URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [zipcpu.v] - Rev 42
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////////// // // Filename: zipcpu.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This is the top level module holding the core of the Zip CPU // together. The Zip CPU is designed to be as simple as possible. // The instruction set is about as RISC as you can get, there are // only 16 instruction types supported (of which one isn't yet // supported ...) Please see the accompanying iset.html file // for a description of these instructions. // // All instructions are 32-bits wide. All bus accesses, both // address and data, are 32-bits over a wishbone bus. // // The Zip CPU is fully pipelined with the following pipeline stages: // // 1. Prefetch, returns the instruction from memory. On the // Basys board that I'm working on, one instruction may be // issued every 20 clocks or so, unless and until I implement a // cache or local memory. // // 2. Instruction Decode // // 3. Read Operands // // 4. Apply Instruction // // 4. Write-back Results // // A lot of difficult work has been placed into the pipeline stall // handling. My original proposal was not to allow pipeline stalls at all. // The idea would be that the CPU would just run every clock and whatever // stalled answer took place would just get fixed a clock or two later, // meaning that the compiler could just schedule everything out. // This idea died at the memory interface, which can take a variable // amount of time to read or write any value, thus the whole CPU needed // to stall on a stalled memory access. // // My next idea was to just let things complete. I.e., once an instrution // starts, it continues to completion no matter what and we go on. This // failed at writing the PC. If the PC gets written in something such as // a MOV PC,PC+5 instruction, 3 (or however long the pipeline is) clocks // later, if whether or not something happens in those clocks depends // upon the instruction fetch filling the pipeline, then the CPU has a // non-deterministic behavior. // // This leads to two possibilities: either *everything* stalls upon a // stall condition, or partial results need to be destroyed before // they are written. This is made more difficult by the fact that // once a command is written to the memory unit, whether it be a // read or a write, there is no undoing it--since peripherals on the // bus may act upon the answer with whatever side effects they might // have. (For example, writing a '1' to the interrupt register will // clear certain interrupts ...) Further, since the memory ops depend // upon conditions, the we'll need to wait for the condition codes to // be available before executing a memory op. Thus, memory ops can // proceed without stalling whenever either the previous instruction // doesn't write the flags register, or when the memory instruction doesn't // depend upon the flags register. // // The other possibility is that we leave independent instruction // execution behind, so that the pipeline is always full and stalls, // or moves forward, together on every clock. // // For now, we pick the first approach: independent instruction execution. // Thus, if stage 2 stalls, stages 3-5 may still complete the instructions // in their pipeline. This leaves another problem: what happens on a // MOV -1+PC,PC instruction? There will be four instructions behind this // one (or is it five?) that will need to be 'cancelled'. So here's // the plan: Anything can be cancelled before the ALU/MEM stage, // since memory ops cannot be canceled after being issued. Thus, the // ALU/MEM stage must stall if any prior instruction is going to write // the PC register (i.e. JMP). // // Further, let's define a "STALL" as a reason to not execute a stage // due to some condition at or beyond the stage, and let's define // a VALID flag to mean that this stage has completed. Thus, the clock // enable for a stage is (STG[n-1]VALID)&&((~STG[n]VALID)||(~STG[n]STALL)). // The ALU/MEM stages will also depend upon a master clock enable // (~SLEEP) condition as well. // // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Tecnology, LLC // /////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////////// // // We can either pipeline our fetches, or issue one fetch at a time. Pipelined // fetches are more complicated and therefore use more FPGA resources, while // single fetches will cause the CPU to stall for about 5 stalls each // instruction cycle, effectively reducing the instruction count per clock to // about 0.2. However, the area cost may be worth