URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
[/] [zipcpu/] [trunk/] [rtl/] [core/] [zipcpu.v] - Rev 75
Go to most recent revision | Compare with Previous | Blame | View Log
/////////////////////////////////////////////////////////////////////////////// // // Filename: zipcpu.v // // Project: Zip CPU -- a small, lightweight, RISC CPU soft core // // Purpose: This is the top level module holding the core of the Zip CPU // together. The Zip CPU is designed to be as simple as possible. // (actual implementation aside ...) The instruction set is about as // RISC as you can get, there are only 16 instruction types supported. // Please see the accompanying spec.pdf file for a description of these // instructions. // // All instructions are 32-bits wide. All bus accesses, both address and // data, are 32-bits over a wishbone bus. // // The Zip CPU is fully pipelined with the following pipeline stages: // // 1. Prefetch, returns the instruction from memory. // // 2. Instruction Decode // // 3. Read Operands // // 4. Apply Instruction // // 4. Write-back Results // // Further information about the inner workings of this CPU may be // found in the spec.pdf file. (The documentation within this file // had become out of date and out of sync with the spec.pdf, so look // to the spec.pdf for accurate and up to date information.) // // // In general, the pipelining is controlled by three pieces of logic // per stage: _ce, _stall, and _valid. _valid means that the stage // holds a valid instruction. _ce means that the instruction from the // previous stage is to move into this one, and _stall means that the // instruction from the previous stage may not move into this one. // The difference between these control signals allows individual stages // to propagate instructions independently. In general, the logic works // as: // // // assign (n)_ce = (n-1)_valid && (~(n)_stall) // // // always @(posedge i_clk) // if ((i_rst)||(clear_pipeline)) // (n)_valid = 0 // else if (n)_ce // (n)_valid = 1 // else if (n+1)_ce // (n)_valid = 0 // // assign (n)_stall = ( (n-1)_valid && ( pipeline hazard detection ) ) // || ( (n)_valid && (n+1)_stall ); // // and ... // // always @(posedge i_clk) // if (n)_ce // (n)_variable = ... whatever logic for this stage // // Note that a stage can stall even if no instruction is loaded into // it. // // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // /////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015, Gisselquist Technology, LLC // // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // License: GPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/gpl.html // // /////////////////////////////////////////////////////////////////////////////// // // We can either pipeline our fetches, or issue one fetch at a time. Pipelined // fetches are more complicated and therefore use more FPGA resources, while // single fetches will cause the CPU to stall for about 5 stalls each // instruction cycle, effectively reducing the instruction count per clock to // about 0.2. However, the area cost may be worth it. Consider: // // Slice LUTs ZipSystem ZipCPU // Single Fetching 2521 1734 // Pipelined fetching 2796 2046 // // // `define CPU_CC_REG 4'he `define CPU_PC_REG 4'hf `define CPU_FPUERR_BIT 12 // Floating point error flag, set on error `define CPU_DIVERR_BIT 11 // Divide error flag, set on divide by zero `define CPU_BUSERR_BIT 10 // Bus error flag, set on error `define CPU_TRAP_BIT 9 // User TRAP has taken place `define CPU_ILL_BIT 8 // Illegal instruction `define CPU_BREAK_BIT 7 `define CPU_STEP_BIT 6 // Will step one or two (VLIW) instructions `define CPU_GIE_BIT 5 `define CPU_SLEEP_BIT 4 // Compile time defines // `include "cpudefs.v" // // module zipcpu(i_clk, i_rst, i_interrupt, // Debug interface i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data, o_dbg_stall, o_dbg_reg, o_dbg_cc, o_break, // CPU interface to the wishbone bus o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_data, i_wb_err, // Accounting/CPU usage interface o_op_stall, o_pf_stall, o_i_count `ifdef DEBUG_SCOPE , o_debug `endif ); parameter RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24, LGICACHE=6; `ifdef OPT_MULTIPLY parameter IMPLEMENT_MPY = 1; `else parameter IMPLEMENT_MPY = 0; `endif `ifdef OPT_DIVIDE parameter IMPLEMENT_DIVIDE = 1; `else parameter IMPLEMENT_DIVIDE = 0; `endif `ifdef OPT_IMPLEMENT_FPU parameter IMPLEMENT_FPU = 1, `else parameter IMPLEMENT_FPU = 0, `endif IMPLEMENT_LOCK=1; `ifdef OPT_EARLY_BRANCHING parameter EARLY_BRANCHING = 1; `else parameter EARLY_BRANCHING = 0; `endif parameter AW=ADDRESS_WIDTH; input i_clk, i_rst, i_interrupt; // Debug interface -- inputs input i_halt, i_clear_pf_cache; input [4:0] i_dbg_reg; input i_dbg_we; input [31:0] i_dbg_data; // Debug interface -- outputs output reg o_dbg_stall; output reg [31:0] o_dbg_reg; output reg [3:0] o_dbg_cc; output wire o_break; // Wishbone interface -- outputs output wire o_wb_gbl_cyc, o_wb_gbl_stb; output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we; output wire [(AW-1):0] o_wb_addr; output wire [31:0] o_wb_data; // Wishbone interface -- inputs input i_wb_ack, i_wb_stall; input [31:0] i_wb_data; input i_wb_err; // Accounting outputs ... to help us count stalls and usage output wire o_op_stall; output wire o_pf_stall; output wire o_i_count; // `ifdef DEBUG_SCOPE output reg [31:0] o_debug; `endif // Registers // // The distributed RAM style comment is necessary on the // SPARTAN6 with XST to prevent XST from oversimplifying the register // set and in the process ruining everything else. It basically // optimizes logic away, to where it no longer works. The logic // as described herein will work, this just makes sure