URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [pfcache.v] - Rev 92
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: pfcache.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: Keeping our CPU fed with instructions, at one per clock and // with no stalls. An unusual feature of this cache is the // requirement that the entire cache may be cleared (if necessary). // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // //////////////////////////////////////////////////////////////////////////////// // module pfcache(i_clk, i_rst, i_new_pc, i_clear_cache, // i_early_branch, i_from_addr, i_stall_n, i_pc, o_i, o_pc, o_v, o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_err, i_wb_data, o_illegal); parameter LGCACHELEN = 8, ADDRESS_WIDTH=24, CACHELEN=(1<<LGCACHELEN), BUSW=32, AW=ADDRESS_WIDTH, CW=LGCACHELEN, PW=LGCACHELEN-5; input i_clk, i_rst, i_new_pc; input i_clear_cache; input i_stall_n; input [(AW-1):0] i_pc; output reg [(BUSW-1):0] o_i; output reg [(AW-1):0] o_pc; output wire o_v; // output reg o_wb_cyc, o_wb_stb; output wire o_wb_we; output reg [(AW-1):0] o_wb_addr; output wire [(BUSW-1):0] o_wb_data; // input i_wb_ack, i_wb_stall, i_wb_err; input [(BUSW-1):0] i_wb_data; // output reg o_illegal; // Fixed bus outputs: we read from the bus only, never write. // Thus the output data is ... irrelevant and don't care. We set it // to zero just to set it to something. assign o_wb_we = 1'b0; assign o_wb_data = 0; reg r_v; (* ram_style = "distributed" *) reg [(BUSW-1):0] cache [0:((1<<CW)-1)]; reg [(AW-CW-1):0] tags [0:((1<<(CW-PW))-1)]; reg [((1<<(CW-PW))-1):0] vmask; reg [(AW-1):0] lastpc; reg [(CW-1):0] rdaddr; reg [(AW-1):CW] tagval; wire [(AW-1):PW] lasttag; reg [(AW-1):PW] illegal_cache; initial o_i = 32'h76_00_00_00; // A NOOP instruction initial o_pc = 0; always @(posedge i_clk) if (~r_v) begin o_i <= cache[lastpc[(CW-1):0]]; o_pc <= lastpc; end else if ((i_stall_n)||(i_new_pc)) begin o_i <= cache[i_pc[(CW-1):0]]; o_pc <= i_pc; end initial tagval = 0; always @(posedge i_clk) if((o_wb_cyc)&&(rdaddr[(PW-1):0]=={(PW){1'b1}}) &&(i_wb_ack)&&(~i_wb_err)) // Our tag value changes any time we finish reading a // new cache line tagval <= o_wb_addr[(AW-1):CW]; else if ((i_stall_n)&&(~o_wb_cyc)) // Otherwise, as long as we're not reading new stuff, // the tag line changes any time the pipeline steps // forwards. Our purpose here is primarily just to // catch sudden changes. The result is that walking // from one cache line to the next will cost a clock. tagval <= tags[i_pc[(CW-1):PW]]; // i_pc will only increment when everything else isn't stalled, thus // we can set it without worrying about that. Doing this enables // us to work in spite of stalls. For example, if the next address // isn't valid, but the decoder is stalled, get the next address // anyway. initial lastpc = 0; always @(posedge i_clk) if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc)) lastpc <= i_pc; assign lasttag = lastpc[(AW-1):PW]; // initial lasttag = 0; // always @(posedge i_clk) // if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc)) // lasttag <= i_pc[(AW-1):PW]; wire r_v_from_pc, r_v_from_last; assign r_v_from_pc = ((i_pc[(AW-1):PW] == lasttag) &&(tagval == i_pc[(AW-1):CW]) &&(vmask[i_pc[(CW-1):PW]])); assign r_v_from_last = ( //(lastpc[(AW-1):PW] == lasttag)&& (tagval == lastpc[(AW-1):CW]) &&(vmask[lastpc[(CW-1):PW]])); reg [1:0] delay; initial delay = 2'h3; initial r_v = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_clear_cache)||(i_new_pc)||((r_v)&&(i_stall_n))) begin r_v <= r_v_from_pc; delay <= 2'h2; end else if (~r_v) begin // Otherwise, r_v was true and we were r_v <= r_v_from_last; // stalled, hence only if ~r_v if (o_wb_cyc) delay <= 2'h2; else if (delay != 0) delay <= delay + 2'b11; // i.e. delay -= 1; end assign o_v = (r_v)&&(~i_new_pc); initial o_wb_cyc = 1'b0; initial o_wb_stb = 1'b0; initial o_wb_addr = {(AW){1'b0}}; initial rdaddr = 0; always @(posedge i_clk) if ((i_rst)||(i_clear_cache)) begin o_wb_cyc <= 1'b0; o_wb_stb <= 1'b0; end else if (o_wb_cyc) begin if ((o_wb_stb)&&(~i_wb_stall)) begin if (o_wb_addr[(PW-1):0] == {(PW){1'b1}}) o_wb_stb <= 1'b0; else o_wb_addr[(PW-1):0] <= o_wb_addr[(PW-1):0]+1; end if (i_wb_ack) begin rdaddr <= rdaddr + 1; if (rdaddr[(PW-1):0] == {(PW){1'b1}}) tags[o_wb_addr[(CW-1):PW]] <= o_wb_addr[(AW-1):CW]; end if (((i_wb_ack)&&(rdaddr[(PW-1):0]=={(PW){1'b1}}))||(i_wb_err)) o_wb_cyc <= 1'b0; // else if (rdaddr[(PW-1):1] == {(PW-1){1'b1}}) // tags[lastpc[(CW-1):PW]] <= lastpc[(AW-1):CW]; end else if ((~r_v)&&(delay==0) &&((tagval != lastpc[(AW-1):CW]) ||(~vmask[lastpc[(CW-1):PW]])) &&(~o_illegal)) begin o_wb_cyc <= 1'b1; o_wb_stb <= 1'b1; o_wb_addr <= { lastpc[(AW-1):PW], {(PW){1'b0}} }; rdaddr <= { lastpc[(CW-1):PW], {(PW){1'b0}} }; end // Can't initialize an array, so leave cache uninitialized always @(posedge i_clk) if ((o_wb_cyc)&&(i_wb_ack)) cache[rdaddr] <= i_wb_data; // VMask ... is a section loaded? initial vmask = 0; always @(posedge i_clk) if ((i_rst)||(i_clear_cache)) vmask <= 0; else if ((~r_v)&&(tagval != lastpc[(AW-1):CW])&&(delay == 0)) vmask[lastpc[(CW-1):PW]] <= 1'b0; else if ((o_wb_cyc)&&(i_wb_ack)&&(rdaddr[(PW-1):0] == {(PW){1'b1}})) vmask[rdaddr[(CW-1):PW]] <= 1'b1; reg illegal_valid; initial illegal_cache = 0; initial illegal_valid = 0; always @(posedge i_clk) if ((i_rst)||(i_clear_cache)) begin illegal_cache <= 0; illegal_valid <= 0; end else if ((o_wb_cyc)&&(i_wb_err)) begin illegal_cache <= lastpc[(AW-1):PW]; illegal_valid <= 1'b1; end initial o_illegal = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_clear_cache)) o_illegal <= 1'b0; else o_illegal <= (illegal_valid) &&(tagval == i_pc[(AW-1):CW]) &&(illegal_cache == i_pc[(AW-1):PW]); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log