it. Consider: // // Slice LUTs ZipSystem ZipCPU // Single Fetching 2521 1734 // Pipelined fetching 2796 2046 // // `define OPT_SINGLE_FETCH // // // `define CPU_CC_REG 4'he `define CPU_PC_REG 4'hf `define CPU_TRAP_BIT 9 `define CPU_BREAK_BIT 7 `define CPU_STEP_BIT 6 `define CPU_GIE_BIT 5 `define CPU_SLEEP_BIT 4 // Compile time defines // (Currently unused) // `define OPT_SINGLE_FETCH // (Best path--define these!) `define OPT_CONDITIONAL_FLAGS `define OPT_PRECLEAR_BUS `define OPT_ILLEGAL_INSTRUCTION `define OPT_EARLY_BRANCHING `define OPT_PIPELINED_BUS_ACCESS module zipcpu(i_clk, i_rst, i_interrupt, // Debug interface i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data, o_dbg_stall, o_dbg_reg, o_dbg_cc, o_break, // CPU interface to the wishbone bus o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_data, i_wb_err, // Accounting/CPU usage interface o_op_stall, o_pf_stall, o_i_count); parameter RESET_ADDRESS=32'h0100000, LGICACHE=9; input i_clk, i_rst, i_interrupt; // Debug interface -- inputs input i_halt, i_clear_pf_cache; input [4:0] i_dbg_reg; input i_dbg_we; input [31:0] i_dbg_data; // Debug interface -- outputs output reg o_dbg_stall; output reg [31:0] o_dbg_reg; output reg [1:0] o_dbg_cc; output wire o_break; // Wishbone interface -- outputs output wire o_wb_gbl_cyc, o_wb_gbl_stb; output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we; output wire [31:0] o_wb_addr, o_wb_data; // Wishbone interface -- inputs input i_wb_ack, i_wb_stall; input [31:0] i_wb_data; input i_wb_err; // Accounting outputs ... to help us count stalls and usage output wire o_op_stall; output wire o_pf_stall; output wire o_i_count; // Registers reg [31:0] regset [0:31]; // Condition codes reg [3:0] flags, iflags; // (TRAP,FPEN,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z wire [10:0] w_uflags, w_iflags; reg trap, break_en, step, gie, sleep; `ifdef OPT_ILLEGAL_INSTRUCTION reg ill_err; `else wire ill_err; `endif reg bus_err_flag; // The master chip enable wire master_ce; // // // PIPELINE STAGE #1 :: Prefetch // Variable declarations // reg [31:0] pf_pc; reg new_pc, op_break; wire clear_pipeline; assign clear_pipeline = new_pc || i_clear_pf_cache; // || op_break; wire dcd_stalled; wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err; wire [31:0] pf_addr, pf_data; wire [31:0] instruction, instruction_pc; wire pf_valid, instruction_gie, pf_illegal; // // // PIPELINE STAGE #2 :: Instruction Decode // Variable declarations // // reg opvalid, opvalid_mem, opvalid_alu, op_wr_pc; wire op_stall, dcd_ce; reg [3:0] dcdOp; reg [4:0] dcdA, dcdB; reg dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc; reg [3:0] dcdF; reg dcdA_rd, dcdA_wr, dcdB_rd, dcdvalid, dcdM, dcdF_wr, dcd_gie, dcd_break; reg [31:0] dcd_pc; reg [23:0] r_dcdI; wire dcdA_stall, dcdB_stall, dcdF_stall; `ifdef OPT_PRECLEAR_BUS reg dcd_clear_bus; `endif `ifdef OPT_ILLEGAL_INSTRUCTION reg dcd_illegal; `endif `ifdef OPT_EARLY_BRANCHING reg dcd_early_branch_stb, dcd_early_branch; reg [31:0] dcd_branch_pc; `else wire dcd_early_branch_stb, dcd_early_branch; wire [31:0] dcd_branch_pc; `endif // // // PIPELINE STAGE #3 :: Read Operands // Variable declarations // // // // Now, let's read our operands reg [4:0] alu_reg; reg [3:0] opn; reg [4:0] opR; reg [31:0] r_opA, r_opB, op_pc; wire [31:0] w_opA, w_opB; wire [31:0] opA_nowait, opB_nowait, opA, opB; reg opR_wr, opR_cc, opF_wr, op_gie, opA_rd, opB_rd; wire [10:0] opFl; reg [6:0] r_opF; wire [8:0] opF; wire op_ce; `ifdef OPT_PRECLEAR_BUS reg op_clear_bus; `endif `ifdef OPT_ILLEGAL_INSTRUCTION reg op_illegal; `endif // // // PIPELINE STAGE #4 :: ALU / Memory // Variable declarations // // reg [31:0] alu_pc; reg alu_pc_valid;; wire alu_ce, alu_stall; wire [31:0] alu_result; wire [3:0] alu_flags; wire alu_valid; wire set_cond; reg alu_wr, alF_wr, alu_gie; `ifdef OPT_ILLEGAL_INSTRUCTION reg alu_illegal; `else wire alu_illegal; `endif wire mem_ce, mem_stalled; `ifdef OPT_PIPELINED_BUS_ACCESS wire mem_pipe_stalled; `endif wire mem_valid, mem_ack, mem_stall, mem_err, bus_err, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we; wire [4:0] mem_wreg; wire mem_busy, mem_rdbusy; wire [31:0] mem_addr, mem_data, mem_result; // // // PIPELINE STAGE #5 :: Write-back // Variable declarations // wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc; wire [4:0] wr_reg_id; wire [31:0] wr_reg_vl; wire w_switch_to_interrupt, w_release_from_interrupt; reg [31:0] upc, ipc; // // MASTER: clock enable. // assign master_ce = (~i_halt)&&(~o_break)&&(~sleep); // // PIPELINE STAGE #1 :: Prefetch // Calculate stall conditions // // PIPELINE STAGE #2 :: Instruction