URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [zipcpu.v] - Rev 5
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////////// // // Filename: zipcpu.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This is the top level module holding the core of the Zip CPU // together. The Zip CPU is designed to be as simple as possible. // The instruction set is about as RISC as you can get, there are // only 16 instruction types supported (of which one isn't yet // supported ...) Please see the accompanying iset.html file // for a description of these instructions. // // All instructions are 32-bits wide. All bus accesses, both // address and data, are 32-bits over a wishbone bus. // // The Zip CPU is fully pipelined with the following pipeline stages: // // 1. Prefetch, returns the instruction from memory. On the // Basys board that I'm working on, one instruction may be // issued every 20 clocks or so, unless and until I implement a // cache or local memory. // // 2. Instruction Decode // // 3. Read Operands // // 4. Apply Instruction // // 4. Write-back Results // // A lot of difficult work has been placed into the pipeline stall // handling. My original proposal was not to allow pipeline stalls at all. // The idea would be that the CPU would just run every clock and whatever // stalled answer took place would just get fixed a clock or two later, // meaning that the compiler could just schedule everything out. // This idea died at the memory interface, which can take a variable // amount of time to read or write any value, thus the whole CPU needed // to stall on a stalled memory access. // // My next idea was to just let things complete. I.e., once an instrution // starts, it continues to completion no matter what and we go on. This // failed at writing the PC. If the PC gets written in something such as // a MOV PC,PC+5 instruction, 3 (or however long the pipeline is) clocks // later, if whether or not something happens in those clocks depends // upon the instruction fetch filling the pipeline, then the CPU has a // non-deterministic behavior. // // This leads to two possibilities: either *everything* stalls upon a // stall condition, or partial results need to be destroyed before // they are written. This is made more difficult by the fact that // once a command is written to the memory unit, whether it be a // read or a write, there is no undoing it--since peripherals on the // bus may act upon the answer with whatever side effects they might // have. (For example, writing a '1' to the interrupt register will // clear certain interrupts ...) Further, since the memory ops depend // upon conditions, the we'll need to wait for the condition codes to // be available before executing a memory op. Thus, memory ops can // proceed without stalling whenever either the previous instruction // doesn't write the flags register, or when the memory instruction doesn't // depend upon the flags register. // // The other possibility is that we leave independent instruction // execution behind, so that the pipeline is always full and stalls, // or moves forward, together on every clock. // // For now, we pick the first approach: independent instruction execution. // Thus, if stage 2 stalls, stages 3-5 may still complete the instructions // in their pipeline. This leaves another problem: what happens on a // MOV -1+PC,PC instruction? There will be four instructions behind this // one (or is it five?) that will need to be 'cancelled'. So here's // the plan: Anything can be cancelled before the ALU/MEM stage, // since memory ops cannot be canceled after being issued. Thus, the // ALU/MEM stage must stall if any prior instruction is going to write // the PC register (i.e. JMP). // // Further, let's define a "STALL" as a reason to not execute a stage // due to some condition at or beyond the stage, and let's define // a VALID flag to mean that this stage has completed. Thus, the clock // enable for a stage is (STG[n-1]VALID)&&((~STG[n]VALID)||(~STG[n]STALL)). // The ALU/MEM stages will also depend upon a master clock enable // (~SLEEP) condition as well. // // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Tecnology, LLC // /////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////////// // `define CPU_PC_REG 4'hf `define CPU_CC_REG 4'he `define CPU_BREAK_BIT 7 `define CPU_STEP_BIT 6 `define CPU_GIE_BIT 5 `define CPU_SLEEP_BIT 4 module zipcpu(i_clk, i_rst, i_interrupt, // Debug interface i_halt, i_dbg_reg, i_dbg_we, i_dbg_data, o_dbg_stall, o_dbg_reg, o_break, // CPU interface to the wishbone bus o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_data, // Accounting/CPU usage interface o_mem_stall, o_pf_stall, o_alu_stall); parameter RESET_ADDRESS=32'h0100000; input i_clk, i_rst, i_interrupt; // Debug interface -- inputs input i_halt; input [4:0] i_dbg_reg; input i_dbg_we; input [31:0] i_dbg_data; // Debug interface -- outputs output reg o_dbg_stall; output reg [31:0] o_dbg_reg; output wire o_break; // Wishbone interface -- outputs output wire o_wb_cyc, o_wb_stb, o_wb_we; output wire [31:0] o_wb_addr, o_wb_data; // Wishbone interface -- inputs input i_wb_ack, i_wb_stall; input [31:0] i_wb_data; // Accounting outputs ... to help us count stalls and usage output wire o_mem_stall; output wire o_pf_stall; output wire o_alu_stall; // Registers reg [31:0] regset [0:31]; reg [3:0] flags, iflags; // (BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z wire master_ce; wire [7:0] w_uflags, w_iflags; reg step, gie, sleep, break_en; wire [4:0] mem_wreg; wire mem_busy, mem_rdbusy; reg [31:0] pf_pc; reg new_pc; // // // PIPELINE STAGE #1 :: Prefetch // Variable declarations // wire pf_ce, dcd_stalled; wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall; wire [31:0] pf_addr, pf_data; wire [31:0] instruction, instruction_pc; wire pf_valid, instruction_gie; // // // PIPELINE STAGE #2 :: Instruction Decode // Variable declarations // // reg opvalid, op_wr_pc, op_break; wire op_stall, dcd_ce; reg [3:0] dcdOp; reg [4:0] dcdA, dcdB; reg [3:0] dcdF; reg dcdA_rd, dcdA_wr, dcdB_rd, dcdvalid, dcdM, dcdF_wr, dcd_gie, dcd_break; reg [31:0] dcd_pc; reg [23:0] r_dcdI; wire dcdA_stall, dcdB_stall, dcdF_stall; // // // PIPELINE STAGE #3 :: Read Operands // Variable declarations // // // // Now, let's read our operands reg [4:0] alu_reg; reg [3:0] opn; reg [4:0] opR; reg [1:0] opA_cc, opB_cc; reg [31:0] r_opA, r_opB, op_pc; wire [31:0] opA_nowait, opB_nowait, opA, opB; reg opR_wr, opM, opF_wr, op_gie, opA_rd, opB_rd; wire [7:0] opFl; reg [6:0] r_opF; wire [8:0] opF; wire op_ce; // // // PIPELINE STAGE #4 :: ALU / Memory // Variable declarations // // reg [31:0] alu_pc; reg alu_pc_valid;; wire alu_ce, alu_stall; wire [31:0] alu_result; wire [3:0] alu_flags; wire alu_valid; wire set_cond; reg alu_wr, alF_wr, alu_gie; wire mem_ce, mem_stalled; wire mem_valid, mem_ack, mem_stall, mem_cyc, mem_stb, mem_we; wire [31:0] mem_addr, mem_data, mem_result; // // // PIPELINE STAGE #5 :: Write-back // Variable declarations // wire wr_reg_ce, wr_flags_ce, wr_write_pc; wire [4:0] wr_reg_id; wire [31:0] wr_reg_vl; wire w_switch_to_interrupt, w_release_from_interrupt; reg [31:0] upc, ipc; // // MASTER: clock enable. // assign master_ce = (~i_halt)&&(~o_break)&&(~sleep)&&(~mem_rdbusy); // // PIPELINE STAGE #1 :: Prefetch // Calculate stall conditions assign pf_ce = (~dcd_stalled); // // PIPELINE STAGE #2 :: Instruction Decode // Calculate stall conditions assign