XST implements // that logic. // (* ram_style = "distributed" *) reg [31:0] regset [0:31]; // Condition codes // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z reg [3:0] flags, iflags; wire [12:0] w_uflags, w_iflags; reg trap, break_en, step, gie, sleep; `ifdef OPT_ILLEGAL_INSTRUCTION reg ill_err_u, ill_err_i; `else wire ill_err_u, ill_err_i; `endif reg ibus_err_flag, ubus_err_flag; wire idiv_err_flag, udiv_err_flag; wire ifpu_err_flag, ufpu_err_flag; wire ihalt_phase, uhalt_phase; // The master chip enable wire master_ce; // // // PIPELINE STAGE #1 :: Prefetch // Variable declarations // reg [(AW-1):0] pf_pc; reg new_pc; wire clear_pipeline; assign clear_pipeline = new_pc || i_clear_pf_cache; wire dcd_stalled; wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err; wire [(AW-1):0] pf_addr; wire [31:0] pf_data; wire [31:0] instruction; wire [(AW-1):0] instruction_pc; wire pf_valid, instruction_gie, pf_illegal; // // // PIPELINE STAGE #2 :: Instruction Decode // Variable declarations // // reg opvalid, opvalid_mem, opvalid_alu, op_wr_pc; reg opvalid_div, opvalid_fpu; wire op_stall, dcd_ce, dcd_phase; wire [3:0] dcdOp; wire [4:0] dcdA, dcdB, dcdR; wire dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc, dcdR_cc, dcdR_pc; wire [3:0] dcdF; wire dcdR_wr, dcdA_rd, dcdB_rd, dcdALU, dcdM, dcdDV, dcdFP, dcdF_wr, dcd_gie, dcd_break, dcd_lock, dcd_pipe; reg r_dcdvalid; wire dcdvalid; wire [(AW-1):0] dcd_pc; wire [31:0] dcdI; wire dcd_zI; // true if dcdI == 0 wire dcdA_stall, dcdB_stall, dcdF_stall; wire dcd_illegal; wire dcd_early_branch; wire [(AW-1):0] dcd_branch_pc; // // // PIPELINE STAGE #3 :: Read Operands // Variable declarations // // // // Now, let's read our operands reg [4:0] alu_reg; reg [3:0] opn; reg [4:0] opR; reg [31:0] r_opA, r_opB; reg [(AW-1):0] op_pc; wire [31:0] w_opA, w_opB; wire [31:0] opA_nowait, opB_nowait, opA, opB; reg opR_wr, opR_cc, opF_wr, op_gie; wire [12:0] opFl; reg [5:0] r_opF; wire [7:0] opF; reg [2:0] opF_cp; wire op_ce, op_phase; // Some pipeline control wires `ifdef OPT_PIPELINED reg opA_alu, opA_mem; reg opB_alu, opB_mem; `endif `ifdef OPT_ILLEGAL_INSTRUCTION reg op_illegal; `endif reg op_break; wire op_lock; // // // PIPELINE STAGE #4 :: ALU / Memory // Variable declarations // // reg [(AW-1):0] alu_pc; reg alu_pc_valid; wire alu_phase; wire alu_ce, alu_stall; wire [31:0] alu_result; wire [3:0] alu_flags; wire alu_valid, alu_busy; wire set_cond; reg alu_wr, alF_wr, alu_gie; wire alu_illegal_op; wire alu_illegal; wire mem_ce, mem_stalled; `ifdef OPT_PIPELINED_BUS_ACCESS wire mem_pipe_stalled; `endif wire mem_valid, mem_ack, mem_stall, mem_err, bus_err, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we; wire [4:0] mem_wreg; wire mem_busy, mem_rdbusy; wire [(AW-1):0] mem_addr; wire [31:0] mem_data, mem_result; wire div_ce, div_error, div_busy, div_valid; wire [31:0] div_result; wire [3:0] div_flags; assign div_ce = (master_ce)&&(~clear_pipeline)&&(opvalid_div) &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) &&(set_cond); wire fpu_ce, fpu_error, fpu_busy, fpu_valid; wire [31:0] fpu_result; wire [3:0] fpu_flags; assign fpu_ce = (master_ce)&&(~clear_pipeline)&&(opvalid_fpu) &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) &&(set_cond); // // // PIPELINE STAGE #5 :: Write-back // Variable declarations // wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc; wire [4:0] wr_reg_id; wire [31:0] wr_reg_vl; wire w_switch_to_interrupt, w_release_from_interrupt; reg [(AW-1):0] upc, ipc; // // MASTER: clock enable. // assign master_ce = (~i_halt)&&(~o_break)&&(~sleep); // // PIPELINE STAGE #1 :: Prefetch // Calculate stall conditions // // These are calculated externally, within the prefetch module. // // // PIPELINE STAGE #2 :: Instruction Decode // Calculate stall conditions `ifdef OPT_PIPELINED assign dcd_ce = ((~dcdvalid)||(~dcd_stalled))&&(~clear_pipeline); `else assign dcd_ce = 1'b1; `endif `ifdef OPT_PIPELINED assign dcd_stalled = (dcdvalid)&&(op_stall); `else // If not pipelined, there will be no opvalid_ anything, and the // op_stall will be false, dcdX_stall will be false, thus we can simply // do a ... assign dcd_stalled = 1'b0; `endif // // PIPELINE STAGE #3 :: Read Operands // Calculate stall conditions wire op_lock_stall; `ifdef OPT_PIPELINED assign op_stall = (opvalid)&&( // Only stall if we're loaded w/validins // Stall if we're stopped, and not allowed to execute // an instruction // (~master_ce) // Already captured in alu_stall // // Stall if going into the ALU and the ALU is stalled // i.e. if the memory is busy, or we are single // stepping. This also includes our stalls for // op_break and op_lock, so we don't need to // include those as well here. ((opvalid)&&(alu_stall)) // Stall if the divide is busy, since we can't have // two parallel stages writing back at the same time ||(div_busy) // Same for the floating point unit ||(fpu_busy) // // ||((opvalid_alu)&&(mem_rdbusy)) // part of alu_stall // Stall if we are going into memory with an operation // that cannot be pipelined, and the memory is // already busy ||((opvalid_mem)&&(mem_stalled)) // ||((opvalid_mem)&&(dcdvalid)&&(dcdM)&&(~dcd_pipe)) ) ||(dcdvalid)&&( // Stall if we need to wait for an operand A // to be ready to read (dcdA_stall) // Likewise for B, also includes logic // regarding immediate offset (register must // be in register file if we need to add to // an immediate) ||(dcdB_stall) // Or if we need to wait on flags to work on the // CC register ||(dcdF_stall) ); assign op_ce = ((dcdvalid)||(dcd_illegal))&&(~op_stall)&&(~clear_pipeline); `else assign op_stall = (opvalid)&&(~master_ce); assign op_ce = ((dcdvalid)||(dcd_illegal)); `endif // // PIPELINE STAGE #4 :: ALU / Memory // Calculate