Decode // Calculate stall conditions assign dcd_ce = (pf_valid)&&(~dcd_stalled)&&(~clear_pipeline); assign dcd_stalled = (dcdvalid)&&( (op_stall) ||((dcdA_stall)||(dcdB_stall)||(dcdF_stall)) ||((opvalid_mem)&&(op_wr_pc)) ||((opvalid_mem)&&(opR_cc))); // // PIPELINE STAGE #3 :: Read Operands // Calculate stall conditions assign op_stall = ((mem_stalled)&&(opvalid_mem)) ||((alu_stall)&&(opvalid_alu)); assign op_ce = (dcdvalid)&&((~opvalid)||(~op_stall)); // // PIPELINE STAGE #4 :: ALU / Memory // Calculate stall conditions // // 1. Basic stall is if the previous stage is valid and the next is // busy. // 2. Also stall if the prior stage is valid and the master clock enable // is de-selected // 3. Next case: Stall if we want to start a memory operation and the // prior operation will write either the PC or CC registers. // 4. Last case: Stall if we would otherwise move a break instruction // through the ALU. Break instructions are not allowed through // the ALU. assign alu_stall = (((~master_ce)||(mem_rdbusy))&&(opvalid_alu)) //Case 1&2 ||((opvalid_mem)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie) &&((wr_write_pc)||(wr_write_cc))) // Case 3 ||((opvalid)&&(op_break)); // Case 4 assign alu_ce = (master_ce)&&(~mem_rdbusy)&&(opvalid_alu)&&(~alu_stall)&&(~clear_pipeline); // `ifdef OPT_PIPELINED_BUS_ACCESS assign mem_ce = (master_ce)&&(opvalid_mem)&&(~clear_pipeline) &&(set_cond)&&(~mem_stalled); assign mem_stalled = (~master_ce)||((opvalid_mem)&&( (mem_pipe_stalled) ||((~op_pipe)&&(mem_busy)) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie) &&((wr_write_pc)||(wr_write_cc))))); `else assign mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled)&&(~clear_pipeline)&&(set_cond); assign mem_stalled = (mem_busy)||((opvalid_mem)&&( (~master_ce) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc))))); `endif // // // PIPELINE STAGE #1 :: Prefetch // // `ifdef OPT_SINGLE_FETCH wire pf_ce; assign pf_ce = (~dcd_stalled); prefetch pf(i_clk, i_rst, (pf_ce), pf_pc, gie, instruction, instruction_pc, instruction_gie, pf_valid, pf_illegal, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data); `else // Pipe fetch pipefetch #(RESET_ADDRESS, LGICACHE) pf(i_clk, i_rst, (new_pc)|(dcd_early_branch_stb), i_clear_pf_cache, ~dcd_stalled, (new_pc)?pf_pc:dcd_branch_pc, instruction, instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, `ifdef OPT_PRECLEAR_BUS ((dcd_clear_bus)&&(dcdvalid)) ||((op_clear_bus)&&(opvalid)) || `endif (mem_cyc_lcl)||(mem_cyc_gbl), pf_illegal); assign instruction_gie = gie; `endif initial dcdvalid = 1'b0; always @(posedge i_clk) if (i_rst) dcdvalid <= 1'b0; else if (dcd_ce) dcdvalid <= (~clear_pipeline)&&(~dcd_early_branch_stb); else if ((~dcd_stalled)||(clear_pipeline)||(dcd_early_branch)) dcdvalid <= 1'b0; `ifdef OPT_EARLY_BRANCHING always @(posedge i_clk) if ((dcd_ce)&&(instruction[27:24]==`CPU_PC_REG)&&(~sleep)) begin dcd_early_branch <= 1'b0; // First case, a move to PC instruction if ((instruction[31:28] == 4'h2) &&((instruction_gie) ||((~instruction[20])&&(~instruction[15]))) &&(instruction[23:21]==3'h0)) begin dcd_early_branch_stb <= 1'b1; dcd_early_branch <= 1'b1; // r_dcdI <= { {(17){instruction[14]}}, instruction[14:0] }; end else // Next case, an Add Imm -> PC instruction if ((instruction[31:28] == 4'ha) // Add &&(~instruction[20]) // Immediate &&(instruction[23:21]==3'h0)) // Always begin dcd_early_branch_stb <= 1'b1; dcd_early_branch <= 1'b1; // r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] }; end else // Next case: load Immediate to PC if (instruction[31:28] == 4'h3) begin dcd_early_branch_stb <= 1'b1; dcd_early_branch <= 1'b1; // r_dcdI <= { instruction[23:0] }; end end else begin if (dcd_ce) dcd_early_branch <= 1'b0; dcd_early_branch_stb <= 1'b0; end always @(posedge i_clk) if (dcd_ce) begin if (instruction[31]) // Add dcd_branch_pc <= instruction_pc+32'h01+{ {(12){instruction[19]}}, instruction[19:0] }; else if (~instruction[28]) // 4'h2 = MOV dcd_branch_pc <= instruction_pc+32'h01+{ {(17){instruction[14]}}, instruction[14:0] }; else // if (instruction[28]) // 4'h3 = LDI dcd_branch_pc <= instruction_pc+32'h01+{ {(8){instruction[23]}}, instruction[23:0] }; end `else // OPT_EARLY_BRANCHING assign dcd_early_branch_stb = 1'b0; assign dcd_early_branch = 1'b0; assign dcd_branch_pc = 32'h00; `endif // OPT_EARLY_BRANCHING always @(posedge i_clk) if (dcd_ce) begin dcd_pc <= instruction_pc+1; // Record what operation we are doing dcdOp <= instruction[31:28]; // Default values dcdA[4:0] <= { instruction_gie, instruction[27:24] }; dcdB[4:0] <= { instruction_gie, instruction[19:16] }; dcdA_cc <= (instruction[27:24] == `CPU_CC_REG); dcdB_cc <= (instruction[19:16] == `CPU_CC_REG); dcdA_pc <= (instruction[27:24] == `CPU_PC_REG); dcdB_pc <= (instruction[19:16] == `CPU_PC_REG); dcdM <= 1'b0; `ifdef OPT_CONDITIONAL_FLAGS dcdF_wr <= (instruction[23:21]==3'h0); `else dcdF_wr <= 1'b1; `endif `ifdef OPT_PRECLEAR_BUS dcd_clear_bus <= 1'b0; `endif `ifdef OPT_ILLEGAL_INSTRUCTION dcd_illegal <= pf_illegal; `endif // Set the condition under which we do this operation // The top four bits are a mask, the bottom four the // value the flags must equal once anded with the mask dcdF <= { (instruction[23:21]==3'h0), instruction[23:21] }; casez(instruction[31:28]) 4'h2: begin // Move instruction if (~instruction_gie) begin dcdA[4] <= instruction[20]; dcdB[4] <= instruction[15]; end dcdA_wr <= 1'b1; dcdA_rd <= 1'b0; dcdB_rd <= 1'b1; r_dcdI <= { {(9){instruction[14]}}, instruction[14:0] }; dcdF_wr <= 1'b0; // Don't write flags end 4'h3: begin // Load immediate dcdA_wr <= 1'b1; dcdA_rd <= 1'b0; dcdB_rd <= 1'b0; r_dcdI <= { instruction[23:0] }; dcdF_wr <= 1'b0; // Don't write flags dcdF <= 4'h8; // This is unconditional dcdOp <= 4'h2; end 4'h4: begin // Multiply, LDI[HI|LO], or NOOP/BREAK `ifdef OPT_CONDITIONAL_FLAGS // Don't write flags except for multiplies // and then only if they are unconditional dcdF_wr <= ((instruction[27:25] != 3'h7) &&(instruction[23:21]==3'h0)); `else // Don't write flags except for multiplies dcdF_wr <= (instruction[27:25] != 3'h7); `endif r_dcdI <= { 8'h00, instruction[15:0] }; if (instruction[27:24] == 4'he) begin // NOOP instruction dcdA_wr <= 1'b0; dcdA_rd <= 1'b0; dcdB_rd <= 1'b0; dcdOp <= 4'h2; // Might also be a break. Big // instruction set hole here. `ifdef OPT_ILLEGAL_INSTRUCTION dcd_illegal <= (pf_illegal)||(instruction[23:1] != 0); `endif end else if (instruction[27:24] == 4'hf) begin // Load partial immediate(s) dcdA_wr <= 1'b1; dcdA_rd <= 1'b1; dcdB_rd <= 1'b0; dcdA[4:0] <= { instruction_gie, instruction[19:16] }; dcdA_cc <= (instruction[19:16] == `CPU_CC_REG); dcdA_pc <= (instruction[19:16] == `CPU_PC_REG); dcdOp <= { 3'h3, instruction[20] }; end else begin // Actual multiply instruction r_dcdI <= { 8'h00, instruction[15:0] }; dcdA_rd <= 1'b1; dcdB_rd <= (instruction[19:16] != 4'hf); dcdOp[3:0] <= (instruction[20])? 4'h4:4'h3; end end 4'b011?: begin // Load/Store dcdF_wr <= 1'b0; // Don't write flags dcdA_wr <= (~instruction[28]); // Write on loads dcdA_rd <= (instruction[28]); // Read on stores dcdB_rd <= instruction[20]; if (instruction[20]) r_dcdI <= { {(8){instruction[15]}}, instruction[15:0] }; else r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] }; dcdM <= 1'b1; // Memory operation `ifdef OPT_PRECLEAR_BUS dcd_clear_bus <= (instruction[23:21]==3'h0); `endif end default: begin dcdA_wr <= (instruction[31])||(instruction[31:28]==4'h5); dcdA_rd <= 1'b1; dcdB_rd <= instruction[20]; if (instruction[20]) r_dcdI <= { {(8){instruction[15]}}, instruction[15:0] }; else r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] }; end endcase dcd_gie <= instruction_gie; end always @(posedge i_clk) if (dcd_ce) dcd_break <= (instruction[31:0] == 32'h4e000001); else if ((clear_pipeline)||(~dcdvalid)) // SHOULDNT THIS BE ||op_ce? dcd_break <= 1'b0; `ifdef OPT_PIPELINED_BUS_ACCESS reg [23:0] r_opI; reg [4:0] op_B; reg op_pipe; initial op_pipe = 1'b0; // To be a pipeable operation, there must be // two valid adjacent instructions // Both must be memory instructions // Both must be writes, or both must be reads // Both operations must be to the same identical address, // or at least a single (one) increment above that address always @(posedge i_clk) if (op_ce) op_pipe <= (dcdvalid)&&(opvalid_mem)&&(dcdM) // Both mem &&(dcdOp[0]==opn[0]) // Both Rd, or both Wr &&(dcdB == op_B) // Same address register &&((r_dcdI == r_opI)||(r_dcdI==r_opI+24'h1)); always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) r_opI <= r_dcdI; always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) op_B <= dcdB; `endif // // // PIPELINE STAGE #3 :: Read Operands (Registers) // // assign w_opA = regset[dcdA]; assign w_opB = regset[dcdB]; always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) begin if ((wr_reg_ce)&&(wr_reg_id == dcdA)) r_opA <= wr_reg_vl; else if ((dcdA_pc)&&(dcdA[4] == dcd_gie)) r_opA <= dcd_pc; else if (dcdA_pc) r_opA <= upc; else if (dcdA_cc) r_opA <= { w_opA[31:11], (dcd_gie)?w_uflags:w_iflags }; else r_opA <= w_opA; end wire [31:0] dcdI, w_opBnI; assign dcdI = { {(8){r_dcdI[23]}}, r_dcdI }; assign w_opBnI = (~dcdB_rd) ? 