dcd_ce = (pf_valid)&&(~dcd_stalled); assign dcd_stalled = (dcdvalid)&&( (op_stall) ||((dcdA_stall)||(dcdB_stall)||(dcdF_stall)) ||((opvalid)&&(op_wr_pc))); // // PIPELINE STAGE #3 :: Read Operands // Calculate stall conditions assign op_stall = (opvalid)&&( ((mem_stalled)&&(opM)) ||((alu_stall)&&(~opM))); assign op_ce = (dcdvalid)&&((~opvalid)||(~op_stall)); // // PIPELINE STAGE #4 :: ALU / Memory // Calculate stall conditions assign alu_stall = (((~master_ce)||(mem_rdbusy))&&(opvalid)&&(~opM)) ||((opvalid)&&(wr_reg_ce)&&(wr_reg_id == { op_gie, `CPU_PC_REG })); assign alu_ce = (master_ce)&&(opvalid)&&(~opM)&&(~alu_stall)&&(~new_pc); // assign mem_ce = (master_ce)&&(opvalid)&&(opM)&&(~mem_stalled)&&(~new_pc)&&(set_cond); assign mem_stalled = (mem_busy)||((opvalid)&&(opM)&&( (~master_ce) // Stall waiting for flags to be valid ||((~opF[8])&&( ((wr_reg_ce)&&(wr_reg_id[4:0] == {op_gie,`CPU_CC_REG})))) // Do I need this last condition? //||((wr_flags_ce)&&(alu_gie==op_gie)))) // Or waiting for a write to the PC register ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&(wr_write_pc)))); // // // PIPELINE STAGE #1 :: Prefetch // // `ifdef SINGLE_FETCH prefetch pf(i_clk, i_rst, (pf_ce), pf_pc, gie, instruction, instruction_pc, instruction_gie, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, i_wb_data); `else // Pipe fetch pipefetch #(RESET_ADDRESS) pf(i_clk, i_rst, new_pc, ~dcd_stalled, pf_pc, instruction, instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, i_wb_data, mem_cyc); assign instruction_gie = gie; `endif always @(posedge i_clk) if (i_rst) dcdvalid <= 1'b0; else if (dcd_ce) dcdvalid <= (~new_pc); else if ((~dcd_stalled)||(new_pc)) dcdvalid <= 1'b0; always @(posedge i_clk) if (dcd_ce) begin dcd_pc <= instruction_pc+1; // Record what operation we are doing dcdOp <= instruction[31:28]; // Default values dcdA[4:0] <= { instruction_gie, instruction[27:24] }; dcdB[4:0] <= { instruction_gie, instruction[19:16] }; dcdM <= 1'b0; dcdF_wr <= 1'b1; dcd_break <= 1'b0; // Set the condition under which we do this operation // The top four bits are a mask, the bottom four the // value the flags must equal once anded with the mask dcdF <= { (instruction[23:21]==3'h0), instruction[23:21] }; casez(instruction[31:28]) 4'h2: begin // Move instruction if (~instruction_gie) begin dcdA[4] <= instruction[20]; dcdB[4] <= instruction[15]; end dcdA_wr <= 1'b1; dcdA_rd <= 1'b0; dcdB_rd <= 1'b1; r_dcdI <= { {(9){instruction[14]}}, instruction[14:0] }; dcdF_wr <= 1'b0; // Don't write flags end 4'h3: begin // Load immediate dcdA_wr <= 1'b1; dcdA_rd <= 1'b0; dcdB_rd <= 1'b0; r_dcdI <= { instruction[23:0] }; dcdF_wr <= 1'b0; // Don't write flags dcdF <= 4'h8; // This is unconditional dcdOp <= 4'h2; end 4'h4: begin // Load immediate special dcdF_wr <= 1'b0; // Don't write flags r_dcdI <= { 8'h00, instruction[15:0] }; if (instruction[27:24] == 4'he) begin // NOOP instruction dcdA_wr <= 1'b0; dcdA_rd <= 1'b0; dcdB_rd <= 1'b0; dcdOp <= 4'h2; dcd_break <= 1'b1;//Could be a break ins end else if (instruction[27:24] == 4'hf) begin // Load partial immediate(s) dcdA_wr <= 1'b1; dcdA_rd <= 1'b1; dcdB_rd <= 1'b0; dcdA[4:0] <= { instruction_gie, instruction[19:16] }; dcdOp <= { 3'h3, instruction[20] }; end else begin ; // Multiply instruction place holder end end 4'b011?: begin // Load/Store dcdF_wr <= 1'b0; // Don't write flags dcdA_wr <= (~instruction[28]); // Write on loads dcdA_rd <= (instruction[28]); // Read on stores dcdB_rd <= instruction[20]; if (instruction[20]) r_dcdI <= { {(8){instruction[15]}}, instruction[15:0] }; else r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] }; dcdM <= 1'b1; // Memory operation end default: begin dcdA <= { instruction_gie, instruction[27:24] }; dcdB <= { instruction_gie, instruction[19:16] }; dcdA_wr <= (instruction[31])||(instruction[31:28]==4'h5); dcdA_rd <= 1'b1; dcdB_rd <= instruction[20]; if (instruction[20]) r_dcdI <= { {(8){instruction[15]}}, instruction[15:0] }; else r_dcdI <= { {(4){instruction[19]}}, instruction[19:0] }; end endcase dcd_gie <= instruction_gie; end // // // PIPELINE STAGE #3 :: Read Operands (Registers) // // always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) begin if ((wr_reg_ce)&&(wr_reg_id == dcdA)) r_opA <= wr_reg_vl; else if (dcdA == { dcd_gie, `CPU_PC_REG }) r_opA <= dcd_pc; else if (dcdA[3:0] == `CPU_PC_REG) r_opA <= (dcdA[4])?upc:ipc; else r_opA <= regset[dcdA]; end wire [31:0] dcdI; assign dcdI = { {(8){r_dcdI[23]}}, r_dcdI }; always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) begin if (~dcdB_rd) r_opB <= dcdI; else if ((wr_reg_ce)&&(wr_reg_id == dcdB)) r_opB <= wr_reg_vl + dcdI; else if (dcdB == { dcd_gie, `CPU_PC_REG }) r_opB <= dcd_pc + dcdI; else if (dcdB[3:0] == `CPU_PC_REG) r_opB <= ((dcdB[4])?upc:ipc) + dcdI; else r_opB <= regset[dcdB] + dcdI; end // The logic here has become more complex than it should be, no thanks // to Xilinx's Vivado trying to help. The conditions are supposed to // be two sets of four bits: the top bits specify what bits matter, the // bottom specify what those top bits must equal. However, two of // conditions check whether bits are on, and those are the only two // conditions checking those bits. Therefore, Vivado complains that // these two bits are redundant. Hence the convoluted expression // below, arriving at what we finally want in the (now wire net) // opF. `define NEWCODE `ifdef NEWCODE always @(posedge i_clk) if (op_ce) begin // Set the flag condition codes case(dcdF[2:0]) 3'h0: r_opF <= 7'h80; // Always 3'h1: r_opF <= 7'h11; // Z 3'h2: r_opF <= 7'h10; // NE 3'h3: r_opF <= 7'h20; // GE (!N) 3'h4: r_opF <= 7'h30; // GT (!N&!Z) 3'h5: r_opF <= 7'h24; // LT 3'h6: r_opF <= 7'h02; // C 3'h7: r_opF <= 7'h08; // V endcase end assign opF = { r_opF[6], r_opF[3], r_opF[5], r_opF[1], r_opF[4:0] }; `else always @(posedge i_clk) if (op_ce) begin // Set the flag condition codes case(dcdF[2:0]) 3'h0: opF <= 9'h100; // Always 3'h1: opF <= 9'h011; // Z 3'h2: opF <= 9'h010; // NE 3'h3: opF <= 9'h040; // GE (!N) 3'h4: opF <= 9'h050; // GT (!N&!Z) 3'h5: opF <= 9'h044; // LT 3'h6: opF <= 9'h022; // C 3'h7: opF <= 9'h088; // V endcase end `endif always @(posedge i_clk) if (i_rst) opvalid <= 1'b0; else if (op_ce) // Do we have a valid instruction? // The decoder may vote to stall one of its // instructions based upon something we currently // have in our queue. This instruction must then // move forward, and get a stall cycle inserted. // Hence, the test on dcd_stalled here. If we must // wait until our operands are valid, then we aren't // valid yet until then. opvalid<= (~new_pc)&&(dcdvalid)&&(~dcd_stalled); else if ((~op_stall)||(new_pc)) opvalid <= 1'b0; // Here's part of our debug interface. When we recognize a break // instruction, we set the op_break flag. That'll prevent this // instruction from entering the ALU, and cause an interrupt before // this instruction. Thus, returning to this code will cause the // break to repeat and continue upon return. To get out of this // condition, replace the break instruction with what it is supposed // to be, step through it, and then replace it back. In this fashion, // a debugger can step through code. always @(posedge i_clk) if (i_rst) op_break <= 1'b0; else if (op_ce) op_break <= (dcd_break)&&(r_dcdI[15:0] == 16'h0001); else if ((~op_stall)||(new_pc)) op_break <= 1'b0; always @(posedge i_clk) if (op_ce) begin opn <= dcdOp; // Which ALU operation? opM <= dcdM; // Is this a memory