stall conditions // // 1. Basic stall is if the previous stage is valid and the next is // busy. // 2. Also stall if the prior stage is valid and the master clock enable // is de-selected // 3. Stall if someone on the other end is writing the CC register, // since we don't know if it'll put us to sleep or not. // 4. Last case: Stall if we would otherwise move a break instruction // through the ALU. Break instructions are not allowed through // the ALU. `ifdef OPT_PIPELINED assign alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(opvalid_alu)) //Case 1&2 // Old case #3--this isn't an ALU stall though ... ||((opvalid_alu)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie) &&(wr_write_cc)) // Case 3 ||((opvalid)&&(op_lock)&&(op_lock_stall)) ||((opvalid)&&(op_break)) ||(div_busy)||(fpu_busy); assign alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal)) &&(~alu_stall) &&(~clear_pipeline); `else assign alu_stall = ((~master_ce)&&(opvalid_alu)) ||((opvalid_alu)&&(op_break)); assign alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal))&&(~alu_stall); `endif // // // Note: if you change the conditions for mem_ce, you must also change // alu_pc_valid. // `ifdef OPT_PIPELINED assign mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled) &&(~clear_pipeline); `else // If we aren't pipelined, then no one will be changing what's in the // pipeline (i.e. clear_pipeline), while our only instruction goes // through the ... pipeline. assign mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled); `endif `ifdef OPT_PIPELINED_BUS_ACCESS assign mem_stalled = (~master_ce)||(alu_busy)||((opvalid_mem)&&( (mem_pipe_stalled) ||((~op_pipe)&&(mem_busy)) ||(div_busy) ||(fpu_busy) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie) &&((wr_write_pc)||(wr_write_cc))))); `else `ifdef OPT_PIPELINED assign mem_stalled = (mem_busy)||((opvalid_mem)&&( (~master_ce) // Stall waiting for flags to be valid // Or waiting for a write to the PC register // Or CC register, since that can change the // PC as well ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc))))); `else assign mem_stalled = (opvalid_mem)&&(~master_ce); `endif `endif // // // PIPELINE STAGE #1 :: Prefetch // // `ifdef OPT_SINGLE_FETCH wire pf_ce; assign pf_ce = (~pf_valid)&&(~dcdvalid)&&(~opvalid)&&(~alu_valid); prefetch #(ADDRESS_WIDTH) pf(i_clk, i_rst, (pf_ce), (~dcd_stalled), pf_pc, gie, instruction, instruction_pc, instruction_gie, pf_valid, pf_illegal, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data); initial r_dcdvalid = 1'b0; always @(posedge i_clk) if (i_rst) r_dcdvalid <= 1'b0; else if (dcd_ce) r_dcdvalid <= (pf_valid)&&(~clear_pipeline)&&((~r_dcdvalid)||(~dcd_early_branch)); else if ((op_ce)||(clear_pipeline)) r_dcdvalid <= 1'b0; assign dcdvalid = r_dcdvalid; `else // Pipe fetch `ifdef OPT_TRADITIONAL_PFCACHE pfcache #(LGICACHE, ADDRESS_WIDTH) pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(dcdvalid)), i_clear_pf_cache, // dcd_pc, ~dcd_stalled, ((dcd_early_branch)&&(dcdvalid)&&(~new_pc)) ? dcd_branch_pc:pf_pc, instruction, instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, pf_illegal); `else pipefetch #(RESET_ADDRESS, LGICACHE, ADDRESS_WIDTH) pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(dcdvalid)), i_clear_pf_cache, ~dcd_stalled, (new_pc)?pf_pc:dcd_branch_pc, instruction, instruction_pc, pf_valid, pf_cyc, pf_stb, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, i_wb_data, //`ifdef OPT_PRECLEAR_BUS //((dcd_clear_bus)&&(dcdvalid)) //||((op_clear_bus)&&(opvalid)) //|| //`endif (mem_cyc_lcl)||(mem_cyc_gbl), pf_illegal); `endif assign instruction_gie = gie; initial r_dcdvalid = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) r_dcdvalid <= 1'b0; else if (dcd_ce) r_dcdvalid <= (pf_valid)&&(~clear_pipeline)&&((~r_dcdvalid)||(~dcd_early_branch)); else if (op_ce) r_dcdvalid <= 1'b0; assign dcdvalid = r_dcdvalid; `endif `ifdef OPT_NEW_INSTRUCTION_SET idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE, IMPLEMENT_FPU) instruction_decoder(i_clk, (i_rst)||(clear_pipeline), dcd_ce, dcd_stalled, instruction, instruction_gie, instruction_pc, pf_valid, pf_illegal, dcd_phase, dcd_illegal, dcd_pc, dcd_gie, { dcdR_cc, dcdR_pc, dcdR }, { dcdA_cc, dcdA_pc, dcdA }, { dcdB_cc, dcdB_pc, dcdB }, dcdI, dcd_zI, dcdF, dcdF_wr, dcdOp, dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock, dcdR_wr,dcdA_rd, dcdB_rd, dcd_early_branch, dcd_branch_pc, dcd_pipe); `else idecode_deprecated #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE, IMPLEMENT_FPU) instruction_decoder(i_clk, (i_rst)||(clear_pipeline), dcd_ce, dcd_stalled, instruction, instruction_gie, instruction_pc, pf_valid, pf_illegal, dcd_phase, dcd_illegal, dcd_pc, dcd_gie, { dcdR_cc, dcdR_pc, dcdR }, { dcdA_cc, dcdA_pc, dcdA }, { dcdB_cc, dcdB_pc, dcdB }, dcdI, dcd_zI, dcdF, dcdF_wr, dcdOp, dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock, dcdR_wr,dcdA_rd, dcdB_rd, dcd_early_branch, dcd_branch_pc, dcd_pipe); `endif `ifdef OPT_PIPELINED_BUS_ACCESS reg op_pipe; initial op_pipe = 1'b0; // To be a pipeable operation, there must be // two valid adjacent instructions // Both must be memory instructions // Both must be writes, or both must be reads // Both operations must be to the same identical address, // or at least a single (one) increment above that address // // However ... we need to know this before this clock, hence this is // calculated in the instruction decoder. always @(posedge i_clk) if (op_ce) op_pipe <= dcd_pipe; `endif // // // PIPELINE STAGE #3 :: Read Operands (Registers) // // assign w_opA = regset[dcdA]; assign w_opB = regset[dcdB]; wire [31:0] w_pcA_v; generate if (AW < 32) assign w_pcA_v = {{(32-AW){1'b0}}, (dcdA[4] == dcd_gie)?dcd_pc:upc }; else assign w_pcA_v = (dcdA[4] == dcd_gie)?dcd_pc:upc; endgenerate `ifdef OPT_PIPELINED reg [4:0] opA_id, opB_id; reg opA_rd, opB_rd; always @(posedge i_clk) if (op_ce) begin opA_id <= dcdA; opB_id <= dcdB; opA_rd <= dcdA_rd; opB_rd <= dcdB_rd; end `endif always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) begin if ((wr_reg_ce)&&(wr_reg_id == dcdA)) r_opA <= wr_reg_vl; else if (dcdA_pc) r_opA <= w_pcA_v; else if (dcdA_cc) r_opA <= { w_opA[31:13], (dcdA[4])?w_uflags:w_iflags }; else r_opA <= w_opA; `ifdef OPT_PIPELINED end else begin // We were going to pick these up when they became valid, // but for some reason we're stuck here as they became // valid. Pick them up now anyway // if (((opA_alu)&&(alu_wr))||((opA_mem)&&(mem_valid))) // r_opA <= wr_reg_vl; if ((wr_reg_ce)&&(wr_reg_id == opA_id)&&(opA_rd)) r_opA <= wr_reg_vl; `endif end wire [31:0] w_opBnI, w_pcB_v; generate if (AW < 32) assign w_pcB_v = {{(32-AW){1'b0}}, (dcdB[4] == dcd_gie)?dcd_pc:upc }; else assign w_pcB_v = (dcdB[4] == dcd_gie)?dcd_pc:upc; endgenerate assign w_opBnI = (~dcdB_rd) ? 32'h00 : (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_reg_vl : ((dcdB_pc) ? w_pcB_v : ((dcdB_cc) ? { w_opB[31:13], (dcdB[4])?w_uflags:w_iflags} : w_opB))); always @(posedge i_clk) if (op_ce) // &&(dcdvalid)) r_opB <= w_opBnI + dcdI; `ifdef OPT_PIPELINED else if ((wr_reg_ce)&&(opB_id == wr_reg_id)&&(opB_rd)) r_opB <= wr_reg_vl; `endif // The logic here has become more complex than it should be, no thanks // to Xilinx's Vivado trying to help. The conditions are supposed to // be two sets of four bits: the top bits specify what bits matter, the // bottom specify what those top bits must equal. However, two of // conditions check whether bits are on, and those are the only two // conditions checking those bits. Therefore, Vivado complains that // these two bits are redundant. Hence the convoluted expression // below, arriving at what we finally want in the (now wire net) // opF. always @(posedge i_clk) if (op_ce) begin // Set the flag condition codes, bit order is [3:0]=VNCZ case(dcdF[2:0]) 3'h0: r_opF <= 6'h00; // Always `ifdef OPT_NEW_INSTRUCTION_SET // These were remapped as part of the new instruction // set in order to make certain that the low order // two bits contained the most commonly used // conditions: Always, LT, Z, and NZ. 3'h1: r_opF <= 6'h24; // LT 3'h2: r_opF <= 6'h11; // Z 3'h3: r_opF <= 6'h10; // NE 3'h4: r_opF <= 6'h30; // GT (!N&!Z) 3'h5: r_opF <= 6'h20; // GE (!N) `else 3'h1: r_opF <= 6'h11; // Z 3'h2: r_opF <= 6'h10; // NE 3'h3: r_opF <= 6'h20; // GE (!N) 3'h4: r_opF <= 6'h30; // GT (!N&!Z) 3'h5: r_opF <= 6'h24; // LT `endif 3'h6: r_opF <= 6'h02; // C 3'h7: r_opF <= 6'h08; // V endcase end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value } assign opF = { r_opF[3], r_opF[5], r_opF[1], r_opF[4:0] }; always @(posedge i_clk) if (op_ce) opF_cp[2:0] <= dcdF[2:0]; wire w_opvalid; assign w_opvalid = (~clear_pipeline)&&(dcdvalid); initial opvalid = 1'b0; initial opvalid_alu = 1'b0; initial opvalid_mem = 1'b0; always @(posedge i_clk) if (i_rst) begin opvalid <= 1'b0; opvalid_alu <= 1'b0; opvalid_mem <= 1'b0; end else if (op_ce) begin // Do we have a valid instruction? // The decoder may vote to stall one of its // instructions based upon something we currently // have in our queue. This instruction must then // move forward, and get a stall cycle inserted. // Hence, the test on dcd_stalled here. If we must // wait until our operands are valid, then we aren't // valid yet until then. opvalid<= w_opvalid; `ifdef OPT_ILLEGAL_INSTRUCTION opvalid_alu <= ((dcdALU)||(dcd_illegal))&&(w_opvalid); opvalid_mem <= (dcdM)&&(~dcd_illegal)&&(w_opvalid); opvalid_div <= (dcdDV)&&(~dcd_illegal)&&(w_opvalid); opvalid_fpu <= (dcdFP)&&(~dcd_illegal)&&(w_opvalid); `else opvalid_alu <= (dcdALU)&&(w_opvalid); opvalid_mem <= (dcdM)&&(w_opvalid); opvalid_div <= (dcdDV)&&(w_opvalid); opvalid_fpu <= (dcdFP)&&(w_opvalid); `endif end else if ((clear_pipeline)||(alu_ce)||(mem_ce)||(div_ce)||(fpu_ce)) begin opvalid <= 1'b0; opvalid_alu <= 1'b0; opvalid_mem <= 1'b0; opvalid_div <= 1'b0; opvalid_fpu <= 1'b0; end // Here's part of our debug interface. When we recognize a break // instruction, we set the op_break flag. That'll prevent this // instruction from entering the ALU, and cause an interrupt before // this instruction. Thus, returning to this code will cause the // break to repeat and continue upon return. To get out of this // condition, replace the break instruction with what it is supposed // to be, step through it, and then replace it back. In this fashion, // a debugger can step through code. // assign w_op_break = (dcd_break)&&(r_dcdI[15:0] == 16'h0001); initial op_break = 1'b0; always @(posedge i_clk) if (i_rst) op_break <= 1'b0; else if (op_ce) op_break <= (dcd_break); else if ((clear_pipeline)||(~opvalid)) op_break <= 1'b0; `ifdef OPT_PIPELINED generate if (IMPLEMENT_LOCK != 0) begin reg r_op_lock, r_op_lock_stall; initial r_op_lock_stall = 1'b0; always @(posedge i_clk) if (i_rst) r_op_lock_stall <= 1'b0; else r_op_lock_stall <= (~opvalid)||(~op_lock) ||(~dcdvalid)||(~pf_valid); assign op_lock_stall = r_op_lock_stall; initial r_op_lock = 1'b0; always @(posedge i_clk) if (i_rst) r_op_lock <= 1'b0; else if ((op_ce)&&(dcd_lock)) r_op_lock <= 1'b1; else if ((op_ce)||(clear_pipeline)) r_op_lock <= 1'b0; assign op_lock = r_op_lock; end else begin assign op_lock_stall = 1'b0; assign op_lock = 1'b0; end endgenerate `else assign op_lock_stall = 1'b0; assign op_lock = 1'b0; `endif `ifdef OPT_ILLEGAL_INSTRUCTION initial op_illegal = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) op_illegal <= 1'b0; else if(op_ce) `ifdef OPT_PIPELINED op_illegal <=(dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0)); `else op_illegal <= (dcd_illegal)||(dcd_lock); `endif `endif // No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not // set, dcd_early_branch will simply be a wire connected to zero and // this logic should just optimize. always @(posedge i_clk) if (op_ce) begin opF_wr <= (dcdF_wr)&&((~dcdR_cc)||(~dcdR_wr))&&(~dcd_early_branch); opR_wr <= (dcdR_wr)&&(~dcd_early_branch); op_wr_pc <= ((dcdR_wr)&&(dcdR_pc) &&(dcdR[4] == dcd_gie)) &&(~dcd_early_branch); end always @(posedge i_clk) if (op_ce) begin opn <= dcdOp; // Which ALU operation? // opM <= dcdM; // Is this a memory operation? // What register will these results be written into? opR <= dcdR; opR_cc <= (dcdR_cc)&&(dcdR_wr)&&(dcdR[4]==dcd_gie); // User level (1), vs supervisor (0)/interrupts disabled op_gie <= dcd_gie; // op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc; end assign opFl = (op_gie)?(w_uflags):(w_iflags); `ifdef OPT_VLIW reg r_op_phase; initial r_op_phase = 1'b0; always @(posedge i_clk) if ((i_rst)||(clear_pipeline)) r_op_phase <= 1'b0; else if (op_ce) r_op_phase <= dcd_phase; assign op_phase = r_op_phase; `else assign op_phase = 1'b0; `endif // This is tricky. First, the PC and Flags registers aren't kept in // register set but in special registers of their own. So step one // is to select the right register. Step to is to replace that // register with the results of an ALU or memory operation, if such // results are now available. Otherwise, we'd need to insert a wait // state of some type. // // The alternative approach would be to define some sort of // op_stall wire, which would stall any upstream stage. // We'll create a flag here to start our coordination. Once we // define this flag to something other than just plain zero, then // the stalls will already be in place. `ifdef OPT_PIPELINED assign opA = ((wr_reg_ce)&&(wr_reg_id == opA_id)&&(opA_rd)) ? wr_reg_vl : r_opA; `else assign opA = r_opA; `endif `ifdef OPT_PIPELINED assign dcdA_stall = (dcdvalid)&&(dcdA_rd)&&( ((opvalid_alu)&&(opF_wr)&&(dcdA_cc)) ); `else // There are no pipeline hazards, if we aren't pipelined assign dcdA_stall = 1'b0; `endif `ifdef OPT_PIPELINED assign opB = ((wr_reg_ce)&&(wr_reg_id == opB_id)&&(opB_rd)) ? wr_reg_vl: r_opB; `else assign opB = r_opB; `endif `ifdef OPT_PIPELINED assign dcdB_stall = (dcdvalid)&&(dcdB_rd)&&( // Stall on memory ops writing to my register // (i.e. loads), or on any write to my // register if I have an immediate offset // Note the exception for writing to the PC: // if I write to the PC, the whole next // instruction is invalid, not just the // operand. That'll get wiped in the // next operation anyway, so don't stall // here. ((~dcd_zI)&&(dcdB_rd)&&(opR == dcdB)&&(opR_wr) &&(opR != { op_gie, `CPU_PC_REG } ) &&((opvalid)||(mem_rdbusy) ||(div_busy)||(fpu_busy))) // Stall on any write to the flags register, // if we're going to need the flags value for // opB. ||((opvalid_alu)&&(opF_wr)&&(dcdB_cc)) // Stall on any ongoing memory operation that // will write to opB -- captured above // ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcdB)&&(~dcd_zI)) ); `else // No stalls without pipelining, 'cause how can you have a pipeline // hazard without the pipeline? assign dcdB_stall = 1'b0; `endif assign dcdF_stall = (dcdvalid)&&((~dcdF[3]) ||((dcdA_rd)&&(dcdA_cc)) ||((dcdB_rd)&&(dcdB_cc))) &&(opvalid)&&(opR_cc); // // // PIPELINE STAGE #4 :: Apply Instruction // // `ifdef OPT_NEW_INSTRUCTION_SET cpuops #(IMPLEMENT_MPY) doalu(i_clk, i_rst, alu_ce, (opvalid_alu), opn, opA, opB, alu_result, alu_flags, alu_valid, alu_illegal_op, alu_busy); `else cpuops_deprecated #(IMPLEMENT_MPY) doalu(i_clk, i_rst, alu_ce, (opvalid_alu), opn, opA, opB, alu_result, alu_flags, alu_valid, alu_illegal_op); assign alu_busy = 1'b0; `endif generate if (IMPLEMENT_DIVIDE != 0) begin div thedivide(i_clk, i_rst, div_ce, opn[0], opA, opB, div_busy, div_valid, div_error, div_result, div_flags); end else begin assign div_error = 1'b1; assign div_busy = 1'b0; assign div_valid = 1'b0; assign div_result= 32'h00; assign div_flags = 4'h0; end endgenerate generate if (IMPLEMENT_FPU != 0) begin // // sfpu thefpu(i_clk, i_rst, fpu_ce, // opA, opB, fpu_busy, fpu_valid, fpu_err, fpu_result, // fpu_flags); // assign fpu_error = 1'b1; assign fpu_busy = 1'b0; assign fpu_valid = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end else begin assign fpu_error = 1'b1; assign fpu_busy = 1'b0; assign fpu_valid = 1'b0; assign fpu_result= 32'h00; assign fpu_flags = 4'h0; end endgenerate assign set_cond = ((opF[7:4]&opFl[3:0])==opF[3:0]); initial alF_wr = 1'b0; initial alu_wr = 1'b0; always @(posedge i_clk) if (i_rst) begin alu_wr <= 1'b0; alF_wr <= 1'b0; end else if (alu_ce) begin // alu_reg <= opR; alu_wr <= (opR_wr)&&(set_cond); alF_wr <= (opF_wr)&&(set_cond); end else if (~alu_busy) begin // These are strobe signals, so clear them if not // set for any particular clock alu_wr <= (i_halt)&&(i_dbg_we); alF_wr <= 1'b0; end `ifdef OPT_VLIW reg r_alu_phase; initial r_alu_phase = 1'b0; always @(posedge i_clk) if (i_rst) r_alu_phase <= 1'b0; else if ((alu_ce)||(mem_ce)||(div_ce)||(fpu_ce)) r_alu_phase <= op_phase; assign alu_phase = r_alu_phase; `else assign alu_phase = 1'b0; `endif always @(posedge i_clk) if ((alu_ce)||(div_ce)||(fpu_ce)) alu_reg <= opR; else if ((i_halt)&&(i_dbg_we)) alu_reg <= i_dbg_reg; reg [31:0] dbg_val; reg dbgv; always @(posedge i_clk) dbg_val <= i_dbg_data; initial dbgv = 1'b0; always @(posedge i_clk) dbgv <= (~i_rst)&&(~alu_ce)&&((i_halt)&&(i_dbg_we)); always @(posedge i_clk) if ((alu_ce)||(mem_ce)) alu_gie <= op_gie; always @(posedge i_clk) if ((alu_ce)||((master_ce)&&(opvalid_mem)&&(~clear_pipeline) &&(~mem_stalled))) alu_pc <= op_pc; `ifdef OPT_ILLEGAL_INSTRUCTION reg r_alu_illegal; initial r_alu_illegal = 0; always @(posedge i_clk) if (clear_pipeline) r_alu_illegal <= 1'b0; else if ((alu_ce)||(mem_ce)) r_alu_illegal <= op_illegal; assign alu_illegal = (alu_illegal_op)||(r_alu_illegal); `endif // This _almost_ is equal to (alu_ce)||(mem_ce). The only // problem is that mem_ce is gated by the set_cond, and // the PC will be valid independent of the set condition. Hence, this // equals (alu_ce)||(everything in mem_ce but the set condition) initial alu_pc_valid = 1'b0; always @(posedge i_clk) alu_pc_valid <= ((alu_ce) ||((master_ce)&&(opvalid_mem)&&(~clear_pipeline)&&(~mem_stalled))); wire bus_lock; `ifdef OPT_PIPELINED generate if (IMPLEMENT_LOCK != 0) begin reg r_bus_lock; initial r_bus_lock = 1'b0; always @(posedge i_clk) if (i_rst) r_bus_lock <= 1'b0; else if ((op_ce)&&(op_lock)) r_bus_lock <= 1'b1; else if (~opvalid_mem) r_bus_lock <= 1'b0; assign bus_lock = r_bus_lock; end else begin assign bus_lock = 1'b0; end endgenerate `else assign bus_lock = 1'b0; `endif `ifdef OPT_PIPELINED_BUS_ACCESS pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock, (opn[0]), opB, opA, opR, mem_busy, mem_pipe_stalled, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, i_wb_data); `else // PIPELINED_BUS_ACCESS memops #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock, (opn[0]), opB, opA, opR, mem_busy, mem_valid, bus_err, mem_wreg, mem_result, mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, i_wb_data); `endif // PIPELINED_BUS_ACCESS assign mem_rdbusy = ((mem_busy)&&(~mem_we)); // Either the prefetch or the instruction gets the memory bus, but // never both. wbdblpriarb #(32,AW) pformem(i_clk, i_rst, // Memory access to the arbiter, priority position mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err, // Prefetch access to the arbiter pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data, pf_ack, pf_stall, pf_err, // Common wires, in and out, of the arbiter o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb, o_wb_we, o_wb_addr, o_wb_data, i_wb_ack, i_wb_stall, i_wb_err); // // // PIPELINE STAGE #5 :: Write-back results // // // This stage is not allowed to stall. If results are ready to be // written back, they are written back at all cost. Sleepy CPU's // won't prevent write back, nor debug modes, halting the CPU, nor // anything else. Indeed, the (master_ce) bit is only as relevant // as knowinig something is available for writeback. // // Write back to our generic register set ... // When shall we write back? On one of two conditions // Note that the flags needed to be checked before issuing the // bus instruction, so they don't need to be checked here. // Further, alu_wr includes (set_cond), so we don't need to // check for that here either. `ifdef OPT_ILLEGAL_INSTRUCTION assign wr_reg_ce = (~alu_illegal)&&((alu_wr)&&(alu_valid)&&(~clear_pipeline))||(mem_valid)||(div_valid)||(fpu_valid); `else assign wr_reg_ce = ((alu_wr)&&(~clear_pipeline))||(mem_valid)||(div_valid)||(fpu_valid); `endif // Which register shall be written? // COULD SIMPLIFY THIS: by adding three bits to these registers, // One or PC, one for CC, and one for GIE match // Note that the alu_reg is the register to write on a divide or // FPU operation. assign wr_reg_id = (alu_wr)?alu_reg:mem_wreg; // Are we writing to the CC register? assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG); // Are we writing to the PC? assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); // What value to write? assign wr_reg_vl = ((mem_valid) ? mem_result :((div_valid|fpu_valid)) ? ((div_valid) ? div_result:fpu_result) :((dbgv) ? dbg_val : alu_result)); always @(posedge i_clk) if (wr_reg_ce) regset[wr_reg_id] <= wr_reg_vl; // // Write back to the condition codes/flags register ... // When shall we write to our flags register? alF_wr already // includes the set condition ... assign wr_flags_ce = ((alF_wr)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal); assign w_uflags = { ufpu_err_flag, udiv_err_flag, ubus_err_flag, trap, ill_err_u, 1'b0, step, 1'b1, sleep, ((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; assign w_iflags = { ifpu_err_flag, idiv_err_flag, ibus_err_flag, trap, ill_err_i, break_en, 1'b0, 1'b0, sleep, ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags }; // What value to write? always @(posedge i_clk) // If explicitly writing the register itself if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc)) flags <= wr_reg_vl[3:0]; // Otherwise if we're setting the flags from an ALU operation else if ((wr_flags_ce)&&(alu_gie)) flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags : alu_flags); always @(posedge i_clk) if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) iflags <= wr_reg_vl[3:0]; else if ((wr_flags_ce)&&(~alu_gie)) iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags : alu_flags); // The 'break' enable bit. This bit can only be set from supervisor // mode. It control what the CPU does upon encountering a break // instruction. // // The goal, upon encountering a break is that the CPU should stop and // not execute the break instruction, choosing instead to enter into // either interrupt mode or halt first. // if ((break_en) AND (break_instruction)) // user mode or not // HALT CPU // else if (break_instruction) // only in user mode // set an interrupt flag, go to supervisor mode // allow supervisor to step the CPU. // Upon a CPU halt, any break condition will be reset. The // external debugger will then need to deal with whatever // condition has taken place. initial break_en = 1'b0; always @(posedge i_clk) if ((i_rst)||(i_halt)) break_en <= 1'b0; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) break_en <= wr_reg_vl[`CPU_BREAK_BIT]; `ifdef OPT_ILLEGAL_INSTRUCTION assign o_break = ((break_en)||(~op_gie))&&(op_break) &&(~alu_valid)&&(~mem_valid)&&(~mem_busy) &&(~div_busy)&&(~fpu_busy) &&(~clear_pipeline) ||((~alu_gie)&&(bus_err)) ||((~alu_gie)&&(div_valid)&&(div_error)) ||((~alu_gie)&&(fpu_valid)&&(fpu_error)) ||((~alu_gie)&&(alu_pc_valid)&&(alu_illegal)); `else assign o_break = (((break_en)||(~op_gie))&&(op_break) &&(~alu_valid)&&(~mem_valid)&&(~mem_busy) &&(~clear_pipeline)) ||((~alu_gie)&&(bus_err)); `endif // The sleep register. Setting the sleep register causes the CPU to // sleep until the next interrupt. Setting the sleep register within // interrupt mode causes the processor to halt until a reset. This is // a panic/fault halt. The trick is that you cannot be allowed to // set the sleep bit and switch to supervisor mode in the same // instruction: users are not allowed to halt the CPU. always @(posedge i_clk) if ((i_rst)||(w_switch_to_interrupt)) sleep <= 1'b0; else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie)) // In supervisor mode, we have no protections. The // supervisor can set the sleep bit however he wants. // Well ... not quite. Switching to user mode and // sleep mode shouold only be possible if the interrupt // flag isn't set. // Thus: if (i_interrupt)&&(wr_reg_vl[GIE]) // don't set the sleep bit // otherwise however it would o.w. be set sleep <= (wr_reg_vl[`CPU_SLEEP_BIT]) &&((~i_interrupt)||(~wr_reg_vl[`CPU_GIE_BIT])); else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_vl[`CPU_GIE_BIT])) // In user mode, however, you can only set the sleep // mode while remaining in user mode. You can't switch // to sleep mode *and* supervisor mode at the same // time, lest you halt the CPU. sleep <= wr_reg_vl[`CPU_SLEEP_BIT]; always @(posedge i_clk) if ((i_rst)||(w_switch_to_interrupt)) step <= 1'b0; else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc)) step <= wr_reg_vl[`CPU_STEP_BIT]; else if ((alu_pc_valid)&&(step)&&(gie)) step <= 1'b0; // The GIE register. Only interrupts can disable the interrupt register assign w_switch_to_interrupt = (gie)&&( // On interrupt (obviously) ((i_interrupt)&&(~alu_phase)&&(~bus_lock)) // If we are stepping the CPU ||((alu_pc_valid)&&(step)&&(~alu_phase)&&(~bus_lock)) // If we encounter a break instruction, if the break // enable isn't set. ||((master_ce)&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) &&(op_break)&&(~break_en)) `ifdef OPT_ILLEGAL_INSTRUCTION // On an illegal instruction ||((alu_pc_valid)&&(alu_illegal)) `endif // On division by zero. If the divide isn't // implemented, div_valid and div_error will be short // circuited and that logic will be bypassed ||((div_valid)&&(div_error)) // Same thing on a floating point error. ||((fpu_valid)&&(fpu_error)) // ||(bus_err) // If we write to the CC register ||((wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ); assign w_release_from_interrupt = (~gie)&&(~i_interrupt) // Then if we write the CC register &&(((wr_reg_ce)&&(wr_reg_vl[`CPU_GIE_BIT]) &&(~wr_reg_id[4])&&(wr_write_cc)) ); always @(posedge i_clk) if (i_rst) gie <= 1'b0; else if (w_switch_to_interrupt) gie <= 1'b0; else if (w_release_from_interrupt) gie <= 1'b1; initial trap = 1'b0; always @(posedge i_clk) if (i_rst) trap <= 1'b0; else if ((alu_gie)&&(wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT]) &&(wr_write_cc)) // &&(wr_reg_id[4]) implied trap <= 1'b1; else if (w_release_from_interrupt) trap <= 1'b0; `ifdef OPT_ILLEGAL_INSTRUCTION initial ill_err_i = 1'b0; always @(posedge i_clk) if (i_rst) ill_err_i <= 1'b0; // The debug interface can clear this bit else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_reg_vl[`CPU_ILL_BIT])) ill_err_i <= 1'b0; else if ((alu_pc_valid)&&(alu_illegal)&&(~alu_gie)) ill_err_i <= 1'b1; initial ill_err_u = 1'b0; always @(posedge i_clk) if (i_rst) ill_err_u <= 1'b0; // The bit is automatically cleared on release from interrupt else if (w_release_from_interrupt) ill_err_u <= 1'b0; // If the supervisor writes to this register, clearing the // bit, then clear it else if (((~alu_gie)||(dbgv)) &&(wr_reg_ce)&&(~wr_reg_vl[`CPU_ILL_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ill_err_u <= 1'b0; else if ((alu_pc_valid)&&(alu_illegal)&&(alu_gie)) ill_err_u <= 1'b1; `else assign ill_err_u = 1'b0; assign ill_err_i = 1'b0; `endif // Supervisor/interrupt bus error flag -- this will crash the CPU if // ever set. initial ibus_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) ibus_err_flag <= 1'b0; else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_reg_vl[`CPU_BUSERR_BIT])) ibus_err_flag <= 1'b0; else if ((bus_err)&&(~alu_gie)) ibus_err_flag <= 1'b1; // User bus error flag -- if ever set, it will cause an interrupt to // supervisor mode. initial ubus_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) ubus_err_flag <= 1'b0; else if (w_release_from_interrupt) ubus_err_flag <= 1'b0; // else if ((i_halt)&&(i_dbg_we)&&(~i_dbg_reg[4]) // &&(i_dbg_reg == {1'b1, `CPU_CC_REG}) // &&(~i_dbg_data[`CPU_BUSERR_BIT])) // ubus_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) &&(~wr_reg_vl[`CPU_BUSERR_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) ubus_err_flag <= 1'b0; else if ((bus_err)&&(alu_gie)) ubus_err_flag <= 1'b1; generate if (IMPLEMENT_DIVIDE != 0) begin reg r_idiv_err_flag, r_udiv_err_flag; // Supervisor/interrupt divide (by zero) error flag -- this will // crash the CPU if ever set. This bit is thus available for us // to be able to tell if/why the CPU crashed. initial r_idiv_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_idiv_err_flag <= 1'b0; else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_reg_vl[`CPU_DIVERR_BIT])) r_idiv_err_flag <= 1'b0; else if ((div_error)&&(div_valid)&&(~alu_gie)) r_idiv_err_flag <= 1'b1; // User divide (by zero) error flag -- if ever set, it will // cause a sudden switch interrupt to supervisor mode. initial r_udiv_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_udiv_err_flag <= 1'b0; else if (w_release_from_interrupt) r_udiv_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) &&(~wr_reg_vl[`CPU_DIVERR_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) r_udiv_err_flag <= 1'b0; else if ((div_error)&&(alu_gie)&&(div_valid)) r_udiv_err_flag <= 1'b1; assign idiv_err_flag = r_idiv_err_flag; assign udiv_err_flag = r_udiv_err_flag; end else begin assign idiv_err_flag = 1'b0; assign udiv_err_flag = 1'b0; end endgenerate generate if (IMPLEMENT_FPU !=0) begin // Supervisor/interrupt floating point error flag -- this will // crash the CPU if ever set. reg r_ifpu_err_flag, r_ufpu_err_flag; initial r_ifpu_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_ifpu_err_flag <= 1'b0; else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) &&(~wr_reg_vl[`CPU_FPUERR_BIT])) r_ifpu_err_flag <= 1'b0; else if ((fpu_error)&&(fpu_valid)&&(~alu_gie)) r_ifpu_err_flag <= 1'b1; // User floating point error flag -- if ever set, it will cause // a sudden switch interrupt to supervisor mode. initial r_ufpu_err_flag = 1'b0; always @(posedge i_clk) if (i_rst) r_ufpu_err_flag <= 1'b0; else if (w_release_from_interrupt) r_ufpu_err_flag <= 1'b0; else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) &&(~wr_reg_vl[`CPU_FPUERR_BIT]) &&(wr_reg_id[4])&&(wr_write_cc)) r_ufpu_err_flag <= 1'b0; else if ((fpu_error)&&(alu_gie)&&(fpu_valid)) r_ufpu_err_flag <= 1'b1; assign ifpu_err_flag = r_ifpu_err_flag; assign ufpu_err_flag = r_ufpu_err_flag; end else begin assign ifpu_err_flag = 1'b0; assign ufpu_err_flag = 1'b0; end endgenerate `ifdef OPT_VLIW reg r_ihalt_phase, r_uhalt_phase; initial r_ihalt_phase = 0; initial r_uhalt_phase = 0; always @(posedge i_clk) if (~alu_gie) r_ihalt_phase <= alu_phase; always @(posedge i_clk) if (alu_gie) r_uhalt_phase <= alu_phase; else if (w_release_from_interrupt) r_uhalt_phase <= 1'b0; assign ihalt_phase = r_ihalt_phase; assign uhalt_phase = r_uhalt_phase; `else assign ihalt_phase = 1'b0; assign uhalt_phase = 1'b0; `endif // // Write backs to the PC register, and general increments of it // We support two: upc and ipc. If the instruction is normal, // we increment upc, if interrupt level we increment ipc. If // the instruction writes the PC, we write whichever PC is appropriate. // // Do we need to all our partial results from the pipeline? // What happens when the pipeline has gie and ~gie instructions within // it? Do we clear both? What if a gie instruction tries to clear // a non-gie instruction? always @(posedge i_clk) if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc)) upc <= wr_reg_vl[(AW-1):0]; else if ((alu_gie)&&(alu_pc_valid)&&(~clear_pipeline)) upc <= alu_pc; always @(posedge i_clk) if (i_rst) ipc <= RESET_ADDRESS; else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc)) ipc <= wr_reg_vl[(AW-1):0]; else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline)) ipc <= alu_pc; always @(posedge i_clk) if (i_rst) pf_pc <= RESET_ADDRESS; else if (w_switch_to_interrupt) pf_pc <= ipc; else if (w_release_from_interrupt) pf_pc <= upc; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) pf_pc <= wr_reg_vl[(AW-1):0]; `ifdef OPT_PIPELINED else if ((~new_pc)&&((dcd_early_branch)&&(dcdvalid))) pf_pc <= dcd_branch_pc + 1; else if ((new_pc)||((~dcd_stalled)&&(pf_valid))) pf_pc <= pf_pc + {{(AW-1){1'b0}},1'b1}; `else else if ((alu_pc_valid)&&(~clear_pipeline)) pf_pc <= alu_pc; `endif initial new_pc = 1'b1; always @(posedge i_clk) if ((i_rst)||(i_clear_pf_cache)) new_pc <= 1'b1; else if (w_switch_to_interrupt) new_pc <= 1'b1; else if (w_release_from_interrupt) new_pc <= 1'b1; else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) new_pc <= 1'b1; else new_pc <= 1'b0; // // The debug interface generate if (AW<32) begin always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc}; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[12:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end end else begin always @(posedge i_clk) begin o_dbg_reg <= regset[i_dbg_reg]; if (i_dbg_reg[3:0] == `CPU_PC_REG) o_dbg_reg <= (i_dbg_reg[4])?upc:ipc; else if (i_dbg_reg[3:0] == `CPU_CC_REG) begin o_dbg_reg[12:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; o_dbg_reg[`CPU_GIE_BIT] <= gie; end end end endgenerate always @(posedge i_clk) o_dbg_cc <= { o_break, bus_err, gie, sleep }; always @(posedge i_clk) o_dbg_stall <= (i_halt)&&( (pf_cyc)||(mem_cyc_gbl)||(mem_cyc_lcl)||(mem_busy) ||((~opvalid)&&(~i_rst)) ||((~dcdvalid)&&(~i_rst))); // // // Produce accounting outputs: Account for any CPU stalls, so we can // later evaluate how well we are doing. // // assign o_op_stall = (master_ce)&&(op_stall); assign o_pf_stall = (master_ce)&&(~pf_valid); assign o_i_count = (alu_pc_valid)&&(~clear_pipeline); `ifdef DEBUG_SCOPE always @(posedge i_clk) o_debug <= { pf_pc[3:0], flags, pf_valid, dcdvalid, opvalid, alu_valid, mem_valid, op_ce, alu_ce, mem_ce, // master_ce, opvalid_alu, opvalid_mem, // alu_stall, mem_busy, op_pipe, mem_pipe_stalled, mem_we, // ((opvalid_alu)&&(alu_stall)) // ||((opvalid_mem)&&(~op_pipe)&&(mem_busy)) // ||((opvalid_mem)&&( op_pipe)&&(mem_pipe_stalled))); // opA[23:20], opA[3:0], gie, sleep, wr_reg_ce, wr_reg_vl[4:0] /* i_rst, master_ce, (new_pc), ((dcd_early_branch)&&(dcdvalid)), pf_valid, pf_illegal, op_ce, dcd_ce, dcdvalid, dcd_stalled, pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err, pf_pc[7:0], pf_addr[7:0] */ }; `endif endmodule
Go to most recent revision | Compare with Previous | Blame | View Log