32'h00 : (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_reg_vl : (((dcdB_pc)&&(dcdB[4] == dcd_gie)) ? dcd_pc : ((dcdB_pc) ? upc : ((dcdB_cc) ? { w_opB[31:11], (dcd_gie)?w_uflags:w_iflags} : regset[dcdB])))); always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) r_opB <= w_opBnI + dcdI; // The logic here has become more complex than it should be, no thanks // to Xilinx's Vivado trying to help. The conditions are supposed to // be two sets of four bits: the top bits specify what bits matter, the // bottom specify what those top bits must equal. However, two of // conditions check whether bits are on, and those are the only two // conditions checking those bits. Therefore, Vivado complains that // these two bits are redundant. Hence the convoluted expression // below, arriving at what we finally want in the (now wire net) // opF. always @(posedge i_clk) if (op_ce) begin // Set the flag condition codes, bit order is [3:0]=VNCZ case(dcdF[2:0]) 3'h0: r_opF <= 7'h80; // Always 3'h1: r_opF <= 7'h11; // Z 3'h2: r_opF <= 7'h10; // NE 3'h3: r_opF <= 7'h20; // GE (!N) 3'h4: r_opF <= 7'h30; // GT (!N&!Z) 3'h5: r_opF <= 7'h24; // LT 3'h6: r_opF <= 7'h02; // C 3'h7: r_opF <= 7'h08; // V endcase end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value } assign opF = { r_opF[6], r_opF[3], r_opF[5], r_opF[1], r_opF[4:0] }; initial opvalid = 1'b0; initial opvalid_alu = 1'b0; initial opvalid_mem = 1'b0; always @(posedge i_clk) if (i_rst) begin opvalid <= 1'b0; opvalid_alu <= 1'b0; opvalid_mem <= 1'b0; end else if (op_ce) begin // Do we have a valid instruction? // The decoder may vote to stall one of its // instructions based upon something we currently // have in our queue. This instruction must then // move forward, and get a stall cycle inserted. // Hence, the test on dcd_stalled here. If we must // wait until our operands are valid, then we aren't // valid yet until then. opvalid<= (~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled); `ifdef OPT_ILLEGAL_INSTRUCTION opvalid_mem <= (dcdM)&&(~dcd_illegal)&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled); opvalid_alu <= ((~dcdM)||(dcd_illegal))&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled); `else opvalid_alu <= (~dcdM)&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled); opvalid_mem <= (dcdM)&&(~clear_pipeline)&&(dcdvalid)&&(~dcd_stalled); `endif end else if ((~op_stall)||(clear_pipeline)) begin opvalid <= 1'b0; opvalid_alu <= 1'b0; opvalid_mem <= 1'b0; end // Here's part of our debug interface. When we recognize a break // instruction, we set the op_break flag. That'll prevent this // instruction from entering the ALU, and cause an interrupt before // this instruction. Thus, returning to this code will cause the // break to repeat and continue upon return. To get out of this // condition, replace the break instruction with what it is supposed // to be, step through it, and then replace it back. In this fashion, // a debugger can step through code. // assign w_op_break = (dcd_break)&&(r_dcdI[15:0] == 16'h0001); initial op_break = 1'b0; always @(posedge i_clk) if (i_rst) op_break <= 1'b0; else if (op_ce) op_break <= (dcd_break); else if ((clear_pipeline)||(~opvalid)) op_break <= 1'b0; `ifdef OPT_ILLEGAL_INSTRUCTION always @(posedge i_clk) if(op_ce) op_illegal <= dcd_illegal; `endif always @(posedge i_clk) if (op_ce) begin opn <= dcdOp; // Which ALU operation? // opM <= dcdM; // Is this a memory operation? `ifdef OPT_EARLY_BRANCHING opF_wr <= (dcdF_wr)&&((~dcdA_cc)||(~dcdA_wr))&&(~dcd_early_branch); opR_wr <= (dcdA_wr)&&(~dcd_early_branch); `else // Will we write the flags/CC Register with our result? opF_wr <= (dcdF_wr)&&((~dcdA_cc)||(~dcdA_wr)); // Will we be writing our results into a register? opR_wr <= dcdA_wr; `endif // What register will these results be written into? opR <= dcdA; opR_cc <= (dcdA_wr)&&(dcdA_cc)&&(dcdA[4]==dcd_gie); // User level (1), vs supervisor (0)/interrupts disabled op_gie <= dcd_gie; // We're not done with these yet--we still need them // for the unclocked assign. We need the unclocked // assign so that there's no wait state between an // ALU or memory result and the next register that may // use that value. opA_rd <= dcdA_rd; opB_rd <= dcdB_rd; op_pc <= dcd_pc; // `ifdef OPT_EARLY_BRANCHING op_wr_pc <= ((dcdA_wr)&&(dcdA_pc)&&(dcdA[4] == dcd_gie))&&(~dcd_early_branch); `else op_wr_pc <= ((dcdA_wr)&&(dcdA_pc)&&(dcdA[4] == dcd_gie)); `endif `ifdef OPT_PRECLEAR_BUS op_clear_bus <= dcd_clear_bus; `endif end assign opFl = (op_gie)?