << ninstr << endl;
     }
   else
     {
       cerr << "There's no statistics to show!" << endl;
     }
}
 
void bx_instr_start()
{
  if (stats) cerr << "instrumentation already started" << endl;
  else stats = new TStrUIntMap;
}
 
void bx_instr_stop()
{
  if (stats)
    {
      delete stats;
      stats = 0;
    }
  else
    {
      cerr << "there's no statistics to stop!" << endl;
    }
}
 
void bx_instr_new_instruction(unsigned cpu)
{
  Bit16u sel;
  if (!stats) return;
 
  ninstr++;
  instruction_t *i = &instruction[cpu];
 
  if (i->valid)
  {
    char disasm_tbuf[512];	// buffer for instruction disassembly
    unsigned length = i->opcode_size, n;
 
    bx_disassembler.disasm(i->is32, i->is64, 0, 0, i->opcode, disasm_tbuf);
 
    if(length != 0)
    {
      sel = bx_cpu.sregs[BX_SEG_REG_CS].selector.value;
      if (sel!=0xf000 && sel!=0xc000) {
        (*stats)[std::string(disasm_tbuf)]++;
      }
    }
  }
 
  instruction[cpu].valid = 0;
  instruction[cpu].nprefixes = 0;
  instruction[cpu].num_data_accesses = 0;
  instruction[cpu].is_branch = 0;
}
 
static void branch_taken(unsigned cpu, bx_address new_eip)
{
  if (!stats || !instruction[cpu].valid) return;
 
  // find linear address
  bx_address laddr = BX_CPU(cpu)->get_laddr(BX_SEG_REG_CS, new_eip);
 
  instruction[cpu].is_branch = 1;
  instruction[cpu].is_taken = 1;
  instruction[cpu].target_linear = laddr;
}
 
void bx_instr_cnear_branch_taken(unsigned cpu, bx_address new_eip)
{
  branch_taken(cpu, new_eip);
}
 
void bx_instr_cnear_branch_not_taken(unsigned cpu)
{
  if (!stats || !instruction[cpu].valid) return;
 
  instruction[cpu].is_branch = 1;
  instruction[cpu].is_taken = 0;
}
 
void bx_instr_ucnear_branch(unsigned cpu, unsigned what, bx_address new_eip)
{
  branch_taken(cpu, new_eip);
}
 
void bx_instr_far_branch(unsigned cpu, unsigned what, Bit16u new_cs, bx_address new_eip)
{
  branch_taken(cpu, new_eip);
}
 
void bx_instr_opcode(unsigned cpu, const Bit8u *opcode, unsigned len, bx_bool is32, bx_bool is64)
{
  if (!stats) return;
 
  for(unsigned i=0;i<len;i++)
  {
    instruction[cpu].opcode[i] = opcode[i];
  }
 
  instruction[cpu].is32 = is32;
  instruction[cpu].is64 = is64;
  instruction[cpu].opcode_size = len;
}
 
void bx_instr_fetch_decode_completed(unsigned cpu, bxInstruction_c *i)
{
  if(stats) instruction[cpu].valid = 1;
}
 
void bx_instr_prefix(unsigned cpu, Bit8u prefix)
{
  if(stats) instruction[cpu].nprefixes++;
}
 
void bx_instr_interrupt(unsigned cpu, unsigned vector)
{
  char tmpbuf[50];
  Bit16u sel;
  if(stats)
  {
    sel = bx_cpu.sregs[BX_SEG_REG_CS].selector.value;
    if (sel!=0xf000 && sel!=0xc000) {
      sprintf(tmpbuf, "int %02xh AH=%02x", vector,
        bx_cpu.gen_reg[0].word.byte.rh);
      (*stats)[std::string(tmpbuf)]++;
    }
  }
}
 
void bx_instr_exception(unsigned cpu, unsigned vector)
{
  char tmpbuf[50];
  if(stats)
  {
    sprintf(tmpbuf, "exc %02xh", vector);
    (*stats)[std::string(tmpbuf)]++;
  }
}
 
void bx_instr_hwinterrupt(unsigned cpu, unsigned vector, Bit16u cs, bx_address eip)
{
  char tmpbuf[50];
  if(stats)
  {
    sprintf(tmpbuf, "hwint %02xh", vector);
    (*stats)[std::string(tmpbuf)]++;
  }
}
 
void bx_instr_mem_data(unsigned cpu, unsigned seg, bx_address offset, unsigned len, unsigned rw)
{
  unsigned index;
  bx_phy_address phy;
 
  if(!stats || !instruction[cpu].valid) return;
 
  if (instruction[cpu].num_data_accesses >= MAX_DATA_ACCESSES)
  {
    return;
  }
 
  bx_address lin = BX_CPU(cpu)->get_laddr(seg, offset);
  bx_bool page_valid = BX_CPU(cpu)->dbg_xlate_linear2phy(lin, &phy);
  phy = A20ADDR(phy);
 
  // If linear translation doesn't exist, a paging exception will occur.
  // Invalidate physical address data for now.
  if (!page_valid)
  {
    phy = 0;
  }
 
  index = instruction[cpu].num_data_accesses;
  instruction[cpu].data_access[index].laddr = lin;
  instruction[cpu].data_access[index].paddr = phy;
  instruction[cpu].data_access[index].op    = rw;
//  instruction[cpu].data_access[index].size  = size;
  instruction[cpu].num_data_accesses++;
}
 
void bx_instr_mem_data_access(unsigned cpu, unsigned seg, unsigned offset, unsigned len, unsigned rw)
{
  return;
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.