operation? // Will we write the flags/CC Register with our result? opF_wr <= dcdF_wr; // Will we be writing our results into a register? opR_wr <= dcdA_wr; // What register will these results be written into? opR <= dcdA; // User level (1), vs supervisor (0)/interrupts disabled op_gie <= dcd_gie; // We're not done with these yet--we still need them // for the unclocked assign. We need the unclocked // assign so that there's no wait state between an // ALU or memory result and the next register that may // use that value. opA_cc <= {dcdA[4], (dcdA[3:0] == `CPU_CC_REG) }; opA_rd <= dcdA_rd; opB_cc <= {dcdB[4], (dcdB[3:0] == `CPU_CC_REG) }; opB_rd <= dcdB_rd; op_pc <= dcd_pc; // op_wr_pc <= ((dcdA_wr)&&(dcdA[3:0] == `CPU_PC_REG)); end assign opFl = (op_gie)?(w_uflags):(w_iflags); // This is tricky. First, the PC and Flags registers aren't kept in // register set but in special registers of their own. So step one // is to select the right register. Step to is to replace that // register with the results of an ALU or memory operation, if such // results are now available. Otherwise, we'd need to insert a wait // state of some type. // // The alternative approach would be to define some sort of // op_stall wire, which would stall any upstream stage. // We'll create a flag here to start our coordination. Once we // define this flag to something other than just plain zero, then // the stalls will already be in place. assign dcdA_stall = (dcdvalid)&&(dcdA_rd)&& (((opvalid)&&(opR_wr)&&(opR == dcdA)) ||((mem_busy)&&(~mem_we)&&(mem_wreg == dcdA)) ||((mem_valid)&&(mem_wreg == dcdA))); assign dcdB_stall = (dcdvalid)&&(dcdB_rd) &&(((opvalid)&&(opR_wr)&&(opR == dcdB)) ||((mem_busy)&&(~mem_we)&&(mem_wreg == dcdB)) ||((mem_valid)&&(mem_wreg == dcdB))); assign dcdF_stall = (dcdvalid)&&(((dcdF[3]) ||(dcdA[3:0]==`CPU_CC_REG) ||(dcdB[3:0]==`CPU_CC_REG)) &&((opvalid)&&(opR[3:0] == `CPU_CC_REG)) ||((dcdF[3])&&(dcdM)&&(opvalid)&&(opF_wr))); assign opA = { r_opA[31:8], ((opA_cc[0]) ? ((opA_cc[1])?w_uflags:w_iflags) : r_opA[7:0]) }; assign opB = { r_opB[31:8], ((opB_cc[0]) ? ((opB_cc[1])?w_uflags:w_iflags) : r_opB[7:0]) }; // // // PIPELINE STAGE #4 :: Apply Instruction // // cpuops doalu(i_clk, i_rst, alu_ce, (opvalid)&&(~opM), opn, opA, opB, alu_result, alu_flags, alu_valid); assign set_cond = ((opF[7:4]&opFl[3:0])==opF[3:0]); initial alF_wr = 1'b0; initial alu_wr = 1'b0; always @(posedge i_clk) if (i_rst) begin alu_wr <= 1'b0; alF_wr <= 1'b0; end else if (alu_ce) begin alu_reg <= opR; alu_wr <= (opR_wr)&&(set_cond); alF_wr <= (opF_wr)&&(set_cond); end else begin // These are strobe signals, so clear them if not // set for any particular clock alu_wr <= 1'b0; alF_wr <= 1'b0; end always @(posedge i_clk) if ((alu_ce)||(mem_ce)) alu_gie <= op_gie; always @(posedge i_clk) if ((alu_ce)||(mem_ce)) alu_pc <= op_pc; initial alu_pc_valid = 1'b0; always @(posedge i_clk) alu_pc_valid <= (~i_rst)&&(master_ce)&&(opvalid)&&(~new_pc) &&((~opM) ||(~mem_stalled)); memops domem(i_clk, i_rst, mem_ce, (opn[0]), opB, opA, opR, mem_busy, mem_valid, mem_wreg, mem_result, mem_cyc, mem_stb, mem_we, mem_addr, mem_data, mem_ack, mem_stall, i_wb_data); assign mem_rdbusy = ((mem_cyc)&&(~mem_we)); // Either the prefetch or the instruction gets the memory bus, but // never both. wbarbiter #(32,32) pformem(i_clk, i_rst, // Prefetch access to the arbiter pf_addr, pf_data, pf_we, pf_stb, pf_cyc, pf_ack, pf_stall, // Memory access to the arbiter mem_addr, mem_data, mem_we, mem_stb, mem_cyc, mem_ack, mem_stall, // Common wires, in and out, of the arbiter o_wb_addr, o_wb_data, o_wb_we, o_wb_stb, o_wb_cyc, i_wb_ack, i_wb_stall); // // // PIPELINE STAGE #5 :: Write-back results // // // This stage is not allowed to stall. If results are ready to be // written back, they are written back at all cost. Sleepy CPU's // won't prevent write back, nor debug modes, halting the CPU, nor // anything else. Indeed, the (master_ce) bit is only as relevant // as knowinig something is available for writeback. // // Write back to our generic register set ... // When shall we write back? On one of two conditions // Note that the flags needed to be checked before issuing the // bus instruction, so they don't need to be checked here. // Further, alu_wr includes (set_cond), so we don't need to // check for that here either. assign wr_reg_ce = ((alu_wr)&&(alu_valid))||(mem_valid); // Which register shall be written? assign wr_reg_id = (alu_wr)?alu_reg:mem_wreg; // Are we writing to the PC? assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); // What value to write? assign wr_reg_vl = (alu_wr)?alu_result:mem_result; always @(posedge i_clk) if (wr_reg_ce) regset[wr_reg_id] <= wr_reg_vl; // // Write back to the condition codes/flags register ... // When shall we write to our flags register? alF_wr already // includes the set condition ... assign wr_flags_ce = (alF_wr)&&(alu_valid); assign w_uflags = { 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; assign w_iflags = { break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags }; // What value to write? always @(posedge i_clk) // If explicitly writing the register itself if ((wr_reg_ce)&&(wr_reg_id[4:0] == { 1'b1, `CPU_CC_REG })) flags <= wr_reg_vl[3:0]; // Otherwise if we're setting the flags from an ALU operation else if ((wr_flags_ce)&&(alu_gie)) flags <= alu_flags; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG })) flags <= i_dbg_data[3:0]; always @(posedge i_clk) if ((wr_reg_ce)&&(wr_reg_id[4:0] == { 1'b0, `CPU_CC_REG })) iflags <= wr_reg_vl[3:0]; else if ((wr_flags_ce)&&(~alu_gie)) iflags <= alu_flags; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b0, `CPU_CC_REG })) iflags <= i_dbg_data[3:0]; // The 'break' enable bit. This bit can only be set from supervisor // mode. It control what the CPU does upon encountering a break // instruction. // // The goal, upon encountering a break is that the CPU should stop and // not execute the break instruction, choosing instead to enter into // either interrupt mode or halt first. // if ((break_en) AND (break_instruction)) // user mode or not // HALT CPU // else if (break_instruction) // only in user mode // set an interrupt flag, go to supervisor mode // allow supervisor to step the CPU. // Upon a CPU halt, any break condition will be reset. The // external debugger will then need to deal with whatever // condition has taken place. initial break_en = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_halt)) break_en <= 1'b0; else if ((wr_reg_ce)&&(wr_reg_id[4:0] == {1'b0, `CPU_CC_REG})) break_en <= wr_reg_vl[`CPU_BREAK_BIT]; assign o_break = (break_en)&&(op_break); // The sleep register. Setting the sleep register causes the CPU to // sleep until the next interrupt. Setting the sleep register within // interrupt mode causes the processor to halt until a reset. This is // a panic/fault halt. always @(posedge i_clk) if ((i_rst)||((i_interrupt)&&(gie))) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_reg_id[3:0] == `CPU_CC_REG)) sleep <= wr_reg_vl[`CPU_SLEEP_BIT]; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG })) sleep <= i_dbg_data[`CPU_SLEEP_BIT]; always @(posedge i_clk) if ((i_rst)||(w_switch_to_interrupt)) step <= 1'b0; else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4:0] == {1'b1,`CPU_CC_REG})) step <= wr_reg_vl[`CPU_STEP_BIT]; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG })) step <= i_dbg_data[`CPU_STEP_BIT]; else if ((master_ce)&&(alu_pc_valid)&&(step)&&(gie)) step <= 1'b0; // The GIE register. Only interrupts can disable the interrupt register assign w_switch_to_interrupt = (gie)&&( // On interrupt (obviously) (i_interrupt) // If we are stepping the CPU ||((master_ce)&&(alu_pc_valid)&&(step)) // If we encounter a break instruction, if the break // enable isn't not set. ||((master_ce)&&(op_break)) // If we write to the CC register ||((wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4:0] == { 1'b1, `CPU_CC_REG })) // Or if, in debug mode, we write to the CC register ||((i_halt)&&(i_dbg_we)&&(~i_dbg_data[`CPU_GIE_BIT]) &&(i_dbg_reg == { 1'b1, `CPU_CC_REG})) ); assign w_release_from_interrupt = (~gie)&&(~i_interrupt) // Then if we write the CC register &&(((wr_reg_ce)&&(wr_reg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4:0] == { 1'b0, `CPU_CC_REG })) // Or if, in debug mode, we write the CC register ||((i_halt)&&(i_dbg_we)&&(i_dbg_data[`CPU_GIE_BIT]) &&(i_dbg_reg == { 1'b0, `CPU_CC_REG})) ); always @(posedge i_clk) if (i_rst) gie <= 1'b0; else if (w_switch_to_interrupt) gie <= 1'b0; else if (w_release_from_interrupt) gie <= 1'b1; // // Write backs to the PC register, and general increments of it // We support two: upc and ipc. If the instruction is normal, // we increment upc, if interrupt level we increment ipc. If // the instruction writes the PC, we write whichever PC is appropriate. // // Do we need to all our partial results from the pipeline? // What happens when the pipeline has gie and ~gie instructions within // it? Do we clear both? What if a gie instruction tries to clear // a non-gie instruction? always @(posedge i_clk) if (i_rst) upc <= RESET_ADDRESS; else if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc)) upc <= wr_reg_vl; else if ((alu_gie)&&(alu_pc_valid)) upc <= alu_pc; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b1, `CPU_PC_REG })) upc <= i_dbg_data; always @(posedge i_clk) if (i_rst) ipc <= RESET_ADDRESS; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc)) ipc <= wr_reg_vl; else if ((~alu_gie)&&(alu_pc_valid)) ipc <= alu_pc; else if ((i_halt)&&(i_dbg_we) &&(i_dbg_reg == { 1'b0, `CPU_PC_REG })) ipc <= i_dbg_data; always @(posedge i_clk) if (i_rst) pf_pc <= RESET_ADDRESS; else if (w_switch_to_interrupt) pf_pc <= ipc; else if (w_release_from_interrupt) pf_pc <= upc; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) pf_pc <= wr_reg_vl; else if ((i_halt)&&(i_dbg_we) &&(wr_reg_id[4:0] == { gie, `CPU_PC_REG})) pf_pc <= i_dbg_data; // else if (pf_ce) else if (dcd_ce) pf_pc <= pf_pc + 1; initial new_pc = 1'b1; always @(posedge i_clk) if (i_rst) new_pc <= 1'b1; else if (w_switch_to_interrupt) new_pc <= 1'b1; else if (w_release_from_interrupt) new_pc <= 1'b1; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) new_pc <= 1'b1; else if ((i_halt)&&(i_dbg_we) &&(wr_reg_id[4:0] == { gie, `CPU_PC_REG})) new_pc <= 1'b1; else new_pc <= 1'b0; // // The debug interface always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= (i_dbg_reg[4])?upc:ipc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) o_dbg_reg <= { 25'h00, step, gie, sleep, ((i_dbg_reg[4])?flags:iflags) }; end always @(posedge i_clk) o_dbg_stall <= (~i_halt)||(pf_cyc)||(mem_cyc)||(mem_busy) ||((~opvalid)&&(~i_rst)) ||((~dcdvalid)&&(~i_rst)); // // // Produce accounting outputs: Account for any CPU stalls, so we can // later evaluate how well we are doing. // // assign o_mem_stall = (~i_halt)&&(~sleep)&&(opvalid)&&(mem_busy) &&(~pf_cyc); assign o_pf_stall = (~i_halt)&&(~sleep)&&(((pf_ce)&&(~pf_valid)) ||((opvalid)&&(mem_busy)&&(pf_cyc))); // assign o_alu_stall = (~i_halt)&&(~sleep)&&(~mem_busy)&& // ((alu_stall)||(~alu_valid)); assign o_alu_stall = alu_pc_valid; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log