(w_uflags):(w_iflags); // This is tricky. First, the PC and Flags registers aren't kept in // register set but in special registers of their own. So step one // is to select the right register. Step to is to replace that // register with the results of an ALU or memory operation, if such // results are now available. Otherwise, we'd need to insert a wait // state of some type. // // The alternative approach would be to define some sort of // op_stall wire, which would stall any upstream stage. // We'll create a flag here to start our coordination. Once we // define this flag to something other than just plain zero, then // the stalls will already be in place. reg opA_alu; always @(posedge i_clk) if (op_ce) opA_alu <= (opvalid_alu)&&(opR == dcdA)&&(dcdA_rd); assign opA = (opA_alu) ? alu_result : r_opA; assign dcdA_stall = (dcdvalid)&&(dcdA_rd)&&( // Skip the requirement on writing back opA // Stall on memory, since we'll always need to stall for a // memory access anyway ((opvalid_mem)&&(opR_wr)&&(opR == dcdA))|| ((opvalid_alu)&&(opF_wr)&&(dcdA_cc))|| ((mem_busy)&&(~mem_we)&&(mem_wreg == dcdA))); reg opB_alu; always @(posedge i_clk) if (op_ce) opB_alu <= (opvalid_alu)&&(opR == dcdB)&&(dcdB_rd)&&(dcdI == 0); assign opB = (opB_alu) ? alu_result : r_opB; assign dcdB_stall = (dcdvalid)&&(dcdB_rd)&&( // Stall on memory ops writing to my register // (i.e. loads), or on any write to my // register if I have an immediate offset // Note the exception for writing to the PC: // if I write to the PC, the whole next // instruction is invalid, not just the // operand. That'll get wiped in the // next operation anyway, so don't stall // here. ((opvalid)&&(opR_wr)&&(opR == dcdB) &&(opR != { op_gie, `CPU_PC_REG} ) &&((opvalid_mem)||(dcdI != 0))) // Stall on any write to the flags register, // if we're going to need the flags value for // opB. ||((opvalid_alu)&&(opF_wr)&&(dcdB_cc)) // Stall on any ongoing memory operation that // will write to opB ||((mem_busy)&&(~mem_we)&&(mem_wreg == dcdB))); assign dcdF_stall = (dcdvalid)&&((~dcdF[3])||(dcdA_cc)||(dcdB_cc)) &&(opvalid)&&(opR_cc); // // // PIPELINE STAGE #4 :: Apply Instruction // // cpuops doalu(i_clk, i_rst, alu_ce, (opvalid_alu), opn, opA, opB, alu_result, alu_flags, alu_valid); assign set_cond = ((opF[7:4]&opFl[3:0])==opF[3:0]); initial alF_wr = 1'b0; initial alu_wr = 1'b0; always @(posedge i_clk) if (i_rst) begin alu_wr <= 1'b0; alF_wr <= 1'b0; end else if (alu_ce) begin alu_reg <= opR; alu_wr <= (opR_wr)&&(set_cond); alF_wr <= (opF_wr)&&(set_cond); end else begin // These are strobe signals, so clear them if not // set for any particular clock alu_wr <= 1'b0; alF_wr <= 1'b0; end always @(posedge i_clk) if ((alu_ce)||(mem_ce)) alu_gie <= op_gie; always @(posedge i_clk) if ((alu_ce)||(mem_ce)) alu_pc <= op_pc; `ifdef OPT_ILLEGAL_INSTRUCTION always @(posedge i_clk) if ((alu_ce)||(mem_ce)) alu_illegal <= op_illegal; `endif initial alu_pc_valid = 1'b0; always @(posedge i_clk) alu_pc_valid <= (~i_rst)&&(master_ce)&&(~mem_rdbusy)&&(opvalid)&&(~clear_pipeline) &&((opvalid_alu)||(~mem_stalled)); `ifdef OPT_PIPELINED_BUS_ACCESS pipemem domem(i_clk, i_rst, mem_ce, (opn[0]), opB, opA, opR, mem_busy, mem_pipe_stalled, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, i_wb_data); `else // PIPELINED_BUS_ACCESS memops domem(i_clk, i_rst, mem_ce, (opn[0]), opB, opA, opR, mem_busy, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, i_wb_data); `endif // PIPELINED_BUS_ACCESS assign mem_rdbusy = (((mem_cyc_gbl)||(mem_cyc_lcl))&&(~mem_we)); // Either the prefetch or the instruction gets the memory bus, but // never both. wbdblpriarb #(32,32) pformem(i_clk, i_rst, // Memory access to the arbiter, priority position mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, // Prefetch access to the arbiter pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, // Common wires, in and out, of the arbiter o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_err); // // // PIPELINE STAGE #5 :: Write-back results // // // This stage is not allowed to stall. If results are ready to be // written back, they are written back at all cost. Sleepy CPU's // won't prevent write back, nor debug modes, halting the CPU, nor // anything else. Indeed, the (master_ce) bit is only as relevant // as knowinig something is available for writeback. // // Write back to our generic register set ... // When shall we write back? On one of two conditions // Note that the flags needed to be checked before issuing the // bus instruction, so they don't need to be checked here. // Further, alu_wr includes (set_cond), so we don't need to // check for that here either. `ifdef OPT_ILLEGAL_INSTRUCTION assign wr_reg_ce = (~alu_illegal)&&((alu_wr)&&(alu_valid)&&(~clear_pipeline))||(mem_valid); `else assign wr_reg_ce = ((alu_wr)&&(alu_valid)&&(~clear_pipeline))||(mem_valid); `endif // Which register shall be written? // COULD SIMPLIFY THIS: by adding three bits to these registers, // One or PC, one for CC, and one for GIE match assign wr_reg_id = (alu_wr)?alu_reg:mem_wreg; // Are we writing to the CC register? assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG); // Are we writing to the PC? assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); // What value to write? assign wr_reg_vl = (alu_wr)?alu_result:mem_result; always @(posedge i_clk) if (wr_reg_ce) regset[wr_reg_id] <= wr_reg_vl; else if ((i_halt)&&(i_dbg_we)) regset[i_dbg_reg] <= i_dbg_data[31:0]; // // Write back to the condition codes/flags register ... // When shall we write to our flags register? alF_wr already // includes the set condition ... assign wr_flags_ce = (alF_wr)&&(alu_valid)&&(~clear_pipeline)&&(~alu_illegal); `ifdef OPT_ILLEGAL_INSTRUCTION assign w_uflags = { bus_err_flag, trap, ill_err, 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; assign w_iflags = { bus_err_flag, trap, ill_err, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags }; `else assign w_uflags = { bus_err_flag, trap, ill_err, 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; assign w_iflags = { bus_err_flag, trap, ill_err, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags }; `endif // What value to write? always @(posedge i_clk) // If explicitly writing the register itself if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc)) flags <= wr_reg_vl[3:0]; // Otherwise if we're setting the flags from an ALU operation else if ((wr_flags_ce)&&(alu_gie)) flags <= alu_flags; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG })) flags <= i_dbg_data[3:0]; always @(posedge i_clk) if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) iflags <= wr_reg_vl[3:0]; else if ((wr_flags_ce)&&(~alu_gie)) iflags <= alu_flags; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b0, `CPU_CC_REG })) iflags <= i_dbg_data[3:0]; // The 'break' enable bit. This bit can only be set from supervisor // mode. It control what the CPU does upon encountering a break // instruction. // // The goal, upon encountering a break is that the CPU should stop and // not execute the break instruction, choosing instead to enter into // either interrupt mode or halt first. // if ((break_en) AND (break_instruction)) // user mode or not // HALT CPU // else if (break_instruction) // only in user mode // set an interrupt flag, go to supervisor mode // allow supervisor to step the CPU. // Upon a CPU halt, any break condition will be reset. The // external debugger will then need to deal with whatever // condition has taken place. initial break_en = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_halt)) break_en <= 1'b0; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) break_en <= wr_reg_vl[`CPU_BREAK_BIT]; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b0, `CPU_CC_REG })) break_en <= i_dbg_data[`CPU_BREAK_BIT]; `ifdef OPT_ILLEGAL_INSTRUCTION assign o_break = ((break_en)||(~op_gie))&&(op_break) &&(~alu_valid)&&(~mem_valid)&&(~mem_busy) &&(~clear_pipeline) ||((~alu_gie)&&(bus_err)) ||((~alu_gie)&&(alu_valid)&&(alu_illegal)); `else assign o_break = (((break_en)||(~op_gie))&&(op_break) &&(~alu_valid)&&(~mem_valid)&&(~mem_busy) &&(~clear_pipeline)) ||((~alu_gie)&&(bus_err)); `endif // The sleep register. Setting the sleep register causes the CPU to // sleep until the next interrupt. Setting the sleep register within // interrupt mode causes the processor to halt until a reset. This is // a panic/fault halt. The trick is that you cannot be allowed to // set the sleep bit and switch to supervisor mode in the same // instruction: users are not allowed to halt the CPU. always @(posedge i_clk) if ((i_rst)||((i_interrupt)&&(gie))) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie)) // In supervisor mode, we have no protections. The // supervisor can set the sleep bit however he wants. sleep <= wr_reg_vl[`CPU_SLEEP_BIT]; else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_vl[`CPU_GIE_BIT])) // In user mode, however, you can only set the sleep // mode while remaining in user mode. You can't switch // to sleep mode *and* supervisor mode at the same // time, lest you halt the CPU. sleep <= wr_reg_vl[`CPU_SLEEP_BIT]; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG })) sleep <= i_dbg_data[`CPU_SLEEP_BIT]; always @(posedge i_clk) if ((i_rst)||(w_switch_to_interrupt)) step <= 1'b0; else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc)) step <= wr_reg_vl[`CPU_STEP_BIT]; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG })) step <= i_dbg_data[`CPU_STEP_BIT]; else if ((alu_pc_valid)&&(step)&&(gie)) step <= 1'b0; // The GIE register. Only interrupts can disable the interrupt register assign w_switch_to_interrupt = (gie)&&( // On interrupt (obviously) (i_interrupt) // If we are stepping the CPU ||((alu_pc_valid)&&(step)) // If we encounter a break instruction, if the break // enable isn't set. ||((master_ce)&&(~mem_rdbusy)&&(op_break)&&(~break_en)) `ifdef OPT_ILLEGAL_INSTRUCTION // On an illegal instruction ||((alu_valid)&&(alu_illegal)) `endif // If we write to the CC register ||((wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) // Or if, in debug mode, we write to the CC register ||((i_halt)&&(i_dbg_we)&&(~i_dbg_data[`CPU_GIE_BIT]) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG})) ); assign w_release_from_interrupt = (~gie)&&(~i_interrupt) // Then if we write the CC register &&(((wr_reg_ce)&&(wr_reg_vl[`CPU_GIE_BIT]) &&(~wr_reg_id[4])&&(wr_write_cc)) // Or if, in debug mode, we write the CC register ||((i_halt)&&(i_dbg_we)&&(i_dbg_data[`CPU_GIE_BIT]) &&(i_dbg_reg == { 1'b0, `CPU_CC_REG})) ); always @(posedge i_clk) if (i_rst) gie <= 1'b0; else if (w_switch_to_interrupt) gie <= 1'b0; else if (w_release_from_interrupt) gie <= 1'b1; initial trap = 1'b0; always @(posedge i_clk) if (i_rst) trap <= 1'b0; else if ((gie)&&(wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) trap <= 1'b1; else if ((i_halt)&&(i_dbg_we)&&(i_dbg_reg[3:0] == `CPU_CC_REG) &&(~i_dbg_data[`CPU_GIE_BIT])) trap <= i_dbg_data[`CPU_TRAP_BIT]; else if (w_release_from_interrupt) trap <= 1'b0; `ifdef OPT_ILLEGAL_INSTRUCTION initial ill_err = 1'b0; always @(posedge i_clk) if (i_rst) ill_err <= 1'b0; else if (w_release_from_interrupt) ill_err <= 1'b0; else if ((alu_valid)&&(alu_illegal)&&(gie)) ill_err <= 1'b1; `else assign ill_err = 1'b0; `endif initial bus_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) bus_err_flag <= 1'b0; else if (w_release_from_interrupt) bus_err_flag <= 1'b0; else if ((bus_err)&&(alu_gie)) bus_err_flag <= 1'b1; // // Write backs to the PC register, and general increments of it // We support two: upc and ipc. If the instruction is normal, // we increment upc, if interrupt level we increment ipc. If // the instruction writes the PC, we write whichever PC is appropriate. // // Do we need to all our partial results from the pipeline? // What happens when the pipeline has gie and ~gie instructions within // it? Do we clear both? What if a gie instruction tries to clear // a non-gie instruction? always @(posedge i_clk) if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc)) upc <= wr_reg_vl; else if ((alu_gie)&&(alu_pc_valid)&&(~clear_pipeline)) upc <= alu_pc; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_PC_REG })) upc <= i_dbg_data; always @(posedge i_clk) if (i_rst) ipc <= RESET_ADDRESS; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc)) ipc <= wr_reg_vl; else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline)) ipc <= alu_pc; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b0, `CPU_PC_REG })) ipc <= i_dbg_data; always @(posedge i_clk) if (i_rst) pf_pc <= RESET_ADDRESS; else if (w_switch_to_interrupt) pf_pc <= ipc; else if (w_release_from_interrupt) pf_pc <= upc; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) pf_pc <= wr_reg_vl; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg[4:0] == { gie, `CPU_PC_REG})) pf_pc <= i_dbg_data; else if (dcd_ce) pf_pc <= pf_pc + 1; initial new_pc = 1'b1; always @(posedge i_clk) if ((i_rst)||(i_clear_pf_cache)) new_pc <= 1'b1; else if (w_switch_to_interrupt) new_pc <= 1'b1; else if (w_release_from_interrupt) new_pc <= 1'b1; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) new_pc <= 1'b1; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg[4:0] == { gie, `CPU_PC_REG})) new_pc <= 1'b1; else new_pc <= 1'b0; // // The debug interface always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= (i_dbg_reg[4])?upc:ipc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) o_dbg_reg[10:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; end always @(posedge i_clk) o_dbg_cc <= { gie, sleep }; always @(posedge i_clk) o_dbg_stall <= (i_halt)&&( (pf_cyc)||(mem_cyc_gbl)||(mem_cyc_lcl)||(mem_busy) ||((~opvalid)&&(~i_rst)) ||((~dcdvalid)&&(~i_rst))); // // // Produce accounting outputs: Account for any CPU stalls, so we can // later evaluate how well we are doing. // // assign o_op_stall = (master_ce)&&((~opvalid)||(op_stall)); assign o_pf_stall = (master_ce)&&(~pf_valid); assign o_i_count = (alu_pc_valid)&&(~clear